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Abstract: We introduce a model that derives a metric to answer the question: what is the expected
gain of a staker? We calculate the rewards as the staking return in a Proof-of-Stake (PoS) consensus
context. For each period of block validation and by a forward approach, we prove that the interest
is given by the ratio of the average staking gain to the total staked coins. Some additional PoS
features are considered in the model, such as slash rate and Maximal Extractable Value (MEV),
which marks the originality of this approach. In particular, we prove that slashing diminishes the
rewards, reflecting the fact that the blockchain can consider stakers to potentially validate incorrectly.
Regarding MEV, the approach we have sheds light on the relation between transaction fees and the
average staking gain. We illustrate the developed model with Ethereum 2.0 and apply a similar
process in a Proof-of-Work consensus context.
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1. Introduction

Due to the high energy costs implied by Proof-of-Work (PoW) consensus, Proof-of-
Stake (PoS) has increasingly gained the attraction of investors [1,2] mainly for technological
reasons [3]. Instead of finding a nonce by the usual trial-and-error process, thus requiring
computational power, a validator, i.e., a staker, is investing an amount of underlying cryptos
to contribute to the blockchain [4–6]. Contribution could be the validation of history, or of
the most recent transactions to form the new coming block. In the latter case, the consensus
pseudo-randomly chooses one staker among the pool of stakers, and the probability of
selection is equal to the proportion of investment [2]. As an example, if there are three
stakers, A, B and C, such that A and C are investing each through a proportion of 1/4,
then B is twice as likely to be selected by the pseudo-random process than A and C,
who have an equal probability of being selected. It is worth pointing out that a capping
could be applied: stakers cannot invest above a threshold, corresponding to the maximum
investment possible. They also cannot earn more than a given amount. This ensures
diversification and avoids the presence of whales in the staking pool.

It is then quite logical that investors are looking for a standard modeling of the expected
return they would earn in the future by staking some coins in a PoS blockchain and
positioning themselves as stakers . Thus, from a staker point of view, the investment, which
we name staking in our context, consists of depositing some coins, and, in exchange, the
investor is expected to gain some reward due to the blockchain validation by themselves.

To the best of our knowledge, there has been some very little focus in the academic
literature on the issues around modeling staking rewards. The reason appears simple to us:
each PoS blockchain has its own reward rules, and it seems difficult to propose a general
framework of rewards. However, [7] provides a dynamical model of the staking economy.
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In particular, the staking rewards follow a dynamic process through the Hamilton–Jacobi–
Bellman equation and are a function of the aggregate amount of staked coins. The response
of staking ratios due to stochastic impulse are shown, and statistics reveal the range for the
staking reward rate to be between 0.02% and 75%. Slashing is mentioned but neglected.
Ref. [8] exposes some arguments in favor of PoS being a fixed income product, and the
main finding is that the PoS ‘yield’ should remain stable in time. In fact, we think that
the stability of the reward rate should be effective for blockchains which are sufficiently
robust against rule changes and attacks. Ref. [9] defines the block reward as the difference
between the cryptocurrency supply of one block and that of its previous one. They then
use reward as a parameter to compare the number of investors with the one when there is
no reward. Ref. [10] develops a model which affects the dynamics of investor wealth. Ref.
[11] provides the optimal reward design at equilibrium in the presence of malicious agents.

Regarding the transaction costs topic, [12] estimates transaction costs in an equilibrium
framework (not necessarily in the crypto area). Ref. [13] provides the optimal transaction fee
so that a transaction is stacked in the Ethereum blockchain. Ref. [14] provides LSTM models,
attention models, and CNN-LSTM to forecast gas price. To the best of our knowledge, no
statistical analysis has been performed to capture the distribution of transaction fees in
a PoS context. This kind of analysis is needed (though in a non-exhaustive way), as our
model is making an assumption of the distribution.

It is worth noting that, generally speaking, existing models use the staking rate as a
parameter to characterize the dynamics of a PoS blockchain. We have not seen specific
modeling for proper estimation of the staking rate in a standard way for the industry
(including especially slashing effects), which is the purpose of this paper.

2. On the Staking Reward Calculation

Our approach for modeling staking rewards, in this article, is based on a comparison
of staking with a cash-flow discount system applied to a floating-rate note model: an investor is
investing an amount of cash to earn some expected interest in the future. Mathematically,
staking should correspond to a floating-rate process (see, for example, [15,16]), where the
future returns may vary, and a blockchain which can default if it is not sufficiently active,
i.e., if there is not enough fluidity in its maintenance and construction. If the number of
validators, users, and staked coins increase with time (which is the case for Ethereum;
see [1]), it seems reasonable not to consider the risk of default for a healthy blockchain
(in other words, a healthy blockchain may be considered triple-A rated from standard
notations). However, there are some differences between a PoS consensus and a cash-flow
discount model’s investment: the ‘savers’ need to make sure they are performing the
validation correctly, as, otherwise, they might take the risk of being slashed, which is being
excluded for a certain amount of time, with some proportion of staked coins burnt. In
addition, the Maximal Extractable Value (MEV) (see [1] for an introduction, for example, to
the MEV-boost algorithm) is an important aspect of the PoS consensus: the transactions to
be stored in the coming block are classified according to the amount of their transaction
fees so that stakers extract maximal gain. Drawing a parallel with TradFi, the MEV may be
viewed as the transaction costs for investing in traditional capital markets.

