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Abstract: We conducted an experiment comparing wind speeds and aerodynamic roughness length
(z0) values over three snow surface conditions, including a flat smooth surface, a wavy smooth
surface, and a wavy surface with fresh snow added, using the wind simulation tunnel at the Shinjo
Cryospheric Laboratory in Shinjo, Japan. The results indicate that the measurement location impacts
the computed z0 values up to a certain measurement height. When we created small (4 cm high)
snow bedforms as waves with a 50 cm period, the computed z0 values varied by up to 35% based
on the horizontal sampling location over the wave (furrow versus trough). These computed z0

values for the smooth snow waves were not significantly different than those for the smooth flat
snow surface. Fresh snow was then blown over the snow waves. Here, for three of four horizontal
sampling locations, the computed z0 values were significantly different over the fresh snow-covered
waves as compared to those over the smooth snow waves. Since meteorological stations are usually
established over flat land surfaces, a smooth snow surface texture may seem to be an appropriate
assumption when calculating z0, but the snowpack surface can vary substantially in space and time.
Therefore, the nature of the snow surface geometry should be considered variable when estimating a
z0 value, especially for modeling purposes.

Keywords: anemometric measurements; wind speed; snow bedforms; wind-blown snow; Shinjo
Cryospheric Environment Laboratory

1. Introduction

A large portion of the earth is seasonally snow-covered for numerous months of each
year [1,2]. The snowpack surface, as the interface with the atmosphere [3], is a spatially
and temporally important boundary [4] that is quite dynamic [5–8] and greatly influenced
by wind patterns [7,9,10]. The aerodynamic roughness length (z0) [11–13] is an important
metric for the snowpack surface, used for calculating latent and sensible heat fluxes [3,12,14].
Typically, the calculation of z0 requires an anemometric profile to determine the variation
in wind speed at differing heights above the surface [3,15]. There are a variety of methods
for measuring the anemometric profile [16] and the resulting z0 [13], which impacts the
estimation of sublimation [17,18].
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Snow surface z0 values vary by several orders of magnitude, with the focus often
being snow on glaciers [6,13,19] or on sea ice [12,14]. Brock et al. [6] summarized z0 values
using the wind profile method from the literature ranging from 0.2 to 14 × 10−3 m. For a
specific location, z0 has been found to vary over time; on the Weddell Ice Sheet, z0 varied
from 10−6 to almost 10−1 m, partially dependent on the presence of blowing snow [5].
Due mostly to the snow depth, at a single location, the anemometric z0 varied from 0.2 to
2 × 10−3 m for a smooth underlying soil surface and then ranged from 1 to 40 × 10−3 m
when the soil was plowed [8].

Usually, meteorological stations constructed to measure the wind profile are estab-
lished over homogeneous terrain, i.e., relatively flat surfaces and not among vegetation
elements or obvious surface roughness features [3,20,21]. However, most natural surfaces,
especially the snow surface, are heterogeneous in texture, which influences wind speed
measurements and the computed z0 value. Further, the snow surface shape can change
rapidly as snow bedforms [22] can move at several meters per hour [23,24]. These snow
bedforms have a period of 5 to 20 cm and can be small 0.2 to 2 cm high ripples or larger 5 to
18 cm high waves [23,25]. If we consider a fixed location meteorological tower and moving
snow bedforms, then the snow surface changes at the tower, which is analogous to moving
the tower to different snow surface shapes.

This paper examines the variation in calculated z0 values obtained from fine vertical
resolution (10 to 35 mm increments) anemometric measurements as a function of the sam-
pling locations in a controlled environment (Table 1). We created a series of homogeneous
bedforms in the shape of periodic, sinusoidal waves on a snow surface in a cold-room
wind tunnel [26] and asked the following questions: (1) Are the wind profiles different
based on horizontal sampling location? (2) At what height does the measurement profile
converge regardless of the horizontal sampling location? (3) How does the computed z0
value change as a function of the horizontal sampling location? And (4) how does the
computed z0 value change after fresh snow is blown onto the snow surface? Measuring the
wind profile at different locations represents both a changing surface and spatial variability.

Table 1. A summary of the laboratory experiments (also see Figure 1d for wave position). For the
snow wave experiment, z0 was computed above the snow surface (2w, 2f, 2l, and 2t), as well as above
the datum at the height of the trough (2wd, 2fd, 2ld, and 2td). For the furrow snow bedform (2f), z0

was also computed without the bottom measurements (2fc and 2fdc).

