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Abstract: Real assets in the energy market are subject to ecological uncertainty due to the penetration
of renewables. We illustrate this point by analyzing electrolyzers, a class of assets that recently
became the subject of large interest, as they lead to the production of the desirable green hydrogen
and green ammonia. The latter has the advantage of being easily stored and has huge potential in
decarbonizing both the fertilizer and shipping industries. We consider the optimization of green
ammonia production with different types of electricity procurement in the context of stochastic
power and ammonia markets, a necessary assumption to translate the features of renewable, hence
intermittent, electricity. We emphasize the importance of using stochastic prices to model the volatile
nature of the price dynamics effectively, illustrating the project risks that hedging activities can
mitigate. This study shows the pivotal role of flexibility when dealing with fluctuating renewable
production and volatile electricity prices to maximize profits and better manage risks.

Keywords: stochastic electricity prices; PPAs; electrolysis; green ammonia; green fertilizers; renewable
energy

1. Introduction

The European electricity market is confronted with the critical task of meeting esca-
lating energy demand while simultaneously decreasing its carbon footprint. The existing
electricity mix predominantly relies on fossil fuels, which are the principal contributors to
greenhouse gas emissions [1]. The need for more energy and the urgency to decarbonize
the power sector has driven the adoption of renewable energy sources, such as wind, solar,
and hydropower, where possible. However, the inherent volatility of electricity augmented
by the intermittent nature of solar and wind has led to grid instability and price cannibaliza-
tion [2], emphasizing the need for a more flexible and intelligent grid capable of balancing
supply and demand in real time, with storage facilities not achieved yet in terms of size
and duration by existing battery solutions.

Power-to-X (PtX) technology has recently emerged as a promising solution to these
challenges. PtX encompasses the conversion of surplus renewable electricity into various
energy carriers, including hydrogen, methane, and synthetic fuels. The European Com-
mission estimates that to reach net-zero emissions by 2050, as much as 200 Mtonnes of
hydrogen production per year should already be achieved by 2030 [3]. The production of
green fuels through PtX would enable the European Union to reduce its dependence on fos-
sil fuels, enhance energy storability, and ensure electricity supply when demand surpasses
renewable energy generation. As an example, the German utility RWE—which cannot rely
anymore on Russian natural gas—is building two electrolyzer plants in Norway that will
be powered by offshore wind from the North Sea and produce hydrogen, which will be
then transported to Germany by hydrogen pipeline between Norway and Germany [4].
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The two projects are part of RWE’s efforts to build a total of 300 MW of electrolyzer capacity
in Lingen by 2026 [5].

Hydrogen, generated through electrolysis using renewable energy sources, is consid-
ered a clean and efficient fuel for transportation. It is viewed as a necessary step to reach
net-zero CO2 emissions [6,7]. According to the International Energy Agency (IEA), the
use of hydrogen and ammonia will reach almost 3.5 GW of potential capacity by 2030,
counting all the projects under development around the globe [8]. Additionally, the devel-
opment of advanced and cost-effective storage technologies is crucial for hydrogen’s broad
development in the transportation sector.

Ammonia, produced through nitrogen fixation and hydrogenation, has major applica-
tions in the agricultural and transport industries. As a fuel, ammonia boasts a higher energy
density than hydrogen and is compatible with internal combustion engines. Ammonia is
also one of the three traditional fertilizers, and as of today, its production accounts for 2% of
the global CO2 emission [9]. Converting the current ammonia production to a greener one
holds significant potential for reducing greenhouse gas emissions in agriculture [10]. Out-
side fertilizers, ammonia can act as a hydrogen carrier, addressing storage and distribution
challenges. A 2021 World Bank report observes that ammonia is preferable to hydrogen to
replace bunker fuels, in particular for long-distance transport and storage [11,12]. Many
projects ranging from boilers [13] to cotton farming [14] have been announced where green
ammonia would be used as a major tool towards carbon neutrality.

The feasibility of those projects is highly dependent on their rentability. In [15], the
overseas hydrogen supply chain for different countries was investigated, where future
electricity prices were modeled by exponential decay regression with bounded values
based on historical data. This method has the shortcomings of relying heavily on historical
data (i.e., the forecast strongly depends on the choice of the historical window) and leaning
on a single price time series, which can be heavily biased. Techno-economic assessment
of green ammonia production was performed in [16,17]. Salmon et al. [16] investigated
offshore green ammonia production where the generating assets were co-located with
the production plant and isolated from the grid, removing the possibility of optimizing
revenue generated from selling electricity and thus reducing flexibility. Campion et al. [17]
used a similar model with different wind and solar potentials in different locations in the
world but added the possibility of supplying extra electricity with a connection to the
grid. In this case, electricity prices from the single year 2019 were used, where the price
level was significantly lower than the current one. Relying on a single year or a single
outcome is an unrealistic assumption at this moment, given the uncertainty created by
the climate transition and the consequences of wars on the world economy. In fact, the
literature recognizes the necessary stochastic nature of electricity prices—with increased
uncertainty brought by intermittent renewables, including the quasi-stochastic market
clearing [18]. Furthermore, the profit distributions generated by stochastic scenarios offer a
meaningful tool to support the design of hedging activities, which can ultimately reduce a
project’s risks.