The investment due to staking implies a rate of gain for the staker. Fundamentally,
a rate is the amount charged by the lender to the borrower to lend money. A reward
is an incentive given in recognition for a service, effort, achievement, or a mechanism
to motivate participation. When it comes to a blockchain, be it PoW, PoS or any other
consensus mechanism, the above considerations still remain. For example, the miners
spend their time and energy to mint new coins in the hope of receiving compensation for
their effort, while stakers invest cash to earn an expected reward. Below are some of the
benefits of mining and/or staking:

• Mining rewards: Miners receive newly minted coins for successfully validating and
adding new blocks to the blockchain. The miners are also compensated for protecting
the network from spam attacks.
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• Staking rewards: In addition to the rewards mentioned above, the stakers receive
opportunities to vote on protocol upgrades (e.g., staking reward amount) and changes
in addition to partaking in the overall governance of the blockchain.

Regarding voting on protocol upgrades, blockchains are designed to be adaptable,
allowing for upgrades and improvements to the protocol overtime. These upgrades can
include changes to consensus algorithms, security features, or the addition of new function-
alities. Stakers often get to vote on these and other changes to the protocols, which might
address issues such as security vulnerabilities, scalability improvements, or the addition of
new features.

From a blockchain viewpoint, through this mechanism of rewards, the consensus
encourages participation, which in turn helps it have a broader reach and appeal. Through
this procedure, the blockchain achieves coins distribution: coins get distributed to the
wider community, helping enlarge the stakeholder base and reducing the concentration of
coins in the hands of a few. In addition, increasing the number of agents increases security
of the blockchain.

Overall, staking rewards play a critical role in fostering network participation, securing
the blockchain network, and promoting the growth and adoption of the underlying digital
asset. Nonetheless, a general and standard model for a staking rate has become an industrial
need as discussed above. Investors are mostly interested in an estimation of their Annual
Percentage Yield (APY) as stakers. At a given time, if r is the staking rate and f is the yearly
frequency of reward, the APY is given by

APY =

(
1 +

r
f

) f
− 1. (1)

It is worth mentioning that the specific mechanisms for determining the rewards,
be it mining or staking, can vary significantly between different networks. Some may
have fixed or predictable rates, while others may use more dynamic or adaptive methods.
One may compare these analogies with the activities of central banks within closed and
opened economies. Thus, some models developed for the purpose of TradFi help determine
the value of the rates. These models are based on fixed-income valuation models, more
specifically, cash-flow discount valuation models. The reward that the validator receives
should broadly compensate for (i) effort towards validating the transactions; (ii) risk for
staking in the case of the PoS consensus mechanisms; and (iii) demand and supply for the
validation services.

Our approach to calculating the staking rate is therefore to use cash-flow discount
mathematics (see Section 4.2) because one can see a staker as an investor investing money
in a fixed income security, receiving expected gains from the blockchain in the future at
validation times. In fact, if the investor is selected by the blockchain, then the gain is
positive, and if not, it is zero, provided the staker is not slashed and has no particular
reason to process to get their money back from the staking pool. This feature could be
viewed as an investment in a security where the issuer will not pay the interest if there is a
violation of the validation rules. Practically, the idea of our model is that the calculated rate
below should be updated each time a new block is added to the blockchain. This gives a
time series of rates which reflects the gain investors earn over time (see Section 4.5). It is
worth stressing that our approach is given when we calculate the rate: from one moment
to another, data are changing, and it is a dynamic rate of return which we can calculate. In
addition, it is also worth stressing that the gain should consider MEV as well. This is what
we do in this paper.

However, such an approach shall be more controversial in a PoW context: we propose
an ‘equivalent’ cash-flow discount approach to PoW blockchains, and derive a working rate,
whose final expression is structurally very close to the staking rate. In the PoW context, the
probability for a miner to put their candidate block but not the others needs to be calculated
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(for a study of the mining probability laws, see [17]; for a mathematical introduction to
(PoW) blockchain, see [18]).

The rest of this paper is organized as follows. Section 3 presents the results. Section 4 ex-
plains the core of our model, and first introduces the Staking Probability Space
(Section 4.1), which validates the settings and allows the probability calculation; then
we derive the staking rate in Section 4.2 through a very simple floating-rate note model.
The following Sections 4.3 and 4.4 deal with two important staking addons to the simple
floating-rate note model, which make the staking model more exhaustive and exclusive
to a staking context: Section 4.3 introduces the slash rate into the model, while Section 4.4
adds the MEV. Section 4.5 applies the developed concept to Ethereum 2.0. We then ap-
ply in Section 4.6 the cash-flow discount models model in a PoW context. We discuss the
assumptions of the methodology and the results in Section 5 to finally conclude in Section 6.

3. Main Results

In this section, we state the three main results of this paper. Section 4 elaborates
on rigorous proofs for these statements, while Section 5 discusses them as well as the
assumptions, heuristically mentioned here.

Result 1 (Claim 1). At a given time, if the expected staking reward is g (independent of a specific
staker and block index) and the number of total staked coins is χ, then the staking rate r is given by:

r =
g
χ

.

Result 2 (Claim 2). At a given time, if the expected staking reward is g (independent of specific
staker and block index), the number of total staked coins is χ, the slash rate (independent of specific
staker and block index) is s, and the proportion of burnt staked coins in the case of slashing is q, then
the staking rate r is given by:

r =
g
χ
(1 − s)2 − qs.

Result 3 (Claim 3). At a given time, when the transaction fees follow independent and identically
distributed exponential laws of parameter θ ∈ R∗

+ and they are submitted to an MEV process with
m transactions selected for the block while n ≥ m transactions are queuing, then the average total
transaction fee reward E(Tm) is given by:

E(Tm) = θ

(
m − 1 +

n

∑
j=m

m
j

)
.

4. Formal Derivation of the Staking Rate

We introduce the following notations.

• N = {0, 1, 2, . . . } and N∗ = N \ {0} = {1, 2, . . . };
• The discrete set J1, nK is {1, 2, . . . , n}, for any n ∈ N∗;
• R is the set of real numbers and R∗

+ = {x ∈ R, x > 0};
• 1X is the indicative function associated with the event X (i.e., it is 1 if the event X

occurs, and 0 otherwise).

