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Abstract: During the last decade, the consumption of plastics has increased highly in parallel with
plastic waste. The transition towards a circular economy is the only way to prevent the environment
from landfilling and incineration. This review details the recycling techniques with a focus on
mechanical recycling of polymers, which is the most known and developed technique in industries.
The different steps of mechanical recycling have been highlighted, starting from sorting technologies
to the different decontamination processes. This paper covers degradation mechanisms and ways
to improve commodity polymers (Polyolefins), engineering polymers (PET, PA6), and bio-sourced
polymers (PLA and PHB).
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1. Introduction

Plastic materials have gathered attention recently due to their omnipresence in the
global economy. Since last century, plastics have become rapidly one of the most used
materials in industry. In 2019, more than 400 million tonnes of plastics (Mt) were produced
(Figure 1) [1].
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Figure 1. Global plastics production: 1950 to 2019 [1].

Waste 2023, 1, 860–883. https://doi.org/10.3390/waste1040050 https://www.mdpi.com/journal/waste

https://doi.org/10.3390/waste1040050
https://doi.org/10.3390/waste1040050
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/waste
https://www.mdpi.com
https://orcid.org/0000-0003-0501-6872
https://doi.org/10.3390/waste1040050
https://www.mdpi.com/journal/waste
https://www.mdpi.com/article/10.3390/waste1040050?type=check_update&version=3


Waste 2023, 1 861

If production continues to grow at a similar rate, plastics production will reach
1600 million tons (Mt) in 2050. The rapid growth of plastics production is due to the
good properties and low cost of this material. Thanks to its versatility, this material is
used in several fields, such as packaging, textile, transport, and construction. Polymers are
widely used, depending on the final application (Figure 2).
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The proliferation of plastic production contributes significantly to greenhouse gas
emissions and generates pollution in the natural environment. Indeed, the production
of virgin plastics requires the transformation of petroleum into monomers. This process
is energy-intensive and generated 400 million tons (Mt) of greenhouse gas emissions in
2012 [2].

To protect the environment, some countries adopted a new economic model that aims
to revalorize post-consumed plastic and avoid landfilling. The transition toward a circular
economy is unavoidable to reduce the plastic footprint and promote recycling. To manage
plastic waste, there are different gates that can be classified from the most to the least
preferred (Figure 3) [3].
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Waste management places reduction as the top priority. The idea is to prevent the
unnecessary consumption of resources. Direct reuse of original products is the second-best
practice in waste management. The third stage is recycling products to avoid landfill-
ing. Repurpose is about energy recovery. If the material cannot be recycled and re-
covered to energy, it will be landfilled, but it is the least preferred stage in the waste
management hierarchy.

To achieve the goal of 100% recovery of plastics, the waste management system
should be extended to all fields using plastics. In the industry, there are four ways to
recover plastics: primary, secondary, tertiary, and quaternary recycling. This review aims
to highlight the different stages of mechanical recycling: collection, sorting, cleaning,
shredding, and processing (Figure 4).
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2. Sorting Technologies

Plastic separation faces a lot of challenges due to the huge quantity of plastics to
collect and the complexity of identifying some types of plastics. The sorting is important to
remove contaminants from plastics. This section will cover separation techniques that use
density, surface charge transfer, and spectral analysis. The most used sorting methods are
listed in Table 1.

Table 1. Sorting Methods.

Sorting Method Characteristics Drawbacks Reference

Manual Hand based sorting Laborious, bad working environment [5]

Tribo-electric Based on electrostatic
charge

Only for clean, dry, and
non-surface-treated products. [6]

Near-infrared Radiation (NIR) Fundamental vibration It is not adapted for dark plastics and
is very expensive. [7]

Flotation It is related to a specific gravity
of material.

It is not applied to High-density
Polyethylene (HDPE) and

Low-density Polyethylene (LDPE).
[8]

X-ray fluorescence (XRF) Uses X-rays as a source It is very expensive [9]

2.1. Manual Sorting

Manual sorting is a technique that allows the identification by shape and color of the
plastics visually. This technique is useful if the waste plastics are large and easily identified.
Otherwise, it’s very laborious and inefficient due to human errors. Moreover, it is the
cheapest sorting technique [10].
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2.2. Near Infrared Radiation (NIR) and X-ray Technology

NIR (Near Infrared Radiation) involves irradiating the unsorted, unidentified plastic
with near-infrared waves (600 to 2500 nm−1 in wavelength). When exposed to light
waves, different polymer reflects an identification spectrum. NIR spectroscopy allows
identification thanks to the plastic signature, but it’s not adapted for dark plastics since
dark pigments mask the signature of plastic material [7].

