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Abstract: In this paper, watercraft and ship simulation is summarized, and the way that it can be
extended through realistic physics is explored. A hydrodynamic, data-driven, immersive watercraft
simulation experience is also introduced, using the Unreal Engine to visualize a Landing Craft Utility
(LCU) operation and interaction with near-shore waves in virtual reality (VR). The VR application
provides navigation scientists with a better understanding of how coastal waves impact landing
operations and channel design. FUNWAVE data generated on the supercomputing resources at the
U.S. Army Corps of Engineers (USACE) Engineering Research and Development Center (ERDC)
are employed, and using these data, a graphical representation of the domain is created, including
the vessel model and a customizable VR bridge to control the vessel within the virtual environment.
Several dimension reduction methods are being devised to ensure that the FUNWAVE data can
inform the model but keep the application running in real time at an acceptable frame rate for the VR
headset. By importing millions of data points output from the FUNWAVE version 3.4 software into
Unreal Engine, virtual vessels can be affected by physics-driven data.

Keywords: virtual reality; simulation; hydraulics; navigation; FUNWAVE; hydrodynamics; Unreal
Engine; waves; Boussinesq; near-shore waves; physics engine; numerical models

1. Introduction

Navigation channels are essential for the economy and national security. Ship pilots
who traverse these channels can provide valuable feedback to the civil engineers who design
them, and pilot-operated simulators are a popular means of gathering this feedback. Ship
simulators can reproduce, imitate, or represent likely occurrences of real-world phenomena
and have many applications such as informing risk-based decision making. One way to
ensure that simulations are as accurate as possible is through numerical models of physical
systems. Calculations of mathematical equations can offer a physics-based representation of
common, natural phenomena such as fluid mechanics. In the case of vessel simulation, these
natural forces can have important interactions with a ship, affecting its operation. To achieve
our research objective of creating accurate simulations, it is imperative to focus on the
intricate interactions of vessels with near-shore waves. Near-shore waves present unique
challenges due to their complex behaviors influenced by coastal topography. As such, the
selection of an appropriate hydrodynamic modeler becomes crucial for this task. Therefore,
our research team has chosen to incorporate the hydrodynamic modeler FUNWAVE,
renowned for its precision and reliability in capturing near-shore wave dynamics [1]. Many
forces act upon a vessel, including waves, current, and wind. One of the most difficult
kinds of waves to simulate is near-shore waves. For this application, our research team has
incorporated the hydrodynamic modeler FUNWAVE as the most accurate data source for
modeling near-shore waves.

Natural phenomena can be visualized using computer graphics applications, which
are valuable in understanding and communicating the data. In the past, OpenGL was
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the powerful tool most often used for demonstrating this capability, but in recent years,
video game engines have been leveraged for high-definition graphical renderings. To
gain a market edge, game design companies have been at the forefront of graphics. These
techniques have been proprietary and hidden until tools such as Unreal Engine and Unity
provided amateur developers with similar capabilities. Communities of content creators
can now share tools that make the process of visualization much easier. Scientists and
engineers are using game design and visual effects techniques to create high-definition
graphics simulations of physical systems. Advancements in visualization techniques have
significantly impacted the field, particularly with the adoption of video game engines like
Unreal Engine and Unity. These engines empower researchers, including both professionals
and amateurs, to create visually stunning simulations. For our research, Unreal Engine
proves to be an ideal choice, given its robust graphics rendering capabilities, which will
be instrumental in enhancing the visualization of ship operations and near-shore wave
dynamics. We have chosen this application because of the high quality of graphics capability
with the software compared to other applications such as Unity. Unreal Engine utilizes a
more advanced and sophisticated rendering pipeline, known as the Unreal Engine 4 (UE4)
rendering system. It features cutting-edge graphical techniques such as physically based
rendering (PBR) [2], high-quality global illumination through its precomputed radiance
transfer (LPV) [3] or real-time ray tracing (DXR) [4], and cinematic-quality post-processing
effects [5]. These features contribute to more visually stunning and realistic graphics in
Unreal Engine compared to Unity. Beyond merely seeing a visualization, researchers can
now be immersed in the data, thanks to virtual reality (VR). Smartphone technologies
have led to a resurgence of VR hardware utilizing small and powerful graphics processing
unit (GPU) chips and micro light-emitting diode (LED) screens. Game design tools such
as Unreal Engine and Unity have also enabled the explosion of VR content created by
independent developers. In academia, government, and private industry, developers are
going beyond gaming with VR to produce immersive communication solutions. Data
immersion can help stakeholders make better informed decisions based on an enhanced
experience of the information.