4.1. Probabilistic Definition of Staking

We suppose there are N ∈ N∗ stakers in total. The ith validator, for i ∈ J1,N K, has
deposited an amount of Xi ∈ R∗

+ coins. This staker is depositing Xi ∈ R∗
+ coins so that

they can validate the next block. We assume they start investing at time t = t0 := 0 (this is
considered to be at present—thus, in the following, the variable t represents a forward time),
and the choices of a validator occur at times t = t1 > 0, then t = t2 > t1, etc. Thus, we
define (tn)n∈N∗ as the increasing sequence of validation times (we assume that validation
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coincides with reward and there is selection of one unique staker per round). Without any
loss of generality, we set tn = n for all n ∈ N.

For each n ∈ N∗, the ith staker is selected, or not. Thus, if S means they are selected
and S̄ means they are not, we define the sampling set as

Ω = {S, S̄}N∗
. (2)

Thus, an element ω of Ω writes as

ω = (ω1, ω2, . . . ), ωn ∈ {S, S̄} ∀n ∈ N∗. (3)

Let C be the algebra enhanced by all elementary cylinders C of the form

C = {ω ∈ Ω, ωi1 = s1, . . . , ωin = sn for n ∈ N∗, 0 < i1 < · · · < in, sj ∈ {S, S̄} ∀j ∈ J1, nK}. (4)

The σ-algebra enhanced by C is noted T . The space (Ω, T ) is similar to the Bernoulli
one. Thus, we can construct (e.g., [19,20]) a unique probability measure P such that
P(ωn = S) = p and P(ωn = S̄) = 1− p, for any n ∈ N∗, for some p ∈ [0, 1]. The probability
space (Ω, T ,P) is the space of our interest.

Therefore, we can set the random variable Wi,n defined on (Ω, T ,P) with values in
{0, 1}, and such that

Wi,n =

{
1, with probability p
0, with probability 1 − p

∀n ∈ N∗, (5)

so that Wi,n is a Bernoulli random variable describing if the staker i is selected, with
probability p, or not, with probability 1 − p.

4.2. Staking Rate Derivation

Given the investment of Xi, we set

p =
Xi
χ

, (6)

where χ =
N
∑
j=1

Xj (interpreted as the total staked coins). Note that we do not necessarily

assume that Xi is bounded: the consensus can avoid (depending on the blockchain) any
single staker having too much power so that p cannot exceed a given number in [0, 1].

Let n ∈ N∗. At time tn, the staker gain is given by Gi,n. Then, Gi,n > 0 if and only if
the staker i is selected (otherwise, Gi,n = 0). We assume that Gi,n does not depend on i and

n. We write Gi,n
def
= 1{Wi,n=1} g, where g is the expected reward of any staker at any added

block, and is a measurable quantity from the blockchain.
The whole system could be seen as a two-counterparty entity:

1. The staker i;
2. The blockchain pool, regularly rewarding staker i.

See Figure 1.
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Figure 1. Staking gains (blue arrows) of an investor who is staking coins (red arrow representing
deposit), i.e., committing some of their cryptocurrencies to support its validation and construction. In
this case, the staker is rewarded at times t1, t2, t4, t5, and t7.

If today the rate of the gain Gi,n to be received at time tn is given by r ∈ R∗
+, the expected

present value of this gain is E(Gi,n)/(1 + r)tn .

Definition 1. From the ith staker viewpoint, the total investment Pi is Pi = −Xi + Pi, where Pi
represents the expected present value for the staking investment. The staking rate is the rate r,
which makes the total investment Pi equal to 0.

The rate r makes sense from both party viewpoints when Pi = 0 since none of the two
parties will commit if at least one loses money immediately.

Claim 1. Under the above notations and assumptions, the staking rate r is given by:

r =
g
χ

(7)

Proof. The present value Pi for the staking investment after engaging in such an exchange
with the blockchain is given by:

Pi =
+∞

∑
n=1

E(Gi,n)

(1 + r)tn
. (8)

We have:

E(Gi,n) = E
(

1{Wi,n=1} g
)
= P(Wi,n = 1) g = p g =

Xi
χ

g. (9)

Here, g is the expected gain staker i is looking for. From this equation, we therefore have:

Pi =
Xi
χ

g
r

. (10)

We finally obtain the staking rate by using the equation Pi = −Xi + Pi = 0. We have:

r =
g
χ

. (11)

This rate does not depend on i, thus giving its universal characteristic to concern any
investor’s interest.
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4.3. Slash Rate Inclusion

We amend the model developed above with the inclusion of the slash rate, which is the
percentage of stakers slashed because they have not respected validation conditions. Still
focusing on staker i, we introduce the slash rate s (we assume it is independent of i), as the
probability for staker i to be slashed between two consecutive blocks (typically the previous
one at present and the new coming one), that is to be banned from the staking pool due to
not following the required validations (they may come back in the future, which means, for
simplicity, that they would have to start from the beginning). Thus, we are assuming that,
once a staker is slashed, they recover their coins (minus a burnt proportion) and are not
stakers anymore (see Section 5 for a discussion of this assumption). In practice, if the staker
i is slashed, then a proportion q ∈ [0, 1] of their staked coins is burnt, resulting in Xi(1 − q)
retrieved staked coins.

Let Ni be the discrete random variable defined on (Ω, T ) with values in N∗ ∪ {+∞},
which is the time for staker i to be slashed. We introduce once more the gain
Gi,n = 1{Wi,n=1} g as in Section 4.2.