There is another technique, like NIR, called X-ray fluorescence spectroscopy (XRF),
which is used to identify flame-retardant materials (FR) and to determine the chemical
composition of all kinds of materials (metal, cement, oil, and polymer).

This technology uses X-rays produced by a source to irradiate a sample. This latter
produces fluorescent X-ray radiation with discrete energies that are characterized for
these elements. Each element present in the sample produces a specific and unique set of
characteristics of fluorescent X-rays [11,12].

2.3. Flotation Method

The flotation method aims to separate polymers depending on specific gravity [13].
The process is related to both the hydrophobicity and gravitational force of the material
(Figure 5). This technique can be used to separate PET (Polyethylene Terephthalate) from
other plastic packaging [14]. Furthermore, with this method, 95% of PVC (polyvinyl
chloride) or PET (Polyethylene Terephthalate) can be separated [15].
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Figure 5. Process of froth flotation [14].

In this method, calcium lignin sultanate and MIBC (methyl isobutyl carbinol) are
used as wetting agents and frothing agents [16]. The materials are introduced in the first
bin before being mixed with hot water. After that, an alkaline treatment is applied to the
material in another tank, and pulp formation will take place and fed into a vibrating screen
for rinsing with cold water [9]. Samples of different products may then be separated and
extracted at predefined time intervals for analysis and approximation of the product weight.
The inconvenience of this method is space; it requires a huge area, and the process is too
long [17].
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2.4. Triboelectric Sorting

This technique can be applied to complex mixtures. The separation happens due to the
electrostatic charges of plastic mixture components (Figure 6). This technique can separate
metallic parts, metallic parts from plastic parts, and different plastics based on material
dielectric constant [18].
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The materials are introduced on a rotating tube, and then the material presents two
types of forces: the first is particle/particle forces, and the second one is particle/electrode
force. When two materials stick against each other, then charge starts appearing on material
particles. One gets a positive charge, and the second one gets a negative charge. Then,
separation is initiated by forces acting in between them when a material particle passes
through the intense electrostatic field [9].

3. Recycling Techniques: Overview

In the industry, there are several ways to recover plastics. They are classified into
four categories: primary, secondary, tertiary, and quaternary recycling. Each type has its
advantages and disadvantages. It depends on the application of recycled polymer. The
four ways are listed in Table 2.

Table 2. Recycling techniques.

Type of Recycling Process Limits References

Primary recycling
(Re-extrusion)

It is a process based on the extrusion of
plastics. It does not require too much

equipment and high investment.

It is adapted for plastic scrap
with less contamination [19,20]

Secondary recycling
(Mechanical recycling)

The technique begins in the sorting center
by separating, washing, and grinding

plastics. After these steps, plastic
materials are processed with extruders

and pelletized.

Degradation of
thermomechanical properties

of plastics
[21–25]

Tertiary recycling
(Chemical recycling)

Chemical recycling consists of converting
polymer into molecules or monomers

that can be used to manufacture
new polymers.

It is an expensive process with
a negative impact on

the environment
[26]

Quaternary recycling
(Energy recovery)

Quaternary recycling aims to generate
energy heat or electricity from plastic

scraps [20].
The emission of toxic gases. [20]
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3.1. Primary Recycling

Re-extrusion [19] is the process used for materials that are not too contaminated [27].
Currently, it is more suitable for post-consumption than post-industrial plastics. Therefore,
this technique does not require expensive equipment, and it is easy to handle in case of
recovering semi-clean plastic scrap.

3.2. Secondary Recycling

Secondary or mechanical recycling is dedicated to plastic scraps that are contaminated to
reuse them to produce new products [28]. This type of recycling includes several steps, from
the sorting to the pelletizing of post-consumer plastic such as Polystyrene (PS), High-Density
Polyethylene (HDPE), Low-Density Polyethylene (LDPE), Poly Vinyl Chloride (PVC).

This technique faces a challenge related to the reduction of contaminants and impu-
rities present in the resin, which affect the quality of recycled plastics [21]. The process
begins with the separation, washing, and grinding of plastics in the sorting center. After
these steps, plastic materials are processed and pelletized to form pellets [29]. Extrusion is
one of the processes that is mostly used to manufacture polymers. In the industry, single
or twin-screw extruders are both used to recycle used materials [3]. An extruder uses the
rotation of the screw and heating elements to soften and mix materials. The high temper-
ature and screw apply shear force on the polymer, which induces a scission in material
crosslinking [22–24]. This chain degradation impacts the thermomechanical properties of
the material. This last could be preserved by mastering the extrusion parameter and adding
some additives such as carbon black and antioxidants. The machine melts the material and
homogenizes it before entering the die (Figure 7) [9].
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To reduce the contamination rate of plastics, decontamination recycling lines are often
equipped with decontamination systems such as degassing system and filtration system.