Experiment Surface Figure Measurement Height (mm)

1 flat Figure 1a 35–385 by 35 mm increments

2w Bedform/wave–windward Figure 1b

10–210 by 10 mm, then
210–385 by 35 mm

2f Bedform/wave–furrow (top) Figure 1b
2l Bedform/wave–leeward Figure 1b
2t Bedform/wave–trough (bottom) Figure 1b

2wd, 2fd, 2ld, 2td Wind profile above common datum Figure 1b

2fc, 2fdc Furrow with bottom of profile clipped Figure 1b

3w Fresh snow-covered wave–windward Figure 1e
3f Fresh snow-covered wave–furrow (top) Figure 1e
3l Fresh snow-covered wave–leeward Figure 1e
3t Fresh snow-covered wave–trough (bottom) Figure 1e
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Figure 1. (a) Looking downwind in the CES wind tunnel over the flat snow surface; (b) looking 
upwind over the snow wave surface; (c) the form used to make the 50 cm long, 4 cm high snow 
bedforms; (d) conceptual diagram of the snow bedforms and the four relative horizontal sampling 
locations (w—windward, f—furrow, l—leeward, and t—trough); (e) looking downwind at the fresh 
snow-covered bedforms; (f) view of the snow bedforms and the hot-wire anemometer used to 
measure wind speed; (g) image of the old snow used to create the flat and snow bedform surfaces; 
and (h) image of the dendrite-shaped snow crystals (Type A) used as fresh snow blown across the 
snow surface. 

2. Methods 
This work was performed in the Cryospheric Environment Simulator (CES) of the 

National Research Institute for Earth Science and Disaster Resilience (NIED) in Shinjo, 
Yamagata Prefecture, Japan [26] (Table 1, Figure 1a,b,e,f). In the 14 m long, 1 m high, and 
1 m wide CES wind tunnel, a flat snow surface was created using old snow that had a 
density in the range of 400–500 kg/m3 (Figure 1a). The size of the wind tunnel allowed for 
a well-developed, mixed layer of air to flow across the snow surface. The cold room and 
wind tunnel were operated at a temperature of −10 °C, so the snow was also at a 
temperature of −10 °C. 

Once the flat snow surface wind profile was measured, 10 snow bedforms (Figure 
1b) were created on top of the flat snow surface using a 50 cm long, 4 cm high form (Figure 
1c). The wind speed was then measured at four horizontal sample locations along one 

Figure 1. (a) Looking downwind in the CES wind tunnel over the flat snow surface; (b) looking
upwind over the snow wave surface; (c) the form used to make the 50 cm long, 4 cm high snow
bedforms; (d) conceptual diagram of the snow bedforms and the four relative horizontal sampling
locations (w—windward, f—furrow, l—leeward, and t—trough); (e) looking downwind at the fresh
snow-covered bedforms; (f) view of the snow bedforms and the hot-wire anemometer used to
measure wind speed; (g) image of the old snow used to create the flat and snow bedform surfaces;
and (h) image of the dendrite-shaped snow crystals (Type A) used as fresh snow blown across the
snow surface.

2. Methods

This work was performed in the Cryospheric Environment Simulator (CES) of the
National Research Institute for Earth Science and Disaster Resilience (NIED) in Shinjo,
Yamagata Prefecture, Japan [26] (Table 1, Figure 1a,b,e,f). In the 14 m long, 1 m high, and
1 m wide CES wind tunnel, a flat snow surface was created using old snow that had a
density in the range of 400–500 kg/m3 (Figure 1a). The size of the wind tunnel allowed
for a well-developed, mixed layer of air to flow across the snow surface. The cold room
and wind tunnel were operated at a temperature of −10 ◦C, so the snow was also at a
temperature of −10 ◦C.