Instead, this study presents the optimization of the production of green ammonia
under stochastic electricity and ammonia prices for different plant configurations and
with electricity provided via different structures. Fixed costs and operational expenses
are omitted with the purpose of isolating the system’s sensitivity to parameters directly
impacting the plant’s performance.

The optimization model of the Power-to-X production is first described, followed by
our proposed stochastic modeling of electricity and ammonia prices. The results of the
optimization model are then discussed, in particular, some relevant statistics on expected
revenues and risks for green ammonia production projects.
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2. Methodology
2.1. Power-to-NH3 Production Model

Since the first half of the 20th century, the main industrial process used for producing
ammonia has been the Haber–Bosch process [19]. In this process, nitrogen (N2), which is
commonly present in the air, is combined with hydrogen (H2) under high pressure and
high temperatures to produce ammonia (NH3). N2 is easily filtered from the atmosphere,
but H2 is more difficult to obtain. Methane from natural gas is the most commonly used
hydrogen source. A steam reforming process is used to separate the carbon and hydrogen
atoms, where CO2 is released as a by-product or waste. To produce ammonia without
CO2 waste or, in other words, green ammonia, hydrogen should be produced sustainably.
Splitting water molecules by electrolysis using power from renewable energy sources is
one of the most promising avenues to produce green hydrogen. The process of producing
green fuel (hydrogen, ammonia, etc.) using power from renewable energy sources has
been recently termed a Power-to-X process, where X refers to the output, i.e., hydrogen,
ammonia, or other.

A Power-to-X plant producing green hydrogen and green ammonia is represented
in Figure 1. Different options are available to feed such a plant with certified green
electricity. The plant can be directly co-located with green generating assets, like a wind
farm and/or a solar farm. Another option is to enter a power purchase agreement (PPA),
with corresponding green certificates ensuring that power is coming from renewable
sources, delivered either as an as-produced profile from the renewable assets or a constant
profile (also referred to as baseload profile). In general, these options can also be combined.
For example, a PPA can be purchased for a co-located configuration (also referred to as
an island configuration) in order to supplement the plant with additional electricity and
increase the production of hydrogen or ammonia.

Figure 1. Schematic of a Power-to-X plant producing green H2 and green NH3.

Several challenges are linked to running a Power-to-X plant: (i) in the case of as-
produced profiles for the power supplied, the electricity input fluctuates and its quantity is
difficult to forecast; (ii) some of the processes involved are more or less flexible in terms
of load ranges, ramp-up and -down capabilities and power consumption; and (iii) in
some configurations, it may be quite profitable to sell excess power to the local grid when
spot prices are high, adding some complexity to the model at times of high volatility of
electricity prices.

In this study, we consider the problem of a Power-to-X plant that produces green
ammonia and identify the parameters that impact profitability the most. To maximize the
production output of a Power-to-NH3 plant while ensuring its profitability, the problem is
defined as an optimization problem. The objective of the optimization is to maximize the
profit and loss (P&L) of the plant, which is defined as:

P&L(t) =
(Ps(t)− Pb(t))Se(t)− Pp(t)Sp

1 − el
+ qNH3(t)SNH3(t) (1)

where Ps is the amount of power sold to the grid in MW, Pb is the power bought from the
grid in MW, Se is the spot price of the power in EUR/MWh, Pp is the quantity of power
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procured in MW, Sp is the price of electricity provided through the PPA in EUR/MWh, el is
the normalized electrical loss associated with the electrical installation of the plant, qNH3 is
the quantity of NH3 produced in tonnes, SNH3 is the selling price of NH3 in EUR/tonnes
of NH3 and t is the unit of time of the problem. Constraints are obviously present, and the
problem can then be formulated as:

Maximize :
N

∑
t=0

P&L(t) (2)

subject to the following constraints:

s.t. QMin
NH3

≤
qNH3(t)

qMax
NH3

≤ 1.0 ∀t

T

∑
t=0

qNH3(t) ≥ CNH3

Pu(t) = PE(t) + PH2O(t) + PNH3(t) ∀t

PE(t) = ηEqH2(t) ∀t

PH2O(t) = ηH2OqH2(t) ∀t

PNH3(t) = χ0,1(t)Pon + (1 − χ0,1(t))Pstd ∀t

Pp(t) + Pb(t) = Pu(t) + Ps(t) ∀t

Ps(t) ≤ Pp(t) ∀t

Ps(t)Pb(t) = 0 ∀t

qNH3(t) = mNH3/H2 qH2(t) ∀t

qH2O(t) = mH2O/H2 qH2(t) ∀t

Pi ≤ PG i ∈ {s, p, b, u, E, H2O, NH3, on, std, }

(3)

where

N is the total number of hours in the optimization period

Ps(t) is the power sold back to the grid at time t in MWh

Pp(t) is the power provided through a PPA contract or off-grid connection to a generating
asset at time t in MWh