3.3. Tertiary Recycling

Tertiary recycling, also known as chemical recycling, is a process that aims to convert
plastics into molecules (liquids or gas) that can be used to manufacture new polymers [26].
The products issued from chemical recycling are very profitable because they provide
products with minimum waste. This type of recycling gathers: Pyrolysis, gasification,
liquid-gasification, viscosity breaking, and catalytic cracking [25].

3.4. Quaternary Recycling

The last type of recycling is energy recovery or quaternary recycling, which aims
to generate energy, heat, or electricity from plastic scraps [20]. Plastic materials have a
very high calorific value after being burned compared to some oils. The burning of PSW
also generates volatile organic compounds (VOCx) and smoke. Combustion is a harmful
process that can be controlled by several techniques, such as acid neutralization flue gas
cooling [30]. But still, energy recovery remains the last resort to recycling plastics.
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4. Sources of Contaminations

In general, ballots obtained from sorting centers are composed of three components:
the desired polymer, polymeric contaminants, and some residual wastes. Contaminants
can be classified into two categories volatile organic contaminants (VOCs) and solid con-
taminants. This last can be a polymeric contaminant or another material (metal, wood. . . ).
In the next paragraph, structural inhomogeneities and residual impurities effects will
be detailed.

4.1. Structural Inhomogeneities

Compared to virgin polymers, recycled resin presents heterogeneity due to the attack-
ing environment during its lifecycle. Irreversible structural changes can happen at both
molecular and morphological levels. This modification can be induced mechano-chemically
or by irradiation. The oxidation of polymeric materials creates free radicals such as carbon-
centered (alkyl) and oxygen-centered (alkoxyl). This transformation is enhanced by the
formation of crosslinked structures caused by the radical recombination of low molecular
fragments [31].

4.2. Impurities

Impurities are present in high concentrations in post-consumed plastics. Some of them
are VOCs and depend on the polymer type. They come from additives added during the
polymerization, such as phenolic antioxidants, consumed during the stabilization process.
Furthermore, residues of titanium and aluminum polymerization generate colored salt.
Resin absorbs contaminants, and the migration of some products to the matrix of packaging
influences the quality of the material after being recycled [5].

5. Decontamination Techniques

In general, decontamination is performed by a degassing system or/and filtration
system that is linked to an extruder. The material is melted at a high temperature, which
generates VOCs (Volatile Organic Compounds) [32]. Numerous studies confirmed the
effect of extruder profile heating on the extrusion performance. The ratio of VOCs was very
high when heating reached 250 ◦C compared to 150 ◦C [33].

5.1. Degassing System
5.1.1. Without Chemical Agent

To remove VOCs contained in plastics, extruders are equipped with a devolatilization
system. The vacuum present inside the extruder helps to remove volatile particles. Several
studies highlighted the influence of using single and multi-degassing systems in a screw
extruder [34]. The concentration of the odor was measured by dynamic olfactometry. The
result shows that odor intensity decreases after one degassing step from 373 to 279 OU/m3

and after the third degassing step to 235 OU/m3 [35].

5.1.2. With Chemical Agent

The first type of chemical agents are adsorbent agents. They allow the control of
polymer emission during extrusion. The addition of 0.30% of adsorbent based on silicate
to HDPE virgin pellets reduces the amount of VOCs, and the intensities of odors also
decreased [36]. Furthermore, some studies show that the introduction of these particles
with post-consumer HPDE in the extruder decreases odor by 50% [34]. The second type of
chemical agent is a stripping agent. Their addition to the melt improves the devolatilization
of the VOCs contained in the polymer. Their role consists of creating a bubble inside the
matrix so the free volume in the melt increases, which helps the diffusion of VOCs in the
vapor so that they can easily quit the extruder through the degassing system [36]. The most
used stripping agents are water, nitrogen, and air, which enhance the devolatilization of
VOCs contained in polyolefins [37]. For example, the use of nitrogen with polyethylene
during extrusion reduces VOCs by 50% [38]. In the same context, some researchers devel-
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oped a mathematical model that showed that the uses of stripping agents such as methanol
toluene decrease the time required for degassing, and this number can increase by rising
solvent concentration. [39].