In this study, we harness the potential of virtual reality to provide a transformative data
immersion experience. By integrating Unreal Engine’s cutting-edge graphics capabilities
with VR technology (Table 1), our simulation will enable researchers and stakeholders to
interact with the data in an immersive and comprehensive manner. The immersive nature
of VR will foster a deeper understanding of the vessel behavior under various near-shore
wave conditions, thereby contributing to enhanced decision making in coastal engineering,
military operations, and navigational science.

Table 1. Hardware and software for virtual reality development.

PC Hardware Specs VR Headsets Software

Processor: Intel i9 Valve Index Unreal Engine 4.26
Graphics Card: Nvidia GeForce RTX 3090

RAM: 64 GB
Hard drive: 2TB SSD

HTC Vive Pro 2 FUNWAVE

2. Background
2.1. Ship Simulation

Ship simulation was developed to train mariners in areas such as safe vessel maneu-
vering techniques including avoiding collisions, which has been explored in previous stud-
ies [6]. While ship simulation was initially used for blue water navigation and deep-water
harbors, the simulated environments have expanded to include the riverine and littoral
environments. Its use promotes safe navigation in the world’s sea lanes and navigation
channels by allowing mariners to hone their skills in a zero-risk, laboratory environment [7].
In the 1980s and 1990s, the U.S. Army Corps of Engineers (USACE) Engineer Research and
Development Center (ERDC) began using ship simulation in a unique way: the analysis
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of navigation channel design [8]. Throughout these studies, the ERDC has continually
evolved its methods in support of safe and efficient channel design. The ERDC has ap-
plied ship simulation technology to design improvement projects in nearly every major
U.S. port and commercially navigated waterway in the United States including Alaska,
Hawaii, and Puerto Rico. Ship simulation has proven to be an invaluable tool in helping
evaluate safety and economic issues for maritime development projects. Using local area
expertise, field data, stakeholder input, and experience, the ERDC employs unique ship
simulation methods to analyze channel and port design alternatives. Visualization is what
makes simulation such a powerful training and analysis tool, giving the mariner a real-time
view of the physical environment. The medium for these visual environments began with
computer monitors and projectors and has advanced to high-resolution screens, projection
systems, and LED domes.

Currently, the visualization software used for ship simulators is essentially the same as
gaming and VR applications [9]. Many of the major companies such as Kongsberg Marine
(Figure 1) and HR Wallingford (Figure 2) use Unity or Unreal Engine as the basis for their
software due to the ability to create interactive experiences. In the past, game engines
did not offer the ability to create functionality at the code level and only offered some
asset importation and customization. This severely limited the ability to adjust physics
parameters or extend any built-in physics. Physics-based simulations had to be developed
without the use of game engines [10]. This research focused on Unreal Engine and its ability
to create custom adaptations through coding in Unreal Blueprints or by utilizing plugins,
which act as software libraries.
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2.2. Virtual Reality Simulation in Gaming Engines

Virtual reality has been revolutionary in the field of ship and watercraft simulation
by providing a more immersive and realistic training environment. The advancements
of VR over the years have greatly enhanced the capabilities for these simulations, giving
users the experience of realistic scenarios without the need to pilot a ship in the real world.
The use of Unreal Engine, a powerful gaming engine known for its high-fidelity graphics
and interactive capabilities, has played a crucial role in driving these advancements. The
gaming engine’s ability to render detailed environments and simulate complex physics has
made it an ideal choice for watercraft and ship simulation.