Once the flat snow surface wind profile was measured, 10 snow bedforms (Figure 1b)
were created on top of the flat snow surface using a 50 cm long, 4 cm high form (Figure 1c).
The wind speed was then measured at four horizontal sample locations along one specific
wave, 9 m longitudinally along the wind tunnel (experiments 2w, 2f, 2l, and 2t in Table 1
and Figure 1d). Measurements at different locations on the bedforms provide examples of
both a spatio-temporally variable snow surface [7] and the movement of bedforms about a
fixed anemometer tower [23–25].
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Dendrite-shaped snow crystals (Type A) were created at CES (see Figure 1 by Abe and
Kosugi [26] and Figure 4 by Nemoto et al. [27]). Using their technique, we also created
these snow crystals in our experiment, which were then wind-blown across the surface of
the bedforms (Figure 1e). The fresh snow density was measured to be 30 kg/m3, as also
observed by Abe and Kosugi [26]. Wind profiles were measured in the same four horizontal
sampling locations over the fresh snow-covered bedforms (experiments 3w, 3f, 3l, and 3t in
Table 1) and were used over the smooth bedforms in experiment 2 (Figure 1d, Table 1). This
was not an investigation of snow bedforms and their movement e.g., [23,24], and as such,
neither the shaped snow bedforms (Figure 1b,d,f) nor the fresh snow, once it was blown
onto the bedforms, moved during the wind profile measurements.

Wind speed was measured using a Kanomax Climomaster Hot-wire Anemometer
Model 6501 (https://kanomax-usa.com/products/climomaster-anemometer-6501-series/,
last accessed 14 September 2023) (Figure 1f, Appendix A, and Table A1), which was affixed
to an overhead hoist that could be adjusted horizontally and vertically. The anemometer
was set to the lateral center of the wind tunnel and adjusted longitudinally to be at the
desired horizontal sampling location along the wind tunnel. The initial vertical height
was adjusted manually. Subsequent vertical heights were adjusted to within 0.1 mm from
outside the wind tunnel.

For the flat snow surface, wind speeds were measured from 35 to 385 mm, every 35 mm
vertically, above the flat snow surface, 9 m longitudinally along the wind tunnel (experiment
1 in Table 1). For the bedforms, the wind speed was measured every 10 mm vertically from
the snow surface up to 210 mm and then every 35 mm up to 385 mm (experiments 2 and 3
in Table 1). Unless indicated otherwise, heights are measured above the snow surface (the
height above the surface); these measurements are similar to measurements taken in the
field after the snow surface has evolved, and the measurement if above the surface. Since
the air is flowing across the surface, a height above a common datum was also selected;
here, it was the height above the lowest vertical location on the snow bedform, specifically
the trough. As such, the height above the datum increased the windward and leeward
measurements by 20 mm and then the furrow measurement by 40 mm (Figures 1d and 2b).

To assess the variability in the anemometer measurements, the wind speed within the
tunnel was run at 4 m/s until deemed stable (Appendix A), as per Abe and Kosugi [26].
Temperature (Figure A1) and wind speed (Figure A2) were recorded every second for 30 s,
each at four different heights (10, 50, 100, and 200 mm above the surface). Both temperature
and wind speed were deemed to be within the stated operating parameters (Table A1).

For each of the surfaces (Table 1), the wind speed was run at 4 m/s until the fluid (air)
was deemed to be stable (Abe and Kosugi 2019) [26]. The wind profiles were plotted as a
function of the measurement height, considering the datum to be the lowest point, or the
trough (bottom) of the snow wave. The value of z0 was computed using the wind speeds
and the measurement height above the snow surface for each horizontal sampling location,
assuming a natural logarithmic profile (Appendix C). The coefficient of determination (R2)
and the 95% confidence intervals for the slope and y-intercept were computed for each
profile. The latter two were used to estimate the range of z0 values with 95% confidence;
these values were used to assess if z0 values from different horizontal sampling locations
were significantly different. When the profile deviated from a natural logarithmic shape,
the outlier measurements were not included in the z0 computation (for the measurements
at the furrow, experiment 2f). The z0 values were compared as a function of the horizontal
sampling location (Figure 1d) and the absence or presence of blowing snow, as well as to the
flat snow surface. The z0 values were also computed using the height above the common
datum, set at the trough (Figure 1d). The flat and bedform wind profiles were plotted above
the measurement surface (Figure 2a) and above the common datum (Figure 2b).

For the bedforms and fresh snow blown onto the bedforms, there are wind speed
measurements at 23 different vertical locations (Table 1 and Figure 2). These were system-
atically subset to recompute z0 using fewer data points; every other point was removed,
two of three points were removed, etc. The z0 value computed using fewer points was

https://kanomax-usa.com/products/climomaster-anemometer-6501-series/
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plotted versus the number of points used in the computation for windward measurements
(experiments 2w and 3w in Table 1). The percentage difference was also computed.
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Figure 2. Wind profiles (measurement height versus wind speed) for the flat snow surface and the
four horizontal sampling locations in the snow wave (windward, furrow or top, leeward, and trough
or bottom) for (a) the height above the surface and (b) the height above the datum.