5.2. Filtration System

A screen changer is an important piece of equipment in a recycling line to remove
solid particles from the melt. The most used screens in the extrusion process are manual
and hydraulic. The common point between them is the interruption of the melt flow
while changing the screen [40]. Large-area filtration systems are available in single vessel-
discontinuous or dual vessel-continuous configurations, allowing to change screens without
interrupting production [40]. The different types of screens are listed in Table 3.

Table 3. Types of filtration systems.

Filtration System Advantages/Disadvantages References

Manual screen changers

It helps minimize labor and downtime for screen
changes during line shutdown. The compact
design eliminates the need for line disassembly
and uses a hand lever to manually index the slide
plate for screen change.

[40,41]

Hydraulic screen changer

It’s used in industry due to its wide range of sizes.
It can reach 450 mm. Single screen operation limits
filtration area, and the use of seals add to
maintenance and the probability of leakage. The
mesh size can reach 100 µm in some applications.

[40]

Rotary Disc type
filtration system

This system offers high pressure with a lower
residence time. System size can reach 250 mm and
offer constant pressure operation but relatively
high-pressure drops, with a lower residence time.
It is a highly automated system with sophisticated
controls and a backflush option. Leakage and disc
lockup concerns are related to the clamping force
of housing plates. It may require attention and to
adapt system setup.

[40]

5.3. Supercritical Fluid

After being extruded, the polymer can be decontaminated by a purifying process such
as extraction by supercritical fluid. Cristancho & Guzman [42] studied the supercritical
extraction of VOCs using CO2 and ethane. The process was performed with pressure in the
range (7.6–20.7) MPa and two temperatures, 36 and 60 ◦C (Figure 8).

The result showed that using ethane was as effective as multiple extractions using
CO2. At a low pressure (7.6 Mpa) and medium temperature 60 ◦C, the extraction with CO2
is effective. Higher pressure improves the extraction, but it will increase the operational
cost. Both supercritical fluid help to decrease VOC concentration, but CO2 remain safer and
environment friendly than ethane. For this reason, CO2 is the most used for the extraction
of VOCs from polyethylene pellets [42].
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6. Identification and Quantification of Contamination Rate

Contaminants can be classified into two categories: polymeric contaminants and
volatile organic contaminants (VOCs). To identify and quantify polymeric contaminants
present in the blends, Differential scanning calorimetry (DSC) and Fourier-transform
infrared spectroscopy (FTIR) can be used. Concerning volatile organic compounds, chro-
matographic methods are the most adapted.

6.1. Differential Scanning Calorimetry (DSC)

This method is adapted to determine the fraction of polymeric contaminants based on
the recording of heat exchange during heating and cooling. Nevertheless, this approach
is not suitable to identify LDPE/HDPE or even LLDPE/LDPE because of the similarities
between their microstructures and melting temperatures. For example, to identify the
fraction of HDPE in isotactic polypropylene, we can model the blend with a known ratio of
the virgin polymer. These blends are extruded and analyzed by DSC (Figure 9) [43].
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The presence of two melting peaks confirms the immiscibility of these polymers, which
has been reported by many other authors [44].

The melting enthalpies were calculated using a linear peak integration and the results
for each blend (Figure 10). This calibration curve can be used to determine the HDPE ratio
in the PP/HPDE blend.
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6.2. Fourier Transform Infrared Spectroscopy (FTIR)

This technique is used to quantify polymeric contaminants. Light is used to track
molecular translations, rotations, and vibrations. The absorbed energy is specific for each
chemical bond, and a spectrum is obtained that can be used as a fingerprint to identify
polymers [43]. The spectra of the different compositions of blend based on PP and PE are
shown in Figure 11.
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The calibration curve was plotted based on the ratio of the absorbance (integrated area)
of two peaks, 1168 cm−1 for methyl group in PP and a peak of 720 cm−1 for methylene in
HDPE (Figure 12). A1168/(A1168 + A720) was plotted as a function of PP content. The
calibration curve can be used to determine the composition of the PP/HDPE blend.
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6.3. Chromatography Analysis

For the chemical analysis of recycled plastics, gas chromatography coupled with mass
spectrometry (GC-MS) can be used to identify and quantify volatile organic compounds
(VOCs). To detect organic contaminants, gas chromatography (GC) is equipped with a mass
selective detector (MS). A capillary column with a film can be used for chromatographic
separation. The GC oven can be programmed from 40 to 180 ◦C at 15 ◦C min−1 and then
to 300 ◦C at 5 ◦C min−1, held for 12 min [45]. Organic contaminants can be identified
by consulting the mass spectra libraries. The quantification of the contaminants can be
performed by using external and internal calibration curves. The external standard method
creates a calibration curve for a standard sample, and unknown samples are quantified
using calibration curves. The internal standard method consists of adding a fixed amount
of internal standard substance to an unknown sample when creating a calibration curve
using a standard sample, and a calibration curve is created with the concentration ratio vs.
peak area ratio for quantification [46,47].