Pb(t) is the power bought from the grid at time t in MWh

el is the normalized electrical loss associated with the plant

Se(t) is the spot price when selling/buying power at time t in EUR/MWh

Sp is the price of electricity provided through the PPA in EUR/MWh

qNH3(t) is the quantity of NH3 produced at time t in tonnes of NH3

T is the total time for the NH3 contract

qH2(t) is the quantity of H2 produced at time t in tonnes of H2

SNH3(t) is selling price of NH3 at time t in EUR/tonnes of NH3

QMin
NH3

is the minimal production capacity of the NH3 process (set to 0.2, i.e., the process
cannot run at a lower load than 20% of the maximum load)

qMax
NH3

is the maximal hourly capacity of the NH3 process in tonnes of NH3

CNH3 is the NH3 contract in tonnes of NH3

Pu(t) is the total power used to produce NH3 at time t in MWh

PE(t) is the power used by the electrolyzer at time t in MWh

PH2O(t) is the power used for the water treatment at time t in MWh
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PNH3(t) is the power used by the NH3 process at time t in MWh

ηE is the energy consumption for the electrolyzer to convert electricity into H2 in MWh/t
of H2

ηH2O is the energy requirement for the water treatment in MWh/tonnes of H2

χ0,1(t) is a binary variable for the production of NH3 at time t i.e., its value is 1 when NH3
is produced and 0 when not

Pon is the power consumed by the NH3 process when producing NH3 in MWh

Pstd is the power consumed by the NH3 process when in standby in MWh

mNH3/H2 is the mass balance between NH3 and H2

mH2O/H2 is the mass balance between H2O and H2

PG is the grid connection limit in MW.

The parameters and variable optimized are listed in Table A1.
The formulation of the problem is expressed using the Pyomo Python package [20]

and solved with the SCIPY solver [21]. Some assumptions were made in order to keep the
computational time reasonable for the number of scenarios:

• The power consumption of the electrolyzer is approximated to be linear with respect
to the load. In reality, the load curve of an electrolyzer is not linear, as optimal working
conditions are typically at 80% of full load. The results will be slightly more optimistic
than reality, but the effect should be minimal and relatively constant throughout the
different scenarios.

• The power consumption of the Haber–Bosch is modeled using two levels: Pon when
the unit is producing and Pstd when the unit is on standby. This simplistic modeling
approach is more restrictive than realistic working conditions, as higher efficiency
rates should be attainable as load increases.

• The plant cannot buy and sell power at the same t. This reflects what would happen
in reality.

• Only the renewable power Pp can be sold to the grid. As the plant cannot buy and
sell at the same t, this means only the power produced by the renewable assets or the
power provided through the PPA can be sold to the grid.

The input parameters used in the model are listed in Table 1. The electricity prices
for Germany presented in Section 2.2 are used as inputs for the spot prices (Se). The
year 2020 was used for solar production as it yielded close to median production. The
production from 2020 was repeated for three years, the total period of the optimization. In
principle, each price scenario should be linked to a specific renewable production pattern,
but uncertainties in weather forecasts over the years are high. Therefore, an average
year over many scenarios was used instead. The problem could have been extended to a
four parameters stochastic process (price, volatility of price, wind production, and solar
production), adding, however, complexity not necessary given the scope of this study,
which is to compare the power procurement scenarios and identify the parameters to which
optimal outputs are more sensitive. The expected price for NH3 (SNH3) is described in
Section 2.3.

Table 1. Input parameters used in the production model.

Parameter Unit Symbol Value

Electrical losses % el 3.0
Energy requirement for the water
treatment MWh/tH2O ηH2O 0.002
Energy requirement for the
electrolyzer MWh/tH2 ηE 53.4
Grid connection limit MW PG 280
Capacity of the electrolyzer MW CE 100
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Table 1. Cont.

Parameter Unit Symbol Value

Capacity of the Haber–Bosch unit tNH3/h Cu 13
NH3 annual contract tNH3/week CNH3 600
Power consumption of the Haber–Bosch
unit in operation mode - Pon 0.52
Power consumption of the Haber–Bosch
unit in standby mode - Pstd 0.1755
Solar installed capacity 1 MW Csol 250
Mixed installed capacity 2 MW Csol 250
PPA baseload price EUR/MWh SP 130.61
PPA solar PaP price EUR/MWh SP 102.91
PPA mixed PaP price EUR/MWh SP 100.39

1 Value used for the co-located configuration and the Pay-as-Produce Solar PPA. 2 Value used for the co-located
configuration and the Pay-as-Produce Mixed PPA (125 MW solar, 125 MW onshore wind).

2.2. Electricity Prices Model

To model electricity prices used as input for the production model, we propose a
one-factor model [22,23]. To ensure positivity while avoiding the geometric Brownian
motion (which increases in average and is therefore inappropriate for electricity prices), we
assume that the ln-spot price follows an Ornstein-Ulenbeck (OU) process [22,24]. Besides
its mean-reverting property, the OU process leads to a normal distribution for all ln-spot
prices and a closed-form solution for ln-forward prices, hence a precise calibration of the
model. Following [25] we place ourselves directly under the pricing measure Q and write
the dynamics of X = ln(S) as

dX(t) = k(α∗ − X)dt + σdZ∗(t) (4)

where α∗ is the long-term mean ln-spot price, k is the speed of adjustment, σ is the volatility
of the process and Z∗ is a Brownian motion under the measure Q. Equation (4) integrates as