In addition, we assume that the slashing process is memoryless: the slashing process
for staker i can occur at any time in the process and independently of its history. In practice,
this means that the slash menace occurs between two consecutive blocks, no matter their
respective place in the blockchain, and with equal probability. Since the time Ni to be
slashed is discrete, the Memoryless Property Theorem (see [21]) implies that Ni follows a
geometric random law.

We can set the random variable Si defined on (Ω, T ,P) with values in {0, 1}, and
such that:

Si =

{
1, with probability s,
0, with probability 1 − s,

(12)

so that Si is a Bernoulli random variable describing if the staker i is slashed, with probability
s, or not, with probability 1 − s.

We introduce the random variable Si,n defined on (Ω, T ,P) with values in {0, 1}, and
such that the event {Si,n = 1} is that staker i is slashed at time tn. We therefore have:

P(Si,n = 1) =

(
n−1

∏
m=1

P(Si = 0)

)
× P(Si = 1) = (1 − s)n−1 s, n ∈ N∗, (13)

with the convention
0

∏
m=1

P(Si = 0) = 1. The first equality is due to the memoryless property.

Finally, it is worth pointing out that we now let:

P({Wi,n = 1}|{n < Ni}) =
Xi
χ

. (14)

Claim 2. Under all above notations and assumptions, the staking rate is given by:

r =
g
χ
(1 − s)2 − qs (15)

Proof. Considering slashing, the gain becomes 1{Si,n=0} × Gi,n. Equation (8) becomes

Pi = E
(

Ni

∑
n=1

1{Si,n=0} × Gi,n

(1 + r)n +
Xi(1 − q)
(1 + r)Ni

Si,Ni

)
. (16)

Since Si,Ni = 1 as surely by definition, and Si,n = 0 as surely for all n < Ni, and since
Gi,n = 1{Wi,n=1} g, we then have:
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Pi = E
(

Ni−1

∑
n=1

1{Wi,n=1}
(1 + r)n g +

Xi(1 − q)
(1 + r)Ni

)
= E

(
Ni−1

∑
n=1

1{Wi,n=1}
(1 + r)n

)
g + Xi(1 − q)E

(
1

(1 + r)Ni

)
. (17)

The first term in Equation (17) is calculated below, with the trick that
∑Ni−1

n=1 · · · = ∑+∞
n=1 . . . 1{n<Ni}, and we have:

E
(

Ni−1

∑
n=1

1{Wi,n=1}
(1 + r)n

)
g = E

(
+∞

∑
n=1

1{Wi,n=1} × 1{n<Ni}
(1 + r)n

)
g.

Since
E
(
|1Wi,n × 1{n<Ni}|

)
≤ 1 < +∞,

and r > 0, we apply the Dominated Convergence Theorem (see [22]), and we permute the sum
and the mathematical expectation:

E
(

Ni−1

∑
n=1

1{Wi,n=1}
(1 + r)n

)
g =

+∞

∑
n=1

1
(1 + r)n E

(
1{Wi,n=1} × 1{n<Ni}

)
g.

In addition, we note that:

E
(

1{Wi,n=1} × 1{n<Ni}

)
= E

(
1{Wi,n=1}∩{n<Ni}

)
= P({Wi,n = 1} ∩ {n < Ni}).

The event {Wi,n = 1} ∩ {n < Ni} represents the fact that staker i is not slashed at time
n and has been selected to validate the block in construction at time tn. Using Equation (14),
we have:

P({Wi,n = 1} ∩ {n < Ni}) = P({Wi,n = 1}|{n < Ni})P(n < Ni) =
Xi
χ

P(n < Ni).

Moreover, we have:

P(n < Ni) =
+∞

∑
i=n+1

(1 − s)is = (1 − s)n+1,

and, hence,

E
(

Ni−1

∑
n=1

1{Wi,n=1}
(1 + r)n

)
g =

Xi
χ

g
(1 − s)2

1 + r

+∞

∑
n=0

(
1 − s
1 + r

)n
=

Xi
χ

g
(1 − s)2

r + s
.

Regarding the second term in Equation (17), we have

Xi(1 − q)E
(

1
(1 + r)Ni

)
= Xi(1 − q)

+∞

∑
k=1

(1 − s)k−1 s
(1 + r)k = Xi(1 − q)

s
r + s

.

Regrouping the terms in Equation (17), and using the equation Pi = 0, we deduce
Equation (15).

4.4. MEV for Estimating the Reward

The estimation of the set of transaction fees is an important aspect to consider for the
estimation of the expected gain g for a staker. In this section, we develop an addon model
to shed light on the implication of the Maximal Extractable Value to the estimation of g.

We consider the random variable F representing the transaction fee valued per transac-
tion. A reasonable assumption is that the law of F follows a memoryless process: if (Fi)i∈I⊆N∗

is a chronological sequence of transaction fees (each Fi corresponds to transaction i in the
memory pool), then it is an independent sequence. It is not entirely true though: a user
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could check the average transaction fee and pay a competitive fee by indeed referring to the
market. However, we assume that the memory pool is mainly constructed from a set of
randomly selected numbers according to a given distribution.

Since F is a continuous positive random variable and possesses the memoryless
property, then (see [18] or [21]) F follows an exponential law:

F ∼ Exp(θ),

where θ = E(F) is the average transaction fee (available on-chain). See Section 5 for a
discussion on this assumption.

The Maximal Extractible Value (MEV) (see, for example, [1] for an introduction)
consists of a process which organizes the transactions to maximize the profit of a staker, in
terms of transaction fees. Bearing this in mind, a simple model for MEV can be expressed
by the means of order statistics (see, for example, [23]).

More specifically, suppose we have a list of n ∈ N∗ transactions queuing in the memory
pool. Only m ∈ J1, nK transactions will be chosen to be in the official list of transactions
stored in the coming block. Consider the associating sequence (Fi)i∈J1,nK of transaction fees.