7. Mechanical Recycling: Cases Studies

Polyolefins (i.e., PE and PP), Polyethylene Terephthalate (PET), Polyamide (PA),
Poly(lactic) acid (PLA), and Polyhydroxybutyrate (PHB) are widely used in industry. These
materials will be developed to highlight the different degradation mechanisms and ways
to improve polymer properties.

7.1. Recycling of Commodity Polymers

Commodity polymers are used when higher properties are not required. This type of
material is used for packaging, food contains, and films. The most known are Polyolefins,
and their recovery is complex due to their similar densities, in particular High-density
polyethylene (HDPE) and low-density polyethylene (LDPE). Furthermore, the recycling
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process of this material decreases its thermomechanical properties. That’s why the incorpo-
ration of a stabilizer is needed to enhance the material’s properties.

7.1.1. Degradation of Polyolefins

The most used polyolefins are polyethylene (High-density polyethylene (HDPE),
Low-density polyethylene (LDPE)) and polypropylene (PP) [48].

• High-Density Polyethylene: HDPE (0.952 g/cm3) is a polymer with a high degree of
crystallinity, more rigid and less elastic than LDPE. During extrusion, two mechanisms
can happen: either chain scission or chain branching (crosslinking) and sometimes
both. Thermo-oxidation happens, and the dissolved oxygen in the melt reacts with
chains, leading to chain scission with stable carbonyl. In regions with low oxygen,
the chain scission produces two reactive chain ends. These macro radicals react to
produce branching with higher molecular weight [49].

• Low-density Polyethylene: LDPE is more branched than HDPE, and its structure
is susceptible to crosslinking and chain branching during extrusion. After several
extrusion cycles, the complex viscosity increases (Figure 13) due to crosslinking [50].
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• Polypropylene: PP has good optical and mechanical properties, which make it an
essential material for packaging [50]. Several studies investigated the degradation of
Polypropylene (PP). This material was introduced in a twin screw extruder. The screw
speed was fixed at 50 rpm. The extruder had five temperature control zones. After five
extrusion cycles at a high temperature (Die Zone: 270 ◦C), the molecular weight of PP
decreases due to chain scission, and consequently, the degree of crystallinity increases.
At lower temperatures (Die Zone: 240 ◦C), PP is stable in processing even after five
extrusions. Beyond five cycles and at high temperatures, chain scission happens, and
PP performance decreases [52].

7.1.2. Stabilizer Used in Polyolefins Recycling

• Polyethylene: To improve the thermomechanical properties of PEs and reduce thermo-
oxidation, it is necessary to introduce stabilizers during extrusion. The choice of
additives depends on their solubility and dispersion of the PE matrix [53,54]. Phenols
and phosphate-based antioxidants are both effective in stabilizing hydrogen bonding.
The use of both of them at the same time showed important results [55]. However, the
combination of hindered amine light stabilizers (HALS) with phenolic antioxidants
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negatively influences the stabilization of nitroxyl radicals produced from photooxida-
tion reaction with the phenolic groups. To overcome this problem, carbon black is used
as an inorganic UV stabilizer [56]. Moreover, sustainable antioxidants have been used,
such as caffeic acid, curcumin, and vitamin E, to prevent polymer degradation. For
instance, the addition of 12 wt % of coffee ground (CG) and 8 wt % of turmeric waste
(TW) increases the elongation at the break of LDPE (Figure 14) [55]. Moreover, the
addition of antioxidants combined with carbon black improves the thermomechanical
properties of PEs and protects them against thermo-oxidation during extrusion [50].
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• Polypropylene: To avoid degradation of polymer chains during extrusion, PP also
requires stabilization. Phenolic and hindered amine antioxidants can be used [57]. The
spherulitic structure of PP allows a uniform distribution of stabilizers through the
polymer matrix (Figure 15).
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Lignin, which is a phenolic compound, can be used to stabilize PP at concentrations
between 2–5 wt % (Figure 16). The lignin acts as an antioxidant and filler to increase the
rigidity of the polymer matrix [58].
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7.2. Recycling of Engineering Polymer

Engineering plastics are polymers that have higher mechanical and thermal properties
compared to other categories of plastics, which allow them to perform under mechanical
stress at high temperatures and to resist a chemical environment. Polyethylene Terephtha-
late (PET) and polyamides (Pa) are the most used engineering polymers [59].