X(T) = e−kTX0 + α∗(1 − e−kT) + σ
∫ T

0
e−k(T−s)dZ∗

s . (5)

where X0 is the initial ln-spot price.
Moreover, we know that the conditional distribution of X at time t under the measure

Q is normal with {
E0[XT ] = e−kTX0 + (1 − e−kT)α∗

Var 0[XT ] =
σ2

2k (1 − e−2kT)
(6)

where X = ln(S), and S the spot price at time t log-normally distributed under Q.
Let us now move to the forward price of the commodity with maturity T. Assuming

constant interest rates, the forward price with maturity T is the expectation of the spot
price at time T under the Q measure

F(0, T) = EQ[S(T)], (7)

and from the properties of the log-normal distribution, we have

F(0, T) = exp
(
E0[XT ] +

1
2

Var 0[XT ]

)
. (8)

Finally, substituting from Equation (5) and using Equation (6) we obtain, in log form

ln F(0, T) = e−kT ln S0 + (1 − e−kT)α∗ +
σ2

4k
(1 − e−2kT) (9)
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which is used for the calibration of the model.

2.2.1. Electricity Price Model Calibration

In the case of commodities, one of the difficulties in the empirical calibration is that
the state variable, i.e., the spot price, is not directly observable. On the other hand, Futures
contracts are widely traded, and their high liquidity makes their prices easily observable.
The state space model, as discussed in [26], is, in fact, the appropriate tool to deal with state
variables that are unobservable but generated by a Markov process. The Kalman filter can
be applied to the model in its state space form to estimate the unobserved parameters σ
and k.

Following [22,26], the measurement equation is obtained by adding to Equation (6)
serially and cross-sectionally uncorrelated disturbances with mean zero so that we take
into account bid-ask spreads, price limits, and errors in the data. The measurement
equation relates the time series of observable variables, in our case, forward prices for
different maturities, to the unobservable state variable, the spot price. Based on this, from
Equation (6), we write the measurement equation as

yt = ZtXt + dt + ϵt, t = 1, ..., NT, (10)

where

yt = [ln F(t, Ti)], i = 1, ..., N, N × 1 vector of observables,

dt =
[(

1 − e−kTi
)

α∗ + σ2

4k

(
1 − e−2kTi

)]
, i = 1, . . . , N, N × 1 vector,

Zt =
[
e−kTi

]
, i = 1, . . . , N, N × 1 vector,

ϵt, N × 1 vector of serially uncorrelated disturbances with E[ϵt] = 0 and Var [ϵt] = H.

The next step is to generate the unobserved state variable via the transition equation,
which is a discrete-time version of the stochastic process in Equation (4). We can, therefore,
write the transition equation as

Xt = ct + QtXt−1 + ηt, t = 1, . . . , NT, (11)

where

ct = kα∗∆t

Qt = 1 − k∆t

ηt, serially uncorrelated disturbances with E[ηt] = 0 and Var [ηt] = σ2∆t.

The Kalman filter is then applied as a recursive procedure to compute the optimal
estimator of the state variable at time t, based on the information at time t, and updated
continuously as new information becomes available. To apply the simple Kalman filter, we
assume that both the disturbances and the initial state variable are normally distributed;
we can, therefore, calculate the maximum likelihood function and estimate the model
parameters σ and k.

2.2.2. Model Implementation

We calibrate the model using Future contract closing prices. As said before, the reasons
for using Future prices instead of spot (or day-ahead) are tied to the characteristics of the
electricity markets, namely non-storability and the hourly settlement (set to be reduced to
15 min in most EU markets in the future). In particular: (i) the spot price can be extremely
volatile in its hourly granularity, as it is very sensitive to imbalances between supply and
demand; (ii) in markets with high renewables penetration, volatility is especially high as in
the short term the generation from renewables (wind in particular) can vary substantially
from the expected volumes; (iii) the Futures market is in general a better and more stable
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representation of the medium-term (i.e., beyond monthly) market development; (iv) the
maturities that we will use for the calibration (front month to year 3) are very liquid
contracts in the reference market (i.e., Germany), with daily settlement historical data
easily available.

Using the German market and closing prices from the European Power Exchange
(EEX) [27], we calibrate the model using the Kalman Filter (see Section 2.2.1) and proceed
as follows:

• We collect daily settlement prices of M1, Q1, Y1, Y2, Y3 Future contracts, where M1 refers
to front month, Q1 front quarter, Y1 front year, Y2 front year +1, Y3 front year +2.

• The data period was 1 July 2002 to 18 April 2023. The entire available series was
used to remove bias from choosing a specific calibration window, especially given
the very volatile period of 2021 and 2022. As we are interested in the volatility
and mean reversion speed of (log) returns, we considered using a long historical
period as the most robust option, also to reduce sensitivity to localized market shocks,
while still attributing more weight to recent observation thanks to the feature of the
Kalman filter.

• We calibrate the state space model presented in Section 2.2.1 to estimate the parameters
k and σ, used in Equation (9) to generate future electricity prices.