3. Results

When compared above the snow surface, the wind speeds are not similar along their
profile, until more than 300 mm above the surface (Figure 2a). Above the datum, the
wind speed increases with height above the surface more similarly, but not completely in a
uniform natural logarithmic pattern (Figure 2b and R2 values in Appendix B). The wind
profiles have a different shape based on the horizontal sampling location (Figure 2b). The
leeward sampling location was most similar to the flat surface, with the trough being the
slowest and the furrow being the fastest at the lowest measurement heights (Figure 2b).
Above the furrow, the wind speeds were faster at 70 and 80 mm above the datum (30
and 40 mm above the surface) than at 90 or 100 mm above the datum. The wind speeds
among the four measurement locations were most different for the lowest 150 mm above
the datum (Figure 3a), with the wind being fastest at the furrow, then at the windward
location. The leeward and trough profiles were similar, with the slowest horizontal wind at
the trough (Figure 3a).

For the windward location on the snow wave, wind speeds were essentially constant
from 265 mm above the datum (245 mm above the surface) and higher (Figure 2b). For the
trough, the wind speed was constant 320 mm above the datum (280 mm above the surface),
while for the leeward and furrow locations, this height was 335 and 355 mm (315 mm
above the surface), respectively (Figure 2b). At the furthest measurement heights above
the surface, the wind was about 0.09 m/s slower on the flat surface compared to the snow
bedforms (Figure 2b).
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Figure 3. Wind speed from 10 to 150 mm above the snow surface at the windward, furrow, leeward,
and trough measurement locations at 10 mm increments, with iso-anems (lines of equal wind speed)
over the (a) bedform and (b) snow surface with fresh snow blown across it.

The addition of fresh snow onto the bedforms altered the wind profiles (Figure 3b),
especially for the furrow and windward horizontal sampling locations (Figure 4). The
lowest wind speeds were about 1 m/s slower for the same measurement height above
the fresh snow-covered bedforms as compared to the smooth snow surface bedforms. At
the leeward location, wind speeds were similar between the smooth bedforms and fresh
snow-covered bedforms, with a maximum difference of about 0.5 m/s. For the trough, the
wind speed measurements were almost the same for the two experiments, except at a few
of the faster speeds, where values were almost 0.5 m/s faster for the fresh snow-covered
wave surface (Figure 4).
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Figure 4. Comparison of the wind speed at all the vertical measurement locations over the four hori-
zontal sampling locations on the snow bedforms. Here, wind speeds over the smooth snow surface
bedforms are plotted versus wind speeds over the fresh snow-covered bedforms. Measurements
were above the snow surface.

Direct calculations of z0 on the snow bedform at a wind tunnel wind speed of 4 m/s
varied from 4.27 to 5.75 × 10−3 m (Figure 5 and Table 2) with 78 to 91% of the variance
explained (Figure 2b and Table 2). Adjusting the vertical measurement height to a common
datum decreased z0 by 16 to 19% with the horizontal sampling location on the furrow
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decreasing the most due to the largest change in height of 40 mm. For the three locations
where the height was adjusted to a common datum, the explained variance increased by
5 to 8% (Table 2). The logarithmic fit was the poorest for the furrow horizontal sampling
location wind profile (Figure 2b); removing the lowest six measurement heights (10 to
60 mm) decreased the z0 by about 25% and increased the explained variance by 11% (to an
R2 of 0.91). We also considered an average datum at the mid-height of the bedforms, i.e.,
using the windward and leeward heights, which raises the datum for the trough by 20 mm
and lowers the datum of the furrow by 20 mm (necessitating the removal of the two lowest
measurements). This decreased the trough z0 by 25% but did not change the furrow z0.
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Figure 5. Distribution of z0 values for the flat surface, and for the four horizontal sampling locations
over both the smooth snow bedforms (experiment 2) and the fresh snow-covered bedforms (experi-
ment 3), all with respect to the snow surface. Also shown are the z0 computations using the height
above the datum (2wd, 2fd, 2ld, 2td), as well as the values computed with the bottom of the furrow
profile clipped or removed (2fc and 2fdc) (see Table 1 and Figure 2).

Fresh snow blown onto the snow bedforms decreased z0 by between 22% (trough
horizontal sampling location) and 41% (windward horizontal sampling location) (Figure 5
and Table 2). The logarithmic fit was very good (R2 of 0.96 to 0.97). The variance in z0
among the horizontal sampling locations was small, from 3.18 to 3.60 × 10−3 m (Table 2).