7.2.1. Polyethylene Terephthalate PET

PET is a thermoplastic that has good thermomechanical properties and processabil-
ity [59]. Virgin PET has a high elongation at break values exceeding 80% and tensile strength
exceeding 35 MPa. These properties decrease after several recycling cycles (Figure 17).
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The reduction of the properties is related to the degradation of chains due to thermo-
oxidation [23]. The degradation of the chain induces the reduction of polymer molecular
weights, and the presence of polymeric contaminants enhances this degradation. For
instance, fewer traces of poly (vinyl alcohol) PVA or poly (lactic acid) lead to hydrolysis for



Waste 2023, 1 874

the polymer during extrusion [60,61]. A macroradical is formed and reacts with oxygen
due to the screw and heat of the extruder. Radical hydrogen abstraction can produce
hydroperoxide that decomposes to form two new radical species that can generate another
macroradical chain that enhances thermo-oxidation [62].

Several studies show that PET can be recycled three times. Beyond this limit, the
material properties decrease slowly due to the polymer size [63]. This result is related to
the relationship between molecular weight and polymer degradation. Larger polymer
chains enhance degradation [64]. The addition of additives during PET extrusion helps
to improve the mechanical properties of recyclate [65]. To reduce thermal oxidation, the
use of solid-state polymerization (SSP) avoids the formation of hydroxyl and carboxyl end
groups. Furthermore, chain extenders are efficient. They help repair the damage caused
by chain degradation. The most common chain extenders are epoxides, carboxylic acids,
and phosphates [65,66]. For instance, triphenyl phosphite (TPP) extends chains through
its carboxyl and hydroxyl terminal groups [65]. The addition of pyromellitic dianhydride
(PMDA) branching to PET promotes increased intrinsic viscosity (η*) and a decrease in
melting temperature [67]. The addition of an epoxide-based chain extender such as glycidyl
methacrylate (GMA) increases the Elongation at break and Izod impact of recycled PET in
reactive extrusion (Figure 18).
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7.2.2. Polyamides

Polyamides (PAs), known as Nylon, are one of the most important engineering poly-
mers. PA6s are widely used thanks to their versatility, competitive price, excellent strength
and stiffness, low friction coefficient, and high dimensional stability [69].

To recycle this polymer, secondary recycling is the most widely used method, but
during the extrusion process, PA6 is exposed to chemical change and degradation due
to heat and shear forces. This change impacts thermomechanical properties and hence
limits their use. To enhance the properties, chain extenders are used during the extrusion
of recycled PA6 to increase the molecular weight of the material [70–72]. Chain extenders
react faster with either amine or carboxyl end groups of polyamides and can link polymer
chains to increase the molecular weight [70]. Selin Celebi O, Guralp O [73] studied the
addition of several amounts of alternating copolymer of ethylene and maleic anhydride
(EMA), multi-functional epoxy-based oligomeric chain extender (EPO), polyester wax with
reactive caprolactam groups (CW) and dimeric 2,4-toluene diisocyanate (DTDI) in a twin
screw extruder. To evaluate the effect of the chain extender on the mechanical and physical
properties of rPA6, viscosity, and tensile tests were performed. The results showed that
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elongation at break increased at least by 4.4 times, even at a low rate of chain extender (0.3
wt %). Ethylene and maleic anhydride (EMA) showed higher elongation at break compared
to the other investigated chain extenders. The highest elongation at break was reached
with 1 wt % of EMA incorporation, which increased the elongation at break by 6.3 times
(Table 4).

Table 4. Tensile properties of rPA6 before and after adding chain extended [73].