Definition 2 (MEV process). Let n ∈ N∗ and Sn be the group of permutations of the set J1, nK.
An MEV process consists in choosing a permutation σ ∈Sn such that Fσ(1) ≥ · · · ≥ Fσ(n), and
classify the transaction fees as such.

This defines a sequence (Fσ(i))i∈J1,nK of non-increasing transaction fees random vari-
ables. We rename this sequence (F(i))i∈J1,nK. It is worth stressing that this is the sequence of
the order statistics associated with the random variable F. The total transaction fee reward Tm
is therefore given by:

Tm =
m

∑
i=1

F(i), m ∈ J1, nK. (18)

Claim 3. The average total transaction fee reward from an MEV process is given by:

E(Tm) = θ

(
m − 1 +

n

∑
j=m

m
j

)
(19)

It is worth pointing out that E(Tm) is an essential component of g.

Proof. The joint probability distribution function for the family (F(1), . . . , F(n)) is given by:

f(F(1),...,F(n))(x1, . . . , xn) = n!

(
n

∏
i=1

fF(xi)

)
1{x1>···>xn}.

Indeed, first of all, without any loss of generality, we can assume that F(1) > · · · > F(n)
since the contrary event, i.e., {∃j ∈ J2, nK F(j) = F(j−1)}, has 0 probability.

Next, note that the compounded function

ψ : Sn → (Rn)R
n
, σ 7→

(
(x1, . . . , xn) 7→

(
xσ(1), . . . , xσ(n)

))
is a C1 diffeomorphism. The Variable Change Theorem (see [22,23]) leads to
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f(F(1),...,F(n))(x1, . . . , xn) = ∑
σ∈Sn

f(F1,...,Fn)(xσ(1), . . . , xσ(n)) |det ψ(σ)−1| 1{xσ(1)>···>xσ(n)}

= ∑
σ∈Sn

fF1(xσ(1)) . . . fFn(xσ(n))× 1 × 1{xσ(1)>···>xσ(n)}

= ∑
σ∈Sn

fF(xσ(1)) . . . fF(xσ(n)) 1{xσ(1)>···>xσ(n)}

= ∑
σ∈Sn

fF(xσ(1)) . . . fF(xσ(n)) 1{xσ(1)>···>xσ(n)}

= ∑
σ∈Sn

(
n

∏
i=1

fF(xi)

)
1{xσ(1)>···>xσ(n)} =

(
n

∏
i=1

fF(xi)

)
∑

σ∈Sn

1{xσ(1)>···>xσ(n)},

hence the equation above. The reason that |det ψ(σ)−1| = 1 is because the matrix of ψ(σ)−1

is a permutation matrix.
Since F ∼ Exp(θ), the above equation gives

f(F(1),...,F(n))(x1, . . . , xn) =
n!
θn e−

1
θ ∑n

i=1 xi 1{x1>···>xn}.

We now introduce the variable change

Hi = F(i) − F(i+1) if i ∈ J1, n − 1K

Hn = F(n)

Note that Hi > 0, as surely, for any i ∈ J1, nK. We want to derive the law of Hi.
Let

Ψ(x1, . . . , xn) = (h1, . . . , hn) = (x1 − x2, . . . , xn).

Ψ is also a C1 diffeomorphism whose inverse is

Ψ−1(h1, h2, . . . , hn) = (x1, x2, . . . , xn) =

(
n

∑
i=1

hi,
n

∑
i=2

hi, . . . , hn

)
.

The Jacobian of Ψ−1 is

JacΨ−1 =

∣∣∣∣∣∣∣
1 . . . 0
...

. . .
...

1 . . . 1

∣∣∣∣∣∣∣ = 1.

Since
n

∑
i=1

xi = h1 + · · ·+ (n − 1)hn−1 + nhn =
n

∑
i=1

i hi,

then, by the Variable Change Theorem, we have

f(H1,...,Hn)(h1, . . . , hn) =
n!
θn e−

1
θ ∑n

i=1 ihi 1{h1>0,...,hn>0}.

This proves that the family (Hi)i∈J1,nK is composed of mutually independent random
variables and

Hi ∼ Exp
(

θ

i

)
, ∀i ∈ J1, nK.

Now, let

Tm =
m

∑
i=1

F(i), m ∈ J1, nK
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be the total transaction fees reward. We want to calculate the mathematical expectation of
Tm. We have:

F(i) =
n

∑
j=i

Hj, ∀i ∈ J1, nK.

Thus,

E(F(i)) =
n

∑
j=i

E(Hj) = θ
n

∑
j=i

1
j
,

and, therefore, we have:

E(Tm) = θ
m

∑
i=1

n

∑
j=i

1
j
= θ

(
m − 1 +

n

∑
j=m

m
j

)
.

In particular, we have

E(Tn) = nθ,

E(T1) =
n

∑
j=1

θ

j
.

4.5. The Ethereum 2.0 Staking Rate

This section aims at providing an estimation of the annual percentage yield (APY)
for the Ethereum blockchain. At the time of writing, the APY is empirically estimated at
around 4.5% (see [1]—in accordance with the May 2023 rate). The above model allows to
find an APY with the same magnitude order.

4.5.1. Rate Estimation

In May 2023, the average transaction fee per transaction for the Ethereum blockchain
is θ = ETH 0.0007, while m = 200 are processed for each block on average, and there
are roughly n = 1000 transactions queuing in the memory pool (see, for example, [1]).
Assuming this occurs every 15 s (average time to have a block when Ethereum was PoW),
the average distributed reward in a day is

E(Tm) = 0.0007 ×
(

200 − 1 +
1000

∑
j=200

200
j

)
× 60 × 60 × 24

15
≈ 2102.64 ETH.