Finally, we run the model using the following parameters:

• The risk-free rate considered is 0.03, based on the 10-year US Treasury [28].
• We simulated prices to a 3-year horizon and 4000 Monte Carlo scenarios.
• German starting (day-ahead, from EpexSpot [27]) price is 137.3 EUR/MWhr on

17 April 2023.

As a result, a 750 (days) × 4000 (scenarios) matrix of prices is generated. Since we
are modeling renewables, we are interested in the shape of intraday prices. To increase
the granularity of our data from daily to hourly and introduce daily shapes, we use
historical hourly ratios calibrated on the last two years of historical hourly prices - the two
years depicting the recent generation mix development, in particular the recently higher
renewable penetration. We finally multiply the 24 (hours) × 365 (days) historical hourly
ratios with each 750 days-scenario, thus obtaining 4000 scenarios of 18,000 h.

2.3. Ammonia Price Model

As with what we have observed with electricity generated by renewables, we ex-
pect that green ammonia will trade at a premium in the short to mid-term compared
to gray ammonia (i.e., ammonia generated from gas), with the main driver of such a
premium being:

• A growing demand for green ammonia as a critical tool that will be adopted, for
example, to decarbonize transport and agricultural industries.

• The premium currently charged to certify renewable energy (e.g., Guarantees of Origin
in Europe) will be transferred to the price of ammonia produced from renewables.

To reflect the expected price growth, we proposed to model the price dynamics as a
one-factor Geometric Brownian Motion (GBM) [29]; the GBM is a continuous-time process
that takes only positive values and grows over time if its drift is positive. It is particularly
suited to our case, as the drift will allow the price to grow while the GBM dynamics exclude
negative prices.

Once again, placing ourselves under the pricing measure Q we write the dynamics of
the ln-spot price as

dXNH3
t = (r − c)XNH3

t dt + σNH3 XNH3
t dW∗

t , (12)

where in this case XNH3
t is the ln-spot price of ammonia, W∗

t is a Q-Brownian motion, r
represents the risk-free rate and c is the convenience yield of ammonia. Finally, it should
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be noted that the ammonia model is independent of the electricity model (i.e., the two
Brownian motions are not correlated).

To implement the model in a way that is consistent with the electricity model previ-
ously described, we proceed as follows:

• We collect Western Europe Ammonia CFR (Cost&Freight) [30] spot price historical
data from 1 January 2020 to 31 January 2023 (constrained by availability). The data are
only available on a weekly basis.

• We calibrate the model to estimate σNH3 using the historical volatility of the price
return series described in the point above.

Finally, we run the model using the following parameters:

• The risk-free rate considered is 0.03, based on the 10-year US Treasury [28] on
17 April 2023.

• The net cost of storing ammonia (defined as the cost of storage minus pure benefit) is
calculated by considering capital expenditure (CAPEX) and operational expenditure
(OPEX), as identified in [31]. The resulting cost of storage, accounting for the benefit
of holding the asset, is 2%. It should be mentioned that an alternative method to
estimate r − c is by utilizing the spot-forward relationship. However, due to the
limited liquidity of ammonia-forward contracts, we have opted for the CAPEX/OPEX
approach as it is considered more reliable.

• We simulate weekly prices to a 3-year horizon and 4000 Monte Carlo scenarios.
• Starting spot price is set at 350.70 EUR/tonne, as observed on 18 April 2023 [30].

Once the weekly prices are obtained, we proceed by forward filling (with a constant
value over the week) to obtain hourly prices as we did for electricity. We note that ammonia
is much less liquid than electricity (i.e., its traded volume is lower), with price historical
series displaying no seasonality over days or weeks.

3. Scenarios Definition

Three different scenarios have been chosen for the current study, namely (i) electricity
provided by co-located renewables assets, (ii) electricity provided by Baseload PPA, and
(iii) electricity provided by Pay-as-Produced PPA. The choice of the scenarios is justified
by recent market activities for all three scenarios, as detailed in [32,33] for (i), [34] for (ii)
and [35,36] for (iii).

Figure 2 illustrates a Power-to-NH3 plant where the power procurement varies for the
three different scenarios considered. Table 2 summarizes the datasets used as inputs to
the price models described in Sections 2.2 and 2.3 and the production model described in
Section 2.1. The complete list of scenarios is detailed in Table 3. In all scenarios, a contract
requirement for ammonia is defined in order to simulate realistic conditions and fix some
incoming cash flow. Two different contract levels were defined: 300 tonnes and 600 tonnes
of NH3 produced per week (or approx. 16 and 31 ktonnes per annum). After reaching the
contract requirement in terms of NH3 produced, the plant can choose to sell (e.g., when
net revenues from ammonia are lower than revenues from power) or buy extra power
(e.g., when net revenues from ammonia are higher than the net cost of buying power from
the grid). The profits calculated are only related to the purchase of electricity and the sales
of electricity and NH3. Fixed costs and other operational expenses are not considered
in the model, as the emphasis of the study is to highlight the system’s sensitivity to the
parameters that are directly impacted by the stochastic price environments.
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Table 2. Data sources, description and reference for the datasets used in the model.