The incorporation of VR allows for safer training scenarios and reduces the overall
risk of accidents involved in training such as those that are common in the construction
industry [11]. The realistic rendering of maritime environments enhances a pilot’s pre-
paredness in critical situations. The ability to model various vessels gives pilots a broad
range of options for training that greatly increases their overall knowledge, and they can
practice on various bridge types. VR is also very effective for remote learning [12]. Ship
simulators can be very large, containing many parts that cannot be easily moved such as
screens, consoles, and desktop computers. VR offers a more mobile solution, bringing the
training to the student, and saving costs on travel.

2.3. Hydrodynamic Visualization

Watercraft simulation in a VR environment is currently limited by the lack of sophisti-
cated near-shore wave models and the need for the better visualization of wave surfaces.
Most traditional wave models, based on linear wave theory, fail to accurately capture
nonlinear wave interactions, wave breaking, and near-shore dynamics [13]. These limita-
tions lead to a lack of fidelity in simulating critical hydrodynamic phenomena, resulting
in less reliable predictions of ship responses and behavior in realistic sea conditions. To
remedy this, it is important to use wave modeling simulations with higher accuracy, which
has been shown in previous studies [14]. Advancements in computer hardware, such as
high-performance supercomputing, makes it possible to use numerical modeling, such as
Navier–Stokes equations, to simulate the important factors affecting ships [15].

FUNWAVE is a fully nonlinear, shallow-to-intermediate water phase resolving, Boussi-
nesq numerical wave model. It provides high-fidelity simulations for many coastal pro-
cesses including near-shore waves, currents, wave breaking with run-up and overtopping,
harbor resonance, infra-gravity waves, and vessel-generated waves. Many of its capabilities
are only possible due to its ability to resolve the phases between different super-positioned
wave frequencies. This high degree of accuracy, however, comes at the cost of the applica-
tion being unable to run in real time. Researchers at the Coastal and Hydraulics Laboratory
are utilizing an HPC to reduce the computational costs.

The most important components of an immersive and realistic simulated environment
are physics calculations and visualization. This is especially true for maritime simulations
where pilots sail in both deep water and near-shore (shallow water). Multiple wave types
and conditions like spray, splashing, foam, and wakes are necessary to accurately render
these different environments and create useful visuals. Pilots, for example, use breaking
waves and foamy patches to navigate waters, especially in the near-shore. There are
currently two main calculation methods for simulating deep-water ocean waves: parametric
and statistical. The former uses mathematical equations to procedurally create simple,
trochoidal Gerstner waves. This implementation is based on deep-water waves and is
the method used in Unreal Engine’s built-in water physics engine. The most formative
example of a Gerstner-based wave simulation first appeared in the 1986 work of Fournier
and Reeves [16]. Since then, oceanographers have moved beyond Gerstner waves and
favor statistical models that generate “linear waves” or “gravity waves”, which result in
a more realistic representation of the open ocean’s surface [17]. The statistical calculation
method uses wave spectra data and Fast Fourier Transforms to statistically create a more
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realistic depiction of choppier waters. The individual waves themselves are still Gerstner
waves, but they are superimposed in a way to create more complicated waveforms [18].