Assuming MEV represents the main revenue stream, we can set g ≈ E(Tm) or g ≈
ETH 2102.64 per day.

The total amount of staked coins at the time of writing is χ ≈ 19, 000, 000 (on May
2023); hence, the rate estimation gives

r =
g
χ
≈ 2102.64/19, 000, 000 ≈ 0.011% ETH per staked coin per day.

4.5.2. Electricity Cost Addon

According to [1], the annualized energy consumption of the Ethereum 2.0 blockchain
is of 0.0026 TWh (on May 2023). At this time, a reasonable magnitude order for the US
electricity price is 10−1 USD/kWh. This magnitude order looks conservative, for example,
in the UK or in France.

This makes 0.0026 × 109 × 10−1 = $260, 000 for one year. The staking cost is thus
−260, 000/365.25 ≈ −$711 ≈ ETH −0.394 per day, highly negligible when compared with
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g (see Section 4.5.1). It is worth noting that this cost is an overestimation, as it is an overall
cost of maintaining the full blockchain.

According to this approach, the electricity cost is not going to negatively contribute to
the rate.

4.5.3. Annual Percentage Yield

Using Equation (1) for the APY estimation, we have

APY = (1 + 0.011%)365.25 − 1 ≈ 4.1%.

The above model allows estimating the current APY for Ethereum. It is worth pointing
out that the Ethereum capacity to increase the number of transactions per blocks will
significantly increase the APY.

4.5.4. Implementation

We show the evolution of the APY with respect to time in Figure 2, from March 2023
to May 2023. The needed data (mainly g and χ) are the one on-chain.

Figure 2. Annual percentage yield with respect to time. The process should be continuous and can be
updated each time a block is added to the blockchain.

In Figure 2, the APY can vary abruptly based on the economic environment. Here,
for instance, the spikes might relate to the US banking crisis—Silicon Valley Bank and
Signature Bank—in March. This might be because the investors were looking to move their
funds out of relatively higher-risk assets, especially since both these banks were heavy
lenders to the technology sector, thus the spill-over effect. This assumption would need
further testing to be properly validated and is out of the scope of this article. However,
the main reason for such spikes observed in Figure 2 is likely due to the Shanghai release
allowing withdrawals and increasing reward (g increased) [24,25].

4.6. Mining Rate Derivation

The cash-flow discount models in a PoW context seem to be more disputable. The
underlying economic environment is quite different this time: staking is about depositing to
receive an expected reward, while working consists in spending electricity to find a relevant
nonce and connecting the latest block to the miner’s candidate block. A working probability
space is defined the same way as in Section 4.1. In addition, if we still want to focus on an
equation of the style of Equation (8):

P′
i =

+∞

∑
n=1

Gi,n

(1 + r)tn
, (20)
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where Gi,n represents the gain earned by miner i at time tn, and Pi is the present value of
the total future gains, then the rate r is the return of gains obtained by spending money
by a participant. To some extent, mining is like participating in a game by paying to earn
reward and, contrary to staking, the payment of the game is continuously performed over
time.

There are N ∈ N∗ miners in total. For all i ∈ J1,N K, we introduce the random variable
Xi to be the time for miner i to mine the coming block, i.e., be the first one to find a nonce
among the pool of miners. The random variable Xi can be assumed to have the memoryless
property [18], and since it is a continuous and positive random variable, then Xi ∼ Exp λi,
with λi ∈ R∗

+ for all i ∈ J1,N K. Concretely, λi represents the hash rate for miner i: the higher

the rate, the less time miner i takes to mine its block. Henceforth, Λ =
N
∑
i=1

λi is the total

hash rate, and if ∆t > 0 is an arbitrary time period of mining, then R = Λ∆t is the total
hash computed by the set of miners during ∆t. It is, therefore, the total cost for the whole
mining activity.

Bearing this in mind, we have the main claim for this section.

Claim 4. If g is the average reward per block and R is the total hash to get this block constructed,
then the working rate r is given by:

r =
g
R

(21)

Proof. First, we would like to prove that

P
(

Xi < min
j∈J1,N K\{i}

Xj

)
=

λi
Λ

, ∀i ∈ J1,N K. (22)

In fact, if N = 2, by using the Bayes formula, we have

P(X1 < X2) =
∫ +∞

0
P(X1 < X2|X2 = x2)P(X2 ∈ dx2) =

∫ +∞

0

(
1 − e−λ1x2

)
× λ2 e−λ2x2 dx2

= 1 − λ2

λ1 + λ2
=

λ1

λ1 + λ2
.

Now, by mathematical induction, we can prove that min
j∈J1,kK

Xj ∼ Exp

(
k

∑
j=1

λj

)
, for any

k ∈ J1,N K. Bearing this in mind, replacing X1 with Xi and X2 with min
j∈J1,N K\{i}

Xj gives

Equation (22).

By going through the spirit of proof of Claim 1, for a fixed miner i and time tn, we have

Gi,n = P(miner i finds nonce before the others)× g.

Here, we have

P(miner i finds nonce before the others) = P
(

Xi < min
j∈J1,N K\{i}

Xj

)
,

and g is the average reward, or

Gi,n =
λi
Λ

g.
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From Equation (20), we have

P′
i =

+∞

∑
n=1

1
(1 + r)n

λi
Λ

g =
λi
Λ

g
r

.

During ∆t, the total investment is λi∆t, and thus Pi = P′
i − λi∆t = 0 finally leads to

r =
g

Λ∆t
=

g
R

.