The 95% confidence interval was computed for the z0 values from the 4 m/s wind
speed wind tunnel experiments (Figure 5 and Table 2). None of the computed z0 values
for any horizontal sampling location on the smooth snow bedforms or fresh snow-covered
bedforms were significantly different than the flat surface z0 (at the 95% confidence inter-
val). When adjusting the z0 computation to be above a common datum versus above the
snow surface, the difference was not statistically significant. However, the z0 values were
significantly different between the horizontal sampling locations for fresh snow-covered
bedforms versus the smooth snow bedforms, except not significant between the troughs
(Figure 5 and Table 2). The z0 values for the fresh snow-covered wave surfaces are generally
not significantly different than the flat surface z0 values.

Adding fresh snow onto the snow bedforms decreased z0 by 22% (trough horizontal
sampling location) and 41% (windward horizontal sampling location) (Figure 5 and Table 2).
The logarithmic fit was very good (R2 of 0.96 to 0.97). The variance in z0 among the
horizontal sampling locations was small, from 3.18 to 3.60 × 10−3 m (Table 2).

As the amount of wind speed data used to compute z0 decreases, the variation in z0
compared to using all data increases (Figure 6). For the windward horizontal sampling
location, the largest difference is using the fewest data points (three) (Figure 6a). It is
possible to compute z0 with only three (see 3w) or four (see 4w) wind speed data points that
are almost the same as z0 computed with the entire profile. It is best to have measurements
at a distribution of heights. On average, using five wind speed measurements to estimate
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z0 is the same as using six or seven and yields similar results as using 8 to 11 wind speed
measurements (Figure 6b).

Table 2. Computed anemometric-based aerodynamic roughness length (z0) values for the different
locations (also see Table 1 and Figure 1 for details on the locations) with the lower and upper limits at
the 95% confidence interval and R2 value. The z0 values for fresh snow are denoted by *, and the
clipped (see Figure 2) furrow z0 values are denoted by #.

Number Form/Location
z0 (×10−3 m)

R2
Mean Low High

1 Flat 4.35 3.53 5.08 0.973

Above snow surface

2w Bedform: windward 5.35 4.26 6.26 0.852
3f Windward on fresh snow drift 3.18 * 2.78 3.57 0.972
2f Bedform: furrow (all data) 5.75 4.65 6.62 0.780
2fc Furrow (bottom clipped) 4.06 # 3.38 4.66 0.908
3f Furrow on fresh snow drift 3.60 * 3.21 3.98 0.973
2l Bedform: leeward 4.96 4.11 5.72 0.902
3l Leeward on fresh snow drift 3.42 * 2.94 3.89 0.960
2t Bedform: trough 4.27 3.62 4.90 0.943
3t Trough on fresh snow drift 3.32 * 2.88 3.74 0.970

Above datum set at trough height

2w2 Windward 4.50 3.72 5.18 0.912
2f2 Furrow (all data) 4.64 3.85 5.32 0.866

2fdc Furrow (bottom clipped) 3.56 # 2.86 4.18 0.899
2l2 Leeward 4.13 3.56 4.65 0.949
2t2 Bedform trough 4.27 3.62 4.90 0.943
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4. Discussion
4.1. Experiments and Implications

We evaluated wind profiles (Figures 2 and 3) and computed z0 (Figure 5 and Table 2)
based on where they are measured (Figure 1 and Table 1). The wind profiles converged at
about 300 mm above the datum, as also seen in the wind tunnel studied by Gromke et al. [28].
Wind profiles should be considered relative to a common datum (Figures 2b and 3) rather
than above the surface (Figure 2a). This common datum could be an average of the roughness
elements, especially when they are large like sastrugi [29]. Here, shifting the datum from
the trough to the mid-point of the bedforms, i.e., raising it 20 mm, decreased the trough z0
by 25% but did not change the other z0 values. The measurement height of meteorological
variables (z in Equation (A1)) is the height of the sensor and must be with respect to the
atmosphere-surface interface, i.e., the position of the snow surface. This must incorporate
changes in snow depth due to accumulation, metamorphism–compaction, and ablation [18].