Sample Elastic Modulus
(MPa)

Yield Strength
(MPa)

Elongation at Break
(%)

rPA6 2788 ± 211 60 ± 0.7 7 ± 2

rPA6-EMA-0.3 2810 ± 65 63.9 ± 0.5 38 ± 3

rPA6-EMA-0.5 2908 ± 112 62.4 ± 0.6 41 ± 2

rPA6-EMA-0.7 2871 ± 156 62.2 ± 0.5 42 ± 1

rPA6-EMA-1 2850 ± 119 61.7 ± 0.8 44 ± 1

rPA6-CW-0.3 2718 ± 111 62.5 ± 0.4 33 ± 2

rPA6-CW-0.5 2727 ± 76 62.7 ± 0.5 34 ± 2

rPA6-CW-0.7 2563 ± 81 60.6 ± 0.4 35 ± 3

rPA6-CW-1 2650 ± 61 60.6 ± 1.3 36 ± 2

rPA6-EPO-0.3 2700 ± 89 63.1 ± 1.7 31 ± 1

rPA6-EPO-0.5 2784 ± 141 62.2 ± 0.8 34 ± 3

rPA6-EPO-0.7 2712 ± 157 61.4 ± 1.2 37 ± 2

rPA6-EPO-1 2648 ± 105 60.7 ± 0.5 37 ± 2

rPA6-DTDI-0.3 2878 ± 154 63.7 ± 0.4 33 ± 3

rPA6-DTDI0.5 2805 ± 106 64.1 ± 0.5 36 ± 2

rPA6-DTDI-0.7 2710 ± 111 64.2 ± 0.4 40 ± 3

rPA6-DTDI-1 2729 ± 79 63.4± 0.4 43 ± 1

Elongation at break results is coherent with relative viscosity results. The addition of
EMA increased relative viscosity by 41% (Figure 19) because molecular weight is linked
to elongation at break and relative viscosity. Long branches cause an increase in chain
entanglement and chain straightening prior to break.
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7.3. Recycling of Biodegradable Polymer

Bio-sourced plastics are manufactured from renewable resources (microorganisms,
plants...). They are classed into three categories. The first type is called partially bio-based
(bio-based and nonbiodegradable), such as bio-based polyolefin. The second category is
bio-based biodegradable plastics such as Polylactic acids (PLA) or Polybutylene succinate
(PBS). The last one is conventional plastics that are biodegradable, such as Polycaprolactone
(PCL) or Polybutyrate adipate terephthalate (PBAT) [74]. The most used bio-based and
bio-degradable polymers are Poly(lactic) (PLA) and Polyhydroxybutyrate (PHB).

7.3.1. Acid Poly(lactic) (PLA)

Poly(lactic) acid is a bio-sourced material that presents an alternative to PEs. This
plastic is widely used in food packaging and 3D impressions. PLA is an aliphatic polyester
produced by the polymerization of lactic acid, which is obtained from the fermentation
of sugar [75]. However, the management of PLA waste has not yet been mastered. There
are several valorization techniques of PLA, such as composting chemical and mechanical
recycling. The first technique has some drawbacks related to the slow degradation of some
PLA, which will lead to the accumulation of Plastic waste [76]. Chemical recycling is more
expensive than using virgin bio-based plastics [77]. The mechanical is the most suitable
recovery technique for PLA due to its cost and lowest environmental footprint.

The recycling process of PLA has been cited in the literature in several studies [78,79],
and all show that during the extrusion of PLA, some oligomers appear due to hydrolysis,
such as hydroxyl and carboxyl [80]. In general, during recycling, the molecular weight
of PLA decreases due to chain scission [81,82]. Moreover, after 10 successive extrusion
cycles [79], the results show that the mechanical and rheological properties of PLA decrease
(Figure 20). Tensile stress and impact resistance varies slowly. At the same time, the MFR
(Melt flow rate) increases significantly after the third extrusion. This fact can be explained
by the increase of broken chains, which raise PLA fluidity [80].
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There are several ways to improve the thermomechanical and physical properties of
recycled PLA. The first technique is the annealing of recycled PLA, which is a thermal
treatment that consists of exposing extruded PLA to high temperatures (120 ◦C) for 6 h.
The goal of this treatment is to increase the material crystallinity, which has been decreasing
during extrusion. This treatment improves young modulus, flexure modulus, and yield
but will reduce the elongation at break [83]. The upgrade of PLA can be reached by the
addition of chemical agents. For instance, the incorporation of plasticizers helps to improve
the processability [81].