5. Discussion
5.1. Time-Dependency

It is worth pointing out that our approach is applied each time one needs to estimate
the staking rate r. In practice, an update is performed each time a new block is added to
the blockchain, giving a time series of the staking rate with respect to the block number.
In particular, the number of total staked coins χ, the award g, the slash rate s and the
proportion q of burnt coins need to be updated systematically.

5.2. General Discussion on the Approach

We provide a rigorous mathematical foundation for modeling the staking rate, open
to practitioner and academic scrutiny. More specifically, in order for the probability of an
event and for the mathematical expectation to make sense, we pose the problem in the way
of Section 4.1. Without a clear understanding of the underlying probability space, the model
may produce misleading or inconsistent outcomes. From a business perspective, defining
a probability space provides a common language for communication and collaboration
among professionals. It ensures that the assumptions and interpretations of probabilities
are clear and consistent across individuals or teams, fostering effective teamwork and
minimizing misunderstandings. Last but not least, although this problem positioning
may sound heavy, it appears necessary when considering the slash rate in the stake rate
derivation: the definitions of Wi,n, Si and Si,n do not appear ambiguous.

5.3. Adding Maturity

The rate will remain unchanged if one adds a maturity to our cash-flow discount model
(here, a maturity represents the time when the staker retrieves their staked coins and thus
stops being a staker). To see this, suppose TN , for N ∈ N∗, is the time at which the staker
stops investing. Equation (8) becomes

Pi =
N

∑
n=1

E(Gi,n)

(1 + r)tn
+

Xi
(1 + r)tN

. (23)

Then, the equation Pi = 0 leads to the same expression r for the rate as in Equation
(7).

We have two remarks: (i) Xi can be interpreted as the par of the investment, and (ii)
regardless of whether the staker decides to stop their investment or not, the staking rate is
the same. This is expected as long as we calculate a rate of return.

5.4. Assumptions and Healthy Blockchain

In the whole study, we assume that the blockchain is remaining sufficiently stable
over time: it is not supposed to have substantial changes (e.g., no fork) or collapse. We are
also not integrating attack events in our model, so we assume a blockchain which has a
sufficiently long history with many honest agents acting on it. Such a healthy blockchain is
likely to survive for a sufficiently long time so that staking perpetually remains a relevant
approximation. It is worth pointing out that a healthy blockchain and the memoryless prop-
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erty of intrinsic features (e.g., transaction fees) are two faces of the same coin. Intrinsically
related to this main assumption, the reward dates are supposed to be known in advance (as
suggested by the equation tn = n for all n ∈ N) and the blockchain is supposed to continue
to pay the rewards indefinitely (see, for example, Equation (8)). In addition, Equation (8)
also suggests that a constant actualization rate is applied to value the infinite stream of
rewards, i.e., the staking rate r is constant in the actualization of the rewards, which are
thus supposed to be reinvested systematically each time they are earned.

5.5. Model Limitations

The main assumption of this model, as discussed above, is that it operates only on
healthy blockchains. The perpetual characteristic of the bond approach uses the assumption
of a sufficiently stable blockchain in time. This cannot happen if the blockchain is either
forked or attacked, that is, if there is any specific change—i.e., rule breaking—which makes
the blockchain have a different behavior from the one expected when calculating the
rate. Thus, the model cannot apply if the blockchain will not continue to pay the rewards
indefinitely (however, this aspect of the model is flexible by implementing some maturity;
see above). From a perfectly healthy blockchain, which implies the stability of the whole
system over time, the idea is to add more and more of what is making the blockchain less
healthy, among which include a lack of hardware, or attacks. However, the first needed
feature to consider—as it is inherent to staking—is slashing.

5.6. Slashing

Although the formula r = g/χ might appear intuitive and trivial, the implementation
of the slash rate into the process reveals an equation which was not easily expected (see
Equation (15)): the first term is a quadratic decrease in the gain, while the second one is
a linear decrease, with the slope being the proportion of burnt stake coins. Overall, the
staking rate is a decreasing quadratic function of the slash rate. One might think that the
staker is taking more risks by staking since they can lose the initial investment, and thus,
the reward should increase. However, the context is quite different from standard cash-flow
discount models: the investor themselves can enhance a false or wrong validation process.
Thus, the decrease in the staking rate can be seen as an average penalty included in the
rate.

In addition, we have assumed that the staker is banned from the blockchain, which
is not necessarily true: the staker can only have a proportion of burnt coins, remaining a
staker as long as they still have staked coins remained in the staking pool. It would be
interesting to see what Equation (16) would become then. We would need to introduce the
cumulative slashing time Ni,p, which is the time staker i has been slashed for the pth time,
p ∈ N∗, i.e., to simplify:

Ni,p =
p

∑
m=1

Ni = p Ni,

where we assumed time independence between two consecutive slashes. Since Ni is
the time of slashing for staker i, then p Ni is the time for being slashed p times. Thus,
Equation (16) becomes:

Pi = E
(

+∞

∑
n=1

Gi,n

(1 + r)n +
+∞

∑
p=1

Xi(1 − q)p

(1 + r)Ni,p
Si,Ni,p

)
. (24)

The first term leads to Xig/χr (see Equation (10)), while the second term would write
as (inverting sum and expectation and setting Si,Ni,p = 1):

E
(

+∞

∑
p=1

Xi(1 − q)p

(1 + r)Ni,p
Si,Ni,p

)
=

+∞

∑
p=1

Xi(1 − q)pE
(

1
(1 + r)p Ni

)
= Xis

+∞

∑
p=1

(1 − q)p

(1 + r)p − (1 − s)
.
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Unfortunately, there is no close formula for the sum above, to the best of our knowl-
edge. In fact, in our model, we do not pretend that a slashed staker will never be able to
come back through another round, perhaps after some time. The above calculation could
be more complicated, but we do not believe it is necessary for what we want to achieve in
this study.