The values of z0 for each location along the bedforms were in the same range as the
flat snow surface (Figure 5 and Table 2). These are within the range of z0 from the literature
(Table 3). Snow surface roughness and, thus, z0 varies spatially [6], temporally [7,19],
and directionally [29]. Here, the computed differences in z0 are at most half an order
of magnitude, and not orders of magnitude (Table 3), and it sufficed to use three to five
wind speed measurements to compute a reasonable z0 (Figure 6); Jackson and Carroll [29]
used five wind speed and direction measurements from 0.39 to 8.22 m, and eight air
temperature sensors from 0.15 to 8.0 m above the snow surface. Due to the large variation
in snowpack z0 in the literature, we recommend collecting either vertical anemometric
measurements [4,6,8,12,13,15,29] or surface geometry measurements [8,13,19] to attain an
estimate of z0 at any study site.

Table 3. Range of aerodynamic roughness length (z0) values for snow from the literature, and in this
study (Table 2 and Figure 5).

z0 Value
(mm) Conditions Method Citation

0.001 to 100 On ice sheet with some
blowing snow Wind profile Andreas et al. [5]

0.01 to 70 Directional over sastrugi Wind profile Jackson and Carroll [29]
0.17 to 0.33 Fresh snow (mean of 0.24) Geometry Gromke et al. [28]

0.2 to 2 Snow on smooth surface Wind profile Sanow et al. [8]
1 to 40 Snow on plowed surface Wind profile Sanow et al. [8]
3 to 25 Snow on plowed surface Geometry Sanow et al. [8]

5.5 Snow on glacier ice Geometry Munro [13]

4.4 Flat snow surface Wind profile This study (1)
4.1 to 4.6 Locations along bedform Wind profile This study (exp. 2)
3.2 to 3.6 Fresh snow on bedforms Wind profile This study (exp. 3)

The experiments were performed in a wind tunnel (Figure 1), where wind speed was
controlled and stable [26]. In nature, while wind tends to be directional [30], any variation
in wind direction over roughness elements on the snow [7] would influence z0 [19,29].
Meteorological stations are usually established over flat, bare ground surfaces [20,21].
However, the seasonal snowpack surface that accumulates over the bare ground can vary
substantially in geometry, both temporally and at various spatial scales. Therefore, the
variable nature of the snow surface geometry [7,26] should be considered when estimating
a z0 value, even at locations that may have flat surfaces when there is no snow cover for
part of the year, especially for modeling purposes [8,18,31].

We created homogeneous, sinusoidal snow bedforms, not to mimic reality but to create
spatial variability. In nature, snow bedforms are not uniformly sized or spaced, and are
asymmetrical [23,24]. It is possible to scale the snow bedforms from nature to the wind
tunnel [32], but the proper shape would need to be modeled, as snow bedforms are steeper
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on the leeward side [22,25]. Further, it is possible to have the smaller ripples form and
move on top of the larger snow waves [22]. Since the mobile snow bedforms are self-
organized [23,24], it is possible that, in nature, they are more aerodynamic and z0 would
be reduced. There are other less mobile wind-induced features like sastrugi [24,33,34] and
ablation-induced features, like sun cups [35,36], penitents [35,37], or others [38]. These will
create large turbulence across a snow surface and, thus, large z0 values [6,34].

Here, we had fresh snow (Figure 1h) blown (Figure 1e) over the constructed snow
bedforms (Figure 1b). However, during the measurement of the wind profile (Figure 1f),
the fresh snow was not moving, thus not altering z0 [39]. When snow is moving across
the surface, this has been observed to increase the roughness [27,32,39]. In nature, snow
grains fragment as they move across the surface [40]; thus, what is shown here is the initial
movement of fresh snow (Figure 1e).

4.2. Measurements and Additional Data

The accuracy of the wind speed measurements is in the range of 0.1 m/s; the stated
accuracy of the hot-wire anemometer is 0.015 m/s (Table A2), and the maximum observed
variation over 30 s was 0.16 m/s (Figure A2). Wind speed was measured per 10 or 35 mm
increase in height above the surface (Table 1), and it took five seconds or less to record
wind speed. As such, the largest variation over any five-second period in the assessment
of the hot-wire anemometer was 0.08 m/s. Further, at a height of 315, 350, or 385 mm
above the surface of the snow bedforms, the measured wind speed varied by, at most,
0.04 m/s (Figure 2b). Therefore, the variations between the wind profiles for various
horizontal sampling locations (Figure 2b) are based on actual differences in wind speed
and not measurement discrepancies. Thus, more wind speed measurements are needed
in varying terrains [16]. We also need to further assess the spatial interpolation of wind
measurements [41–44].