Data Source Description Reference

Wind production Co-located Historical wind production for 2020 in
Germany [37,38]

Solar production Co-located Historical solar production for 2020 in
Germany [37,38]

Forward electricity settlement prices European Power Exchange Daily closing settlement prices for the
forward contracts M1, Q1, Y1, Y2 and Y3 [27]

Spot price for ammonia Western Europe Ammonia CFR
(Cost&Freight)

Historical spot price for ammonia from 1
January 2020 to 31 January 2023 [30]

Table 3. Detailed list of scenarios, where the procurement configuration, the technology of the
renewables providing the electricity, the capacity of the electricity contract, the capacity of the
electrolyzer, the size of the weekly ammonia contract, the median (P50) of the P&L distribution and
the standard deviation of the P&L distribution are shown for each scenario.

Scenario Procurement Technology Renewable Capacity
[MW]

Electrolyzer Capacity
[MW]

NH3 Contract
[t/Week]

P50 P&L
Me

Std P&L
Me

i Co-located Solar 250 100 300 92 15
ii Co-located Mixed 250 100 300 169 37
iii BL - 30 100 600 −52 5.5
iv BL - 30 50 300 −18 13
v BL - 60 100 300 −22 37
vi PaP Solar 250 100 600 −34 5
vii PaP Solar 250 100 300 −7 15
viii PaP Solar 250 50 300 0.3 17
ix PaP Mixed 250 50 300 26 38
x PaP Mixed 250 100 300 20 37
xi PaP Mixed 250 100 600 −4 23

Figure 2. Illustration of the plant configuration where the procurement can be co-located assets, PaP
PPA or BL PPA.

3.1. Co-Located Assets Configuration

The first configuration investigated is the case where the generating assets are co-
located with the PtX plant, i.e., the electrolyzer is directly connected to the generating assets.
The electricity driving the production is generated for free by a co-located renewables
system consisting of one case of 250 MW of solar capacity (referred to as Solar) and the
other case of 125 MW solar and 125 MW wind capacity (referred to as Mixed). The
production pattern from an average historical year (2020) in Germany is used to simulate
the production profiles. This production profile is repeated for the total optimization
window. It is important to note that the electricity input is dependent on the renewables
production profile, hence with the corresponding volatility.
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3.2. Pay-as-Produced PPA Configuration

In the second configuration, the power is provided through a Pay-as-Produced (PaP)
PPA. PaP PPA typically refers to the agreement to purchase (or sell) electricity exactly as
produced (i.e., with the solar or wind generation profile) by the renewable asset at a fixed
price and over a defined time interval [39]. As for the previous scenario, two different
PaP PPAs have been studied: one referred to as Solar with 250 MW of solar capacity and
one referred to as Mixed with 125 of solar capacity and 125 MW of wind capacity. Again,
the same historical year was used for the production profile, and once more, the resulting
production profile is characterized by high volatility. The fixed price for both PaP PPAs is
obtained from personal conversations with traders and can be found in Table 1. The model
optimizes the profit from the energy procured via the PPA by buying and selling from and
to the market as necessary.

3.3. Baseload PPA Configuration

The last configuration refers to the case where power is contracted through a Baseload
(BL) PPA. In this case, a BL PPA refers to the agreement to buy a constant amount of
electricity at a fixed price and for a fixed tenor. The volatility of the renewables and the
resulting risks are then removed from the problem as a constant level of electricity is
provided through the tenor. The Baseload fix price is obtained from EEX [27] and found in
Table 1. However, as the plant, in this case, has to buy a fixed hourly amount of electricity,
the opportunities to optimize with respect to the electricity prices are reduced compared to
the PaP PPA scenario. Procured volumes are described in detail for each different scenario
in Table 3.

4. Discussion

The main outcome of the optimization model is the profit and loss (P&L) distributions
generated by each scenario. The median (also referred to as P50) of each distribution
is used as a proxy for the midpoint outcome (i.e., the 50th percentile). As some of the
distributions are skewed, the median was chosen as opposed to the mean to reduce the
weight on extreme values. The standard deviation is shown to quantify the risk, i.e., the
higher the standard deviation, the higher the dispersion of the data around the mean and,
therefore, the higher the risk around the distribution. Figure 3 illustrates the distributions
in the co-located scenario. The blue distribution (i) represents solar generation only, while
the red distribution (ii) depicts a 50:50 mix of solar and wind. All other factors, such as
NH3 commitment and electrolyzer capacity, remain consistent across both scenarios.

Figure 3. P&L in the case of Co-location, with Scenario (i) in blue and Scenario (ii) in red.

In both cases, the median P&L is positive. Notably, the following observations can
be made:

• Solar energy generates less volatile revenues compared to wind energy. Furthermore,
the lower load factor and production profile of solar results in a lower median P&L, as
the generation is generally lower, and the system is forced to buy external electricity.



Commodities 2024, 3 109

• Combining wind and solar power reduces the risk of cannibalization, therefore maxi-
mizing profit optimization activities for the electrolyzer but increasing volatility.

Figure 4 illustrates the BL case and depicts two distributions. The red distribution
(iii) corresponds to a commitment of 600 t/week NH3 and an electrolyzer capacity of
100 MW. The blue distribution (iv) represents a commitment of 300 t/week NH3 and a
50 MW electrolyzer. In both cases, the electricity capacity procured via the BL PPA is
30 MW, which results, on average, in a similar amount of energy procured via the PaP PPA.
As shown in Table 1, buying a BL PPA is more expensive than the PaP alternative since, in
this case, the profile and volumetric risk are removed.