Simulating shallow water is more complex than simulating deep water. Oceanogra-
phers refer to these waves passing over a shallow bottom as “nonlinear waves” [17]. Unlike
deep-water waves, which follow a sinusoidal shape, near-shore waves are sharp near the
crest and flat near the trough. This change in shape results from the water depth and seabed
terrain—not just wind and gravity. To simulate waves moving to the near-shore, a mathe-
matical model of the seafloor topography is required. Previous work demonstrates that
seafloor topography data and waveform data can be constructed simultaneously, making it
possible to render near-shore waves in real time at a frame rate of 132 fps in OpenGL [19].
Perhaps more important than deep and shallow water rendering, in the context of ship
simulation, is the rendering of visual context clues like breaking waves, spray, and foam.
Extensive prior work has been conducted to realistically render breaking waves [16,20] and
prove that very fast breaking wave behaviors are possible using OpenGL and NVIDIA Cg
shading language [21]. Previous work has also shown how realistic ocean foam and spray
can be achieved in real time using traditional texture-based methods [22]. More recent
work has demonstrated improvements to these visualizations, including bubbles popping
and clumping in natural patterns [23] and water spray as a two-continua for computer
graphics wherein it does not appear to fall straight down [24].

In order to improve the near-shore wave physics of ship simulators, it is important
to understand gaming physics engines. Programming logic combined with Newtonian
equations offers the ability to simulate real-world physics-based events. These software
packages are called “physics engines” for gaming and scientific simulation. Physics engines
mainly deal with rigid body dynamics, soft body dynamics, collision response, and fluid
dynamics. Physics-based particle systems for visual effects that simulate phenomena such
as smoke, fog, dust, rain, snow, clouds, water, fire, and light offer enhanced virtual reality
immersion [25]. In previous studies, physics engines have been compared, and some
important factors have been identified [26]. Integrator performance determines numerical
accuracy and is responsible for calculating a body’s position given the forces acting upon
it. Constraint stability, collision system, object representation, material properties, and the
way objects are stacked were also evaluated [27].

Since our research is mostly focused on using Unreal Engine 4.26, we examined the
Nvidia PhysX engine. The research did not evaluate Unreal Engine 5’s new Chaos engine
or Niagara Fluids but will be explored in a future work. For the PhysX system, three types
of physics actors are static, dynamic, and kinematic. Static actors are immovable in the
environment being used mostly for collision detection, dynamic actors are moveable bodies
and act under the normal laws of physics, and finally, kinematic actors do not respond
to outside forces and move under the user’s control [28]. Several techniques have been
evaluated with PhysX for water and fluid simulation including the forces acting upon
particles [29].

Data sets have been visualized in different ways, from dashboards with real-time
data [30] to VR applications using scatter plots on a 3D graph [31]. Many examples of
3D geospatial terrain data being ingested into virtual reality game engine simulations
exist [32]. Other examples show how digital elevation models can be used to create 3D
scenes for immersive geographical VR applications [33]. Data ingestion for simulations is
not limited to terrain, and examples exist of how meteorological data can be imported to
visualize real-time volumetric clouds using Python and Unreal Engine [34]. Researchers
have gone beyond the earth and have even modeled real-time cosmological visualizations
using Unreal Engine and galaxy image data [35]. Other rarer examples exist of actual
simulators implemented such as a vehicle traffic simulator created in Unreal Engine [36].
DataTables are gameplay elements that Unreal Engine uses to store related data. They
can be accessed using either C++ or Blueprints, the Unreal Engine visual scripting system.
DataTables allow Unreal Engine to input and output data from comma-separated values
(CSV) and JavaScript Object Notation (JSON) files [37].
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3. Methods

The core of the methodology revolves around a prototype, Landing Craft Utility (LCU),
which is piloted in virtual reality. Our unique approach was to ingest FUNWAVE output
data into Unreal Engine and represent it in a fully immersive virtual reality simulator. This
survey shows how a hybrid approach of virtual reality watercraft piloting, hydrodynamic
models, high-definition water rendering, and data ingestion can lead to more advanced
simulators in the future. Utilizing the information explained above, we have created a
framework that integrates those pieces (Figure 3). We have chosen to use Unreal Engine over
another application such as Unity due to its favorable graphics capabilities. Unreal Engine
provides the common data environment for our numerical modeler, rigid body physics,
realistic computer graphics, and virtual reality simulation. The application consists of a
backend developed on Unreal Engine 4.26 and its native handling of physics using PhysX
3.3. The water plugin that was created by Epic Games has options for creating animated
Gerstner waves and giving game actors buoyancy. Unreal Engine’s water plugin does not
have littoral or near-shore waves, which motivated this research. In order to enhance the
realism of near-shore waves, we chose the FUNWAVE hydrodynamic numerical modeler
as a source of data that could be ingested due to the high level of accuracy of the modeler.
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3.1. Unreal Engine Implementation