To prevent the problem of degradation during reprocessing, the incorporation of
antioxidants can minimize degradation and improve properties such as impact resistance,
flowability, or UV protection [84]. Furthermore, the use of chain extenders with PLA blend
improves the mechanical and rheological properties. For example, glycidyl methacrylate
enhances mechanical, thermal, and rheological properties due to the stabilization of molar
mass by phase dispersion [85]. Also, the use of a chain extender based on phosphites
increases the molar mass and complex viscosity of recycled PLA, Meng Xin [86] studied
the complex viscosity of raw PLA, virgin PLA, and PLA stabilized by different Phosphite
chain extender PLA-TPP (Triphenylphosphite) which is PLA stabilized by TPP chain
extender, PLA-168 which stabilized by Irgafos 168 chain extender and PLA-M46TBPP is
PLA stabilized by M46TBPP chain extender (Figure 21: Complex viscosity of different
PLA [86]).
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The curves of complex viscosity show that all complex viscosity values of PLA sta-
bilized by phosphites are higher than those of virgin PLA at every angular frequency.
However, the complex viscosity values of PLA-TPP at every angular frequency are the best.

7.3.2. Polyhydroxybutyrate (PHB)

Polyhydroxybutyrate (PHB) is a member of the Polyhydroxyalkanoates (PHAs) fam-
ily. They are bioderived aliphatic polyesters obtained by the polymerization of hydroxy
alkanoic acids, which are produced from the fermentation of sugar and lipids [87]. Al-
though PHB is not as widely used as PLA, they are a very interesting class of biobased and
biodegradable polymers, and their production capacity is expected to triple in the next five
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years [88]. Several studies investigated the mechanical recycling of PHB. In one of these
studies, the results show that tensile strength decreased after only two extrusions, and the
degree of crystallinity increased due to chain scission (Figure 22).
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Since PHB is expensive and does not have good mechanical properties, it is generally
blended with other polymers or used as an additive [77]. X. Yang pointed out in his
research [90] that degraded PHB could be used as a plasticizer of PLA. Initially, PHB was
thermally degraded in an extruder at 220 C to generate oligomers with functional groups.
This last will be grafted in the main chain of PLA through a second extrusion (Figure 23).
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Figure 23. Schematic Presentation of the Thermal Degradation of PHB to Oligomers [90].

The results of PLA with 20% grafted PHB increased the elongation at break by 66. In
parallel, WAXD measurements showed that grafting significantly increased the crystalliza-
tion of PLA [90].

7.4. Summary of Degradation Mechanism of Common Polymer

The degradation mechanism and ways to upgrade the polymer covered in the previous
section are listed in Table 5.
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Table 5. Degradation mechanism of common polymer.

Polymer Degradation Mechanism Additives Main Effects

Commodity (Polyolefins)

- Chain scission
- Thermo-oxidation

- Phenolic and hindered amine
antioxidants

- Agro-waste antioxidants:
Coffee ground, turmeric waste

- Carbon black (CB)

- The addition of 12 wt % of
coffee ground (CG) and 8
wt % of turmeric waste
(TW) showed elongation at
the break of LDPE [55].

Engineering (PET, PA)

- Chain extender: Epoxide,
Ethylene, and anhydride
maleic (EMA)

- During reactive extrusion
of PET, The addition of 20%
of glycidyl methacrylate
(GMA) increases by 150%
Elongation at break and
Izod [68].

- The addition of 1 wt % of
EMA during PA extrusion
increases the relative
viscosity of the polymer by
41% and increases
Elongation at the break by
6.3 times [73].

Biodegradable (PLA, PHB) - Phosphite chain extender

- The addition of a chain
extender based on
phosphite such as
Triphenyl phosphite (TPP)
increases the molar mass
complex viscosity of
recycled PLA.

8. Conclusions

Polymer recycling can be performed using either mechanical or chemical processes.
Mechanical recycling involves processes such as shredding, melting, and reprocessing
plastics into new products. Unlike the chemical recycling process, mechanical recycling
requires nearly no chemical solvents or byproducts, and it is, by far, the simplest and most
affordable way to recycle plastics. It requires widespread, simple, well-established, less
energy-consuming, and greenhouse gas emission equipment.

Mechanical recycling faces two main challenges: material degradation during re-
processing and the purity, regularity, and homogeneity of polymers to be recycled. The
degradation phenomenon can be overcome by using suitable additives such as chain exten-
ders and antioxidants, while the continuous improvement of sorting and decontamination
technologies leads to recycled polymers with comparable properties as virgin polymers
and makes them suitable for a wide range of applications.

In this paper, the mechanical recycling of commodity, engineering, and bio-based
polymers is reviewed in detail to give researchers the state of the art of what has been done
in the field of polymer mechanical recycling. The ultimate objective of this review paper is
to convince readers that mechanical recycling is an easy and effective way to quickly reduce
the amount of plastic waste going to landfills and incineration, environmental pollution,
and resource depletion associated with producing new polymers.
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