Figure 4. P&L in the case of BL with different commitment and electrolyzer capacity, with Scenario
(iii) in red and Scenario (iv) in blue.

The P&L in both scenarios (iii) and (iv) is adversely affected by the higher price/lower
volume of electricity procured via the BL PPA, resulting in a higher probability of incurring
losses over the three-year period under consideration. In Scenario (iii), there is less variabil-
ity but lower median values. Scenario (iv) exhibits improved median values (though still
negative) but at the cost of significantly higher variance.

In Figure 5, we examine the same BL configuration but with a fixed electrolyzer
capacity of 100 MW. The red distribution (v) showcases the scenario with a delivery
commitment of 300 t/week NH3 and a 60 MW Baseload PPA, where we want to test what
happens when more energy is secured via a PPA. We compare this to Scenario (iii) from
above, in blue in Figure 5, which results from a delivery commitment of 600 t/week of NH3
and a 30 MW BL PPA.

From Scenario (v), the benefit of fixing the price for a larger volume of electricity is
clear, resulting in a better median P&L.

Analyzing the BL case and findings (iii), (iv), and (v), the following conclusions can
be drawn:

• Increased committed volumes of NH3 reduce revenues’ uncertainty, resulting in a
lower P&L volatility but also lower median P&L.

• In a high-price environment, more energy through a BL PPA results in an improved
median P&L, as it fixes the electricity price throughout the entire duration of the
contract, thus significantly reducing price risk.

• However, we can see that a BL PPA generally hampers the system performance
by restricting opportunities for profit optimization and NH3 production in the
electricity market.

Solar PPA (250 MW) scenarios are depicted in Figure 6, illustrating various configu-
rations. The blue distribution (vi) considers a weekly contract of 600 t of NH3 along with
a 100 MW electrolyzer. In the red distribution (vii), a weekly contract of 300 t of NH3 is
paired with a 100 MW electrolyzer. Lastly, the green distribution (viii) represents the case
where a 300 t of NH3 contract per week is combined with a 50 MW electrolyzer.
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The findings from Case (vi) further support the fact that increasing the quantity of
NH3, coupled with a higher electrolyzer capacity, enhances predictability but limits the
potential to capitalize on higher electricity sale prices, therefore negatively impacting the
P&L. In contrast, Cases (vii) and (viii) show more volatile outcomes while exhibiting an
overall improvement in terms of median P&L. By reducing the electrolyzer capacity in Case
(vii), flexibility is reduced, leading to fewer opportunities to optimize NH3 production.
However, this approach enables higher profits through the sale of electricity during peak
hours as a result of solar generation. It is important to note that relying solely on a solar
profile may not maximize the P&L from electricity sales, as the solar generation profile
typically aligns closely with consumption patterns, resulting in limited opportunities to
buy electricity during off-peak hours (usually at night) and sell it during peak periods.

Figure 5. P&L in the case of BL with a fixed electrolyzer capacity, with Scenario (iii) in blue and
Scenario (v) in red.

Figure 6. P&L in the case of Solar Electricity, with Scenario (vi) in blue, Scenario (vii) in red, and
Scenario (viii) in green.

In summary, in the case of a Solar PPA, it can be concluded that:

• Solar generation input enhances the P&L for electricity when compared to BL genera-
tion. However, there is still room for improvement based on the interplay between the
solar profile and consumption patterns.

• Confirming the findings of the BL case, higher committed NH3 volumes, and increased
electrolyzer capacity contribute to a reduction in volatility. However, these factors still
have a negative impact on the P&L.

• Optimal P&L for solar is achieved by adopting lower NH3 commitments and a smaller
electrolyzer capacity. This outcome can be attributed to the higher value of electricity
relative to NH3, which is likely influenced by a lower procurement price. When buyers
opt for a Pay-as-Produced approach, they receive a discount but also assume the risk of
cannibalization associated with the solar profile. The ability to mitigate cannibalization
risk using the electrolyzer as a form of storage (i.e., producing ammonia when market
electricity prices are low) further supports the superior P&L of this configuration.
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To investigate the potential benefits of a mixed generation profile, the next case
incorporates wind generation to determine if such a combination enhances the ability to
store electricity during off-peak periods and maximize sales during peak hours. Figure 7
illustrates scenarios of mixed solar and wind PPA with capacities of 125 MW each and
Pay-as-Produced generation. The blue distribution (ix) represents a scenario with a weekly
contract for 300 t of NH3 and an electrolyzer capacity of 50 MW. The red distribution (x)
corresponds to a scenario with the same weekly NH3 contract but with an electrolyzer
capacity of 100 MW. Lastly, the green distribution (xi) depicts a scenario with a weekly
NH3 contract of 600 t and an electrolyzer capacity of 100 MW.