Our development team utilized Unreal Engine 4.26 to simulate an ocean environment
where the user can drive an LCU using a throttle for forward and backward motion and
using a steering wheel to turn from left to right (Figure 4). Like previously implemented
systems [38], the platform simulates real-time six-degrees-of-freedom ship motion (pitch,
heave, roll, surge, sway, and yaw) under user interactions and environmental conditions,
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linear and angular velocity, user gaze direction, as well as control and lever angles taken
from the bridge. The fully immersive virtual reality watercraft is buoyant and floats on
the surface of the simulated water consisting primarily of Gerstner-type waves. Other
auxiliary features include a horn that can be activated, emitting a realistic audio signature.
The ship model was designed by ERDC CHL’s Navigation branch. A menu system was
included to give users a launch point and the ability to change options such as sound effects,
music, and controller settings (Figure 5). A beach island scene was developed by the ITL
team using Megascans library and a Combat Rubber Raiding Craft (CRRC) downloaded
from Sketchfab.
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3.2. Hydrodynamic Data Ingestion

Data from FUNWAVE are essential to integrate high-accuracy physics into a virtual
simulation. Currently, there is no way to integrate a live Boussinesq model into a VR
simulation at the level of accuracy in FUNWAVE; therefore, the developed capability
relies on precomputed hydrodynamic data (Figure 6). Simulation data can be any phase-
resolved nonlinear wave model, but for this project, we used FUNWAVE. The model
output, packaged in binary files, comprise cross-shore velocities (u), alongshore velocities
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(v), and water surface elevation (η). The data were unpacked from FUNWAVE’s native
format and converted to the CSV format to be ingestible by Unreal Engine’s DataTables
(Table 2). To unpack the binary file, our Python script (Figure 7), was used to convert the
raw binary wave data into three columns of 7-point precision floating point numbers. Then,
we transformed each float to 7-point precision before writing it as a string to the newly
created CSV file.
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FUNWAVE’s data are output in a structured 2D grid. Data points are discretized along
a user-entered resolution/value (every 1 m, 2 m, 0.5 m, etc.). For each discretized data
point (here after referred to as a “cell”), there are 3 values that we had FUNWAVE calculate:

- U and V: Cross-shore and against-shore velocities (respectively);
- Eta: The spatio-temporal instantaneous water level oscillating around the still-water

level; these values can be positive (peak) or negative (trough).

To render the simulation results of the littoral zone, a colored spatial grid was de-
signed from the FUNWAVE data (Figure 8). Each colored cube represents one point in the
FUNWAVE grid. Each cube represents a “u, v, eta” point, which will later be revised to be
animated water in a future work. Red colored cubes represent the area where the ship is
colliding with a FUNWAVE cell, illustrating how littoral waves affect the hydrodynamics
of the ship, and vice versa. Data were accessed from each row in the DataTable, which
consisted of three columns (u, v, eta) for each row. Each row represents a single time series
point from FUNWAVE. Our Blueprint script iterated through the DataTable grabbed each
row and assigned that to each cube.
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Figure 8. Spatial grid showing FUNWAVE data interacting with the ship.

The arrows on top of the cells indicate the direction in which they are pushing. The red
cells are currently overlapping and pushing the ship, and as they come in and out, they will
subscribe or unsubscribe themselves from the boat. The values can be adjusted on the side,
such as the number of rows, columns, and the size of individual cells. These adjustments
can be made prior to runtime, and the values are pulled from a DataTable generated from
FUNWAVE that has the u, v, and eta columns, all stored in this data structure as floats.