5.7. Memoryless Property for Slashing Events

In Section 4.3, we assumed that stakers can be slashed in a time-independent way.
Stakers can be slashed for various reasons, e.g., double signing (validation of conflict-
ing transactions), downtime (offline staker, not able to validate while selected), or non-
compliance (failure to follow the protocol rules). Despite the fact that the exact slashing
conditions depend on the specific rules of each blockchain protocol, there is no evidence, to
the best of our knowledge, that there is a spontaneous time dependency in the slashing
process for individual stakers. Time dependency appears due to a common decision for
forking, or due to an attack provoking radical protocol changes. We are assuming a healthy
blockchain, though we do not consider these events to occur.

5.8. Slashing Event Independent of Staker

In Section 4.3, we assumed that the slash rate was independent of i. This can be
seen as an approximation, as this supposes that stakers all have the same resource and
implementation of the verification and validation processes. However, it remains difficult
to evaluate individual abilities to correctly validate blocks. In addition, for Ethereum, the
staking amount is the same for all stakers, that is, ETH 32, which means (i) the process
tends to provide equality of chance of selection, and (ii) resources may be comparable.

5.9. MEV and Total Income

MEV represents a significant portion of the stakers’ income in a high-traffic network
like Ethereum 2.0. We have provided an estimation of the income g only from MEV, in
Section 4.5. However, the specific income can vary widely. Some cryptocurrencies offer a
fixed percentage of returns for staking their coins, whilst others fluctuate based on network
usage and transaction volumes. To obtain more specific numbers, one would need to look
into individual coins’ staking models and rewards. Thus, it seems difficult to provide a
general income model, as one can find strong variability within PoS blockchains. However,
we think our approach generally captures the idea of MEV as a classification of transactions
with respect to their transaction fee amount, allowing increasing reward gains.

5.10. Transaction Fee—Exponential Assumption

In Section 4.4, we assumed that the transaction fee was represented by a random
variable whose law is an exponential one. This is a consequence of the discussion depicted
therein about the memoryless process. Having an estimation of F would require to have
access to a sufficiently large number of transaction fees at a given time. If the collected
sample is a sufficiently good representation of the whole population, the average transaction
fee θ would be close to its true value, and, more generally, we would have access to a
broader distribution of transaction fees. Only then would we be able to have an idea of
the distribution of the transaction fees, i.e., if they follow an exponential law rather than
a log-normal one. Below, we have, however, performed a fit to the distribution of daily
average transaction fees (in ETH) for the Ethereum blockchain (see Figure 3). The data were
selected from 7 November 2022 to 7 November 2023 on Blockchair (https://blockchair.com).
The time period corresponds to Ethereum 2.0 and is a relatively long time after the fork,
allowing more stability in the chain data. We fit the exponential and lognormal distributions
to the data histogram; the other distributions (e.g., normal) do not have enough significance
to be shown here. In Figure 3, we rescale the distributions to the empirical histogram so
that both fits can be shown in the same figure.

https://blockchair.com
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The fits are using the fitdistr function in R (optimization based on Nelder–Mead, quasi-
Newton and conjugate gradient algorithms). We show three fits: (i) fitting the exponential
law with the tail (from the median of the distribution), (ii) fitting the log-normal law with
the whole distribution, and (iii) fitting the log-normal law with the tail. The Kolmogorov–
Smirnov test (null hypothesis: data can be fitted) reveals a p-value below 0.05 for the second
case, and p-values largely above 0.05 for the other cases (see caption in Figure 3). Thus,
within the 95% level confidence, we can reject the null that the whole data are fitted with a
log-normal distribution, while we can reject the alternative that the tail is not fitted with
exponential and log-normal distributions. Given the model depicted in Section 4.4, we
consider large values for transaction fees (m can be chosen in a way to focus on values
which are fitted with exponential laws). Thus, we cannot reject the exponential assumption
for the tail of this data set. It is worth stressing that this above fit is already assuming the
memoryless property: the distribution is taken over time, rather than at a given time.

Figure 3. Exponential and log-normal fits of the daily average transaction fees (in ETH) for the
Ethereum blockchain—from 7 November 2022 to 7 November 2023 (source: Blockchair). KS test
Pval(exponential at the tail) = 0.45; KS test Pval(lognormal) = 0.033; KS test Pval(lognormal at the tail)
= 0.57.

5.11. Mining Rate

Conceptually, it is interesting to have a mining equivalence of the cash-flow discount
approach. We still can derive a rate, not in a sense of investment, but rather as a ratio of
‘gain for mining a block/expense to mine’. However, contrary to the staking rate, where
alliances between pool operators and depositors usually occur, it does not look straight to
emphasize some business utility from the mining rate.
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6. Conclusions

As investor interest has increased over time, the formalism of a standard crypto yield
model for staking return has become an industrial need. In this paper, we proposed an
approach for a PoS consensus blockchain to model the staking reward. We have used the
cash-flow discount model for the calculation of the staking rate, given by the ratio of the
average reward out of the total staked coins. Essential addons, the likes of which include
slash events and MEV, complemented the model, and an illustration for the Ethereum
blockchain was proposed. The same approach was applied to a PoW consensus blockchain,
and the resulting working rate is the ratio of average reward out of total hash, which
resembles the PoS ratio. We discussed the assumptions made in our model and further
illustrated with an empirical study. The main assumption is a healthy blockchain, sufficiently
stable over time and robust against attacks and decisions of rule changes.

We believe that this rate methodology should become an industrial standard, as it will
allow the derivation of futures prices and the construction of yield curves in a consistent
way. In the middle term, this approach should enhance the implementation of swaps for
the obtention of more accurate and stable term structures. The resulting infrastructure
could improve the tradability of crypto derivatives and further stabilize the market.
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