All three cases show a significant improvement compared to the BL, PaP, and Solar
cases. As expected, buying in equal parts a wind and solar profile results in lower cannibal-
ization risk (while still enjoying a lower PPA electricity cost), thus allowing the electrolyzer
activity to be focused on optimizing between electricity and NH3 sale. Selling electricity is
more profitable than selling NH3 in the recent high-price environment, particularly when
obtained at a discount through a PaP PPA. This idea is further reinforced in the case of
wind and solar, where cannibalization risk is mitigated by the negative correlation between
the two generation profiles. Furthermore, it is worth emphasizing that when in activity, the
electrolyzer has a minimum load of 20% of its capacity. As a result, the higher the capacity
of the electrolyzer, the larger the minimum amount of electricity for operation, leaving less
room for optimization. All three cases show positive median P&L and higher volatility
from a volatile wind production pattern.

Figure 7. P&L in the case of mixed Wind and Solar PPA, with Scenario (ix) in blue, Scenario (x) in red,
and Scenario (xi) in green.

Using stochastic prices to optimize a PtX system that produces NH3, we have observed
that the most profitable option consists of:

• Procuring the electricity via a Pay-as-Produced PPA featuring a mix of solar and
wind generation. This allows one to buy electricity at a discount while minimizing
the cannibalization risk, thanks to the negative correlation between wind and solar
generation. The mixed input generation profile also allows great optimization, as the
electrolyzer has more opportunities to choose from when to produce NH3.

• Committing lower volumes of NH3. We have observed that higher NH3 volume
commitment results in lower volatility of the P&L but with a negative impact on the
P&L distribution.

• Lower electrolyzer capacity. In the cases analyzed, the result was a higher median
profit, as the electrolyzer improved profits by optimizing between the cheap electricity
purchased via the PPA and the market prices.

When possible, however, the co-located configuration should be prioritized, possibly
with a mixed wind and solar generation, as this choice shows the best outcomes in terms
of P&L.
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5. Conclusions

This paper has investigated the profitability of producing green ammonia through
water electrolysis at a time when green ammonia is becoming a critical tool for decar-
bonizing the transport and agricultural industries. The required electricity is sourced from
renewable energy, utilizing various types of supply contracts that were chosen to reflect the
latest project trends. The use of stochastic electricity and ammonia prices, performed for
the first time in this study, ensures that the volatile and intermittent nature of electricity is
captured in the modeling of future prices. Notably, the presence of co-located renewable
generation emerges as a pivotal contributor, offering electricity at an exceptionally low cost.
In instances where a co-located system is impractical, our findings advocate for the efficacy
of a Pay-as-Produced PPA. This arrangement, especially when characterized by a blend
of wind and solar energy coupled with an electrolyzer designed for enhanced flexibility,
proves to be an optimal strategy, maximizing project outcomes.

Flexibility plays a pivotal role in harnessing the advantages of cost-effective ammonia
production within the market. In the context of this research, flexibility primarily stems
from reduced contractual obligations related to ammonia production. Flexibility can be
further achieved through the implementation of battery storage systems. This underscores
the critical importance of investing in flexible assets not only to optimize grid performance
but also to bolster the economic viability of PtX projects. Renewable electricity prices,
ammonia contractual obligations, and the minimum load of the electrolyzer are identified
as the key determinants affecting profits. The profitability of the process was limited to
the sale of ammonia, but future research aims to expand it to the possible production of
green hydrogen.

The significance of this research extends to both policy formulation and strategic
investment decisions, offering a versatile framework for evaluating PtX system perfor-
mance. This framework is instrumental in multiple ways: first, by pinpointing the pivotal
parameters influencing a project’s financial success; second, it gauges project risks by quan-
tifying returns volatility; third, it facilitates project financing by establishing a structured
approach for forecasting future cash flows and requirements. This will not only bolster
access to project funding but also align seamlessly with contemporary decarbonization and
renewable energy policies.
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The following abbreviations are used in this manuscript:

BL Baseload
CFR Cost&Freight
CAPEX Capital expenditure
EEX European Energy Exchange
GBM Geometric Brownian Motion
GW Gigawatts
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IEA International Energy Agency
ktonnes kilo tonnes
Mtonnes Mega tonnes
MW Megawatts
MWhr Megawatts hour
OPEX Operational expenditure
OU Ornstein-Ulenbeck
PaP Pay as Produced
P&L Profit and Loss
PPA Power Purchase Agreement
PtX Power-to-X

Appendix A

The variables optimized through the optimization process and the parameters that are
not optimized but given input to the model are listed in Table A1.

Table A1. List of parameters and variables for the optimization.

Parameter Variables Optimized

Electrical losses, el Power sold, Ps
Price of electricity provided through the PPA, Sp Power bought, Pb
Spot price of the power modeled, Se Power used, Pu
Power procured through the PPA, Pp Ammonia produced, qNH3
Selling price of NH3, SNH3 Power used by the electrolyzer, PE

Minimal production capacity of the NH3 process, QMin
NH3

Power used for the water treatment, PH2O

Maximal hourly capacity of the NH3 process, qMax
NH3

Power used by the NH3 process, PNH3

NH3 contract, CNH3 H2 produced, qH2
Energy consumption for the electrolyzer, ηE Binary variable for NH3 production, χ0,1
Energy requirement for the water treatment, ηH2O
Power consumed by the NH3 process when producing NH3, Pon
Power consumed by the NH3 process when in standby, Pstd
Mass balance between NH3 and H2, mNH3/H2
Mass balance between H2O and H2, mH2O/H2
Grid connection limit, PG
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