The hot-wire anemometer (Figure 1f) measured horizontal wind speeds, parallel to the
wind tunnel (Figure 1). Even in a controlled environment, such as a wind tunnel, wind flows
are not all horizontal. In nature, measuring wind over the snow is difficult [16,45]. Future
work should also assess the vertical wind component, which would assist in assessing
roughness [4,46] and estimating components of the snow energy balance [16,47,48].

Since the nature of the snow surface is quite dynamic [6,7], and measurements of
snow surface geometry are becoming more prevalent [19,49–51], more frequent temporal
measurements of the snow surface [19,52,53] are recommended as the snowpack evolves
during a winter season. The roughness of a snow surface varies over spatial and temporal
scales [10], and an assortment of tools can be used to measure the different resolutions and
extents [10,50,52,54,55].

Wind measurements are rarely taken at such a fine vertical resolution, as was per-
formed in this study (10 to 35 mm, see Table 1), and, thus, may not capture all the variations
in z0. The snow bedforms created in the CES wind tunnel during our experiments in Shinjo,
Japan (Figure 1b,f), were smaller than the features often seen in nature (e.g., sastrugi, sun
sups, etc., as discussed above), so the resolution used herein is likely not necessary over
larger snow features. Additionally, although eddy covariance is able to measure three-
dimensional wind dynamics, it may not assess what is occurring between the sensor and
the snow surface [16]. More measurements [56–59] should be considered at some research
sites to ensure an appropriate representation of the snowpack surface variability [7,10,26]
and other snowpack properties, such as snow depth [60,61]. Multi-sensor approaches
using lidar and drones can also bridge scales [62–66], together with nested-scale in situ
measurements to add a temporal component [67,68]. Satellite data will prove useful in the
future, including across resolutions [66,69–71].

Here, the focus is only on the wind profile and, thus, z0 for momentum (Table 2 and
Figure 5). The sensible and latent heat flux equations use the temperature and humidity
profiles, respectively. Specifically, each flux equation also uses a roughness length, i.e., z0-T
for temperature (convection) and z0-Q for humidity (diffusion). These are usually set to
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the value of z0 for momentum, but this assumption is not true for aerodynamically rough
surfaces [4,14]. Measurements of z0-T and z0-Q are limited [39] and additional data should
be collected to solidify the correlation between the momentum, convection, and diffusion
roughness lengths [4,12,14,39].

5. Conclusions

Wind profiles above a snow surface differ based on where they are measured, as seen
in our wind tunnel experiments. Such measurements are relevant for understanding the
snowpack and its energy balance and need to consider the dynamics of the snowpack using
the height from the sensors to the average height of any roughness features. Computation
of z0 requires three and ideally at least five measurements of the wind profile. Due to the
variation in snowpack z0, it is more than a constant model parameter, and it should be
estimated anemometrically or at least geometrically. Wind tunnel experiments and even
outdoor scaling experiments (e.g., Tabler [32]) can be used to simulate the complex nature
of the snowpack surface.

The computed aerodynamic roughness length in this study varied based on the
horizontal sampling location for the smooth snow bedforms and, to a lesser extent, for
the fresh snow-covered snow bedforms. The differences among the horizontal sampling
locations were not statistically significant, but the addition of fresh snow did significantly
alter the computed z0. Overall, the largest difference in z0 was 35% among the snow wave
horizontal sampling locations (trough vs. furrow) and 13% for the fresh snow-covered
snow bedforms (leeward vs. furrow). These variations in z0 will impact the modeling of the
snowpack energy balance, especially since snowpack z0 appears to be dynamic. Therefore,
the real estate expression “location, location, location” is relevant when measuring wind,
and likely other meteorological variables; specifically, the geometric characteristics of the
surface upwind and at the site must be considered. Further, any spatio-temporal variability
in the convection and diffusion roughness lengths need to be better assessed.
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Appendix A. Hot-Wire Anemometer Specification and Assessment

To measure the wind speed, we used a Kanomax Climomaster Hot-wire Anemometer
Model 6501 (Table A1). The CES wind tunnel in Shinjo, Japan, was run until the fluid (air)
was stable (Figure 1). To assess variability in the anemometer measurements, it was run for
30 s with measurements of temperature (Figure A1) and wind speed (Figure A2) recorded
every second. This was performed at four heights: 10, 50, 100, and 200 cm above the snow
surface (Figures A1 and A2).

Table A1. Stated specifications of the range, accuracy, and resolution of the Kanomax Climomaster
Hot-wire Anemometer Model 6501 (https://kanomax-usa.com/products/climomaster-anemometer-
6501-series/, last accessed 14 September 2023).