The wave tile spawning construction script keeps an array of transforms, which are
spots in 3D space (Figure 9). It loops through the DataTable and creates a square grid
for those transforms (Figure 10). For each transform, it stores the three values from the
DataTable in an array, loops over them by rows and columns, and sets those transforms
equal to those values plus the offset from the starting location (Figure 11). The individual
grid cells are represented by green blocks that turn red when they overlap. They possess a
force vector, which tells the ship to keep track of them when they begin overlapping and to
stop keeping track of them when they stop overlapping. The following figures are snippets
of code written with Unreal Engine Blueprints.
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A Battleship-style board is used to illustrate the following example (Figure 12). The
entire grid is too dense to load into memory at runtime, so we loaded a subset of those data,
with a 1 cell radius around the vessel shown as highlighted areas. Because FUNWAVE’s
output is indexed, we did not have to loop over the entire grid to find and load the values
for these cells. Instead, we took the known location of the vessel in 3D space (which Unreal
provides as a “Transform”). We then obtained the Transform for the top left corner of the
entire grid (red circle). The difference between the grid corner’s location and the vessel’s
location, divided by the size of each grid cell in meters, tells us how many “cells” are along
X the vessel (Figures 13 and 14).

(ShipXLocation − GridCornerXLocation)/CellSizeX = # of Cells on X

We used the same method to calculate how many cells away from the corner the ship
is on Y.

(ShipYLocation − GridCornerYLocation)/CellSizeY = # of Cells on Y

The grid’s maximum dimensions in X and Y are known. So, given an (X:Y) grid, we
calculated the index (the yellow number) of the cell directly under the center of the vessel
(the blue circle). In this example, the center of the ship is on G7 (rows in Battleship start at
1, not 0). If we replace “G”, the column of that cell would also be 7 (on a Battleship board).
The grid shown is 14 columns wide. So, each row is indexed as (0–13), (14–27), etc. See the
yellow numbers (arrays in C++ start at 0, not 1). We know the center of the ship (blue circle)
is on the 7th row of the grid, as well as the 7th column.

To calculate the index of this cell (the yellow number), we used the following formula:

{[ColumnWidth ∗ (RowNum-1)] − 1} + ColumnNum

{[ColumnWidth ∗ (RowNum-1)] − 1}

This portion accounts for all of the indexes of each “full” row above the target cell. It
puts us on the correct “line”/row. We subtracted 1 from the RowNum so it did not count
the row we were on as a full row (because we were not all the way to the right). We then
subtracted 1 from the multiplied value to account for the fact that indexes in C++ arrays
start at 0, and not 1. Rather than looping through the previous 90 cells and performing a
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calculation for each one to check if it was correct, we simply looked up the values for the
cell at index 90. This changed the time complexity from O(n) to O(1), which is important
due to FUNWAVE’s grid being millions of cells in length. Our array lookup had a check
based on the grid’s dimensions to prevent wrapping (when the ship was at the grid’s edge).
In our code, this radius of loaded cells is dynamic. The user can enter how large of a radius
they would like to load. This process enabled us to represent the ingested FUNWAVE data
to our ability at this point.
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Further exploration of data representation will allow us to render the grid in a more
realistic way that represents water waves in a littoral zone. This is currently being studied
and will be presented in a future work. The purpose of this technique was to show how
the highly accurate FUNWAVE output could be ingested in an immersive environment.
Reading the physics data is a crucial process toward combining these systems. Through
the approach of hybridization, we outlined above that each data point could be integrated
into the VR immersive system.

4. Results

The integration of FUNWAVE numerical modeling data was successfully integrated
into a VR simulation, showing that highly accurate physics from numerical modeling can be
incorporated. Although FUNWAVE data can be visualized via plotting, they have yet to be
visualized in 3D, much less in virtual reality. Our final Unreal application shows our results
of a hybrid methodology. In Figure 15, we can see the final visualization of our virtual
watercraft simulation performing a beach landing. We also included the native FUNWAVE-
generated results for comparison (Figure 16). These figures show that FUNWAVE’s plot
using Python can show more detail in the physics accuracy of the wave movements, but
it lacks an immersive ability due to the nature of it being two-dimensional. A similar
visualization can be rendered in 3D virtual reality in Unreal Engine, with integrated
FUNWAVE data, greatly enhancing the physics accuracy of near-shore waves. Only a
subset of the millions of data points was used due to being too computationally heavy,
which resulted in lesser accuracy. Because FUNWAVE is run on a high-performance
computer, this enables a high level of accuracy. We summarize the comparison in Table 3.

Table 3. Comparison between FUNWAVE visualization and Unreal Engine.

Application Physics Accuracy Visualization Capability

FUNWAVE Higher (numerical modeler run
on HPC) Lower (only 2D plotting)

Unreal Engine Lower (basic gaming physics engine) Higher (fully immersive 3D VR)

Hybrid Approach High accuracy of physics High level of visual graphics and
immersive virtual reality
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The hybrid prototype we developed demonstrates the ability to ingest physics-based
output from computational modelers into a VR watercraft simulation running at 70 frames
per second. We developed a framework to further explore this concept of physics data
ingestion into VR development platforms for more immersive and scientifically accurate
virtual experiences. Our current effort takes in FUNWAVE numerical output in the form of
floating point numbers and ingests it into an Unreal Engine VR environment.
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5. Discussion and Future Work

This project shows the potential of watercraft simulation advancement and the impli-
cations of adding valuable hydrodynamic numerical model data. By adding near-shore
wave data through FUNWAVE simulation, LCU operators have a more accurate simulation
that could potentially save soldiers’ lives through more informed decisions relating to
watercraft operation in littoral environments. Coupling our prototype with high-fidelity
hydrodynamic numerical modeling within a VR environment provides a means to enhance
ship survivability in operational deployments. Another direction could be for autonomous
robotic ships that also operate in the littoral zones. Simulations for those systems could
potentially save costs by providing a safer means of testing.

Future work should include upgrading to Unreal Engine 5 and should offer added
functionality, better physics, and graphics capability. Reading in HDF5 and binary output
directly into Unreal via C++ classes is currently being researched and could provide a faster
ingestion method. A potential issue will be ingesting millions of numbers in parallel as
opposed to a slow sequential reading function. Blueprints were primarily used for this
project, but the use of C++ will be further explored for greater functionality. Additionally,
this work focused on using FUNWAVE as a phase-resolved near-shore wave model, and the
framework was built around the FUNWAVE HDF5 binary output. Celeris could provide a
Unity implementation for highly accurate and immersive visualization [39]. There are a
number of other phase-resolved wave models that can be used to generate the same spatial
output (u, v, and eta, each as a function of time) including, but not limited to, SWASH [40],
COULWAVE [41], and NHWAVE [42]. The framework can ingest these models with a
simple conversion script between each of those native model outputs and the native HDF5
format can be used as an output from FUNWAVE.

6. Conclusions

The purpose of this research was to understand and integrate several systems toward
an advanced watercraft simulator that is capable of physics-based water rendering. Hydro-
dynamic waves in VR have been limited to deep-water Gerstner waves and our application
aims to incorporate near-shore wave models for more accuracy in wave rendering. In order
to accomplish this, numerical modeler FUNWAVE data were ingested into Unreal Engine
to supplement the native physics engine. The results show that this can be successfully
achieved with the use of DataTables. Other methods are being explored, including reading
in HDF5 and binary directly from output files without DataTables. Overall, the hybrid
pieces of various data sources can come together for a comprehensive approach, creating a
useful framework for further research in the field of game simulation using physics numer-
ical models. This research will both accelerate development and facilitate the simulation,
planning, and rehearsal of multi-domain operations by ensuring a seamless integration
of sea- and land-based modeling and simulation tools to enable physics-based real-time
accuracy and run-time efficiency.
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