Air Velocity (m/s) Temperature (◦C)

Range 0.01 to 50.0 m/s −20 to 70 ◦C
Accuracy +/−2% of reading or 0.015 m/s (whichever is greater) +/−0.5 ◦C

Resolution 0.01 (from 0.01 to 9.99 m/s) 0.1 ◦C
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Appendix B. Wind Speed Data Collected during the Experiments and Computed
z0 Values

This appendix presents the wind speed data collected at the different heights in the
various horizontal sampling locations for the flat surface, snow wave, and fresh snow-
covered snow wave, as outlined in Table 1 (Table A2).

Table A2. Wind speed in m/s as a function of height for flat snow surface, four locations in the wave,
and four locations in the wave with blowing snow present.

Height
above the
Surface
(mm)

Flat Wave
Windward

Wave
Furrow

Wave
Leeward

Wave
Trough

Blowing
Snow in

Wave
Windward

Blowing
Snow in

Wave
Furrow

Blowing
Snow in

Wave
Leeward

Blowing
Snow in

Wave
Trough

10 3.64 3.93 3.3 2.54 2.8 2.92 3.03 2.73
20 3.81 3.97 3.58 3.03 3.01 3.07 3.11 3.02
30 3.86 3.97 3.63 3.21 3.29 3.23 3.43 3.2
35 3.45 4.18 3.18
40 3.94 4.11 3.62 3.39 3.26 3.46 3.46 3.39
50 3.94 4.08 3.76 3.51 3.48 3.54 3.64 3.45
60 3.95 4.07 3.7 3.51 3.6 3.71 3.77 3.62
70 3.68 3.92 4.025 3.81 3.535 3.81 3.77 3.75 3.71
80 3.98 4.2 3.82 3.64 3.88 3.87 3.9 3.73
90 4.07 4.13 3.86 3.71 3.94 3.97 3.97 3.83
100 4.18 4.275 3.88 3.74 4.06 4.13 4.15 3.94
105 3.88 4.11 3.73
110 4.17 4.27 4.11 3.82 4.12 4.17 4.19 4.15
120 4.14 4.34 4.1 3.83 4.23 4.28 4.35 4.18
130 4.3 4.42 4.23 3.91 4.31 4.37 4.4 4.31
140 4.19 4.33 4.410 4.22 3.955 4.4 4.39 4.46 4.33
150 4.36 4.44 4.24 4.1 4.49 4.46 4.51 4.42
160 4.42 4.54 4.32 4.18 4.54 4.45 4.54 4.45
170 4.52 4.55 4.39 4.31 4.6 4.47 4.56 4.5
175 4.31 4.44 4.27
180 4.51 4.61 4.47 4.41 4.61 4.55 4.6 4.53
190 4.6 4.65 4.49 4.43 4.65 4.58 4.63 4.62
200 4.59 4.66 4.55 4.44 4.7 4.62 4.65 4.61
210 4.49 4.67 4.55 4.57 4.42 4.75 4.63 4.72 4.65
245 4.57 4.76 4.69 4.69 4.64 4.79 4.71 4.76 4.73
280 4.66 4.78 4.72 4.75 4.74 4.85 4.76 4.75 4.77
315 4.69 4.78 4.75 4.77 4.78 4.86 4.78 4.74 4.76
350 4.68 4.77 4.75 4.78 4.78 4.85 4.76 4.72 4.76
385 4.67 4.76 4.74 4.78 4.77 4.84 4.76 4.83 4.74

Appendix C. Computation of Anemometric-Based Aerodynamic Roughness Length

The value of z0 measured by the vertical series of wind measurements is estimated
from the logarithmic wind profile since the wind is assumed to be stable (Appendix A),
using the following equation:

Uz =
U∗

κ
ln
(

z
z0

)
, (A1)

where Uz is the wind speed at measurement height z, U∗ is the shear velocity, and κ is the
von Kármán constant. At one specific point in time and space, U∗ is constant, so Equation
(A1) can be inverted to solve for U∗. Here, we have 11 to 30 values of Uz at unique z
(Table A2). We compute the slope (m) and y-intercept (b) between pairs of Uz and ln(z)
measurement points, then compute exp(m/b), where exp() is the exponential function to
yield z0 (Table 2). We also compute the correlation coefficient (R2) between the Uz and ln(z)
measurement points (Table 2).
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