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Abstract: In this paper, we propose a Virtual Prototype (VP) driven verification methodology for
Hardware (HW) peripherals. In particular, we combine two approaches that complement each other
and use the VP as a readily available reference model: We use (A) Coverage-Guided Fuzzing (CGF)
which enables comprehensive verification at the unit-level of the Register-Transfer Level (RTL) HW
peripheral with a Transaction Level Modeling (TLM) reference, and (B) an application-driven co-
simulation-based approach that enables verification of the HW peripheral at the system-level. As a
case-study, we utilize a RISC-V Platform Level Interrupt Controller (PLIC) as HW peripheral and use
an abstract TLM PLIC implementation from the open source RISC-V VP as the reference model. In
our experiments we find three behavioral mismatches and discuss the observation of these, as well
as non-functional timing behavior mismatches, that were found through the proposed synergistic
approach. Furthermore, we provide a discussion and considerations on the RTL/TLM Transactors,
as they embody one keystone in cross-level methods. As the different approaches uncover different
mismatches in our case-study (e.g., behavioral mismatches and timing mismatches), we conclude a
synergy between the methods to aid in verification efforts.

Keywords: cross-level methodology; virtual prototypes; transaction-level modeling; register-transfer
level; peripheral verification; co-simulation; coverage-guided fuzzing; verification; RISC-V

1. Introduction

Modern design flows for embedded systems deal with the rising complexity by lever-
aging Virtual Prototypes (VPs). A VP is an abstracted executable model of the entire Hardware
(HW) platform and predominantly created in C++ using the SystemC HW modeling lan-
guage in combination with the Transaction Level Modeling (TLM) formalism, which serves
as communication interface for modeling abstract bus systems [1]. VPs are leveraged
for early Software (SW) development and verification in the design flow and also serve
as functional reference model for the subsequent HW development stage at the Register
Transfer Level (RTL) [2–4]. As such, VPs enable to parallelize and integrate the HW and
early SW development and verification flows [2].

Verification is a crucial aspect in the HW development phase, since undetected errors
will be very costly to fix in later stages. Due to the characteristic differences between
processors and peripherals, verification methods cannot be assumed to simply transfer (e.g.,
verification of a processor vs. a high speed communication peripheral). Since traditional
verification starts after the design and implementation process, early verification is a
challenge that requires various conditions to be met. While strong, novel, and scaleable
verification methods play an important role to handle the ever-growing complexity of
new designs, it is paramount for the development processes to seamlessly integrate these
methods effectively. With early verification gaining popularity and importance, the bare
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existence of strong verification methods alone only partially solves the challenge of true
early integration of verification efforts into the development process. As VPs exist as early
as the specification of a system, they offer a seamless integration not only for development
but also in verification efforts.

In this sense, methods like Coverage Guided Fuzzing (CGF), which has proven to be
efficient in the SW domain, can be utilized as an integral part of the hardware verification
strategy early on [5,6]. While there is an emphasis on verification methods for processors,
which is the centerpiece of an embedded system, the verification of peripherals has been
comparatively neglected.

Contribution: In this paper we propose a VP-driven verification methodology fo-
cused on HW peripherals (see Figure 1 for an overview of the approach). As a case-study
throughout the paper, we utilize a RISC-V interrupt controller as our Device under Verifi-
cation (DUV), demonstrating the seamless utilization of the RISC-V VP [3] and selected
verification methods.

Specification

Coverage-Guided
Fuzzing

VP-based  
Co-Simulation

RTL 
Implementation

= =

Verified Design

Virtual Prototype (VP)
TLM  

Reference Model

Refinement needed

Mismatch found

Coverage 
Report

SW 
Application

A B

Figure 1. High level overview of our proposed Cross-Level Methodology.

We combine two approaches to aid each other in the verification effort and use a VP
as readily available reference model:

(A) We utilize CGF enabling comprehensive verification of the HW peripheral with a
TLM reference at the unit level (left path in Figure 1). For this approach, state-of-the-art
CGF techniques provided by LLVM libFuzzer [7] are employed, demonstrating how the
unit-level can be covered for the verification (here the unit-level refers to the DUV without
integration into a system). With this approach, three behavioral mismatches were identified
within 1 h of run time. Furthermore, we provide a discussion of the discovered mismatches.
Since coverage-guided fuzzing is utilized in our case-study, we additionally discuss the
achieved coverage metrics (line, branch and function coverage) between the TLM and RTL
description.

(B) A co-simulation-based approach allowing application-driven verification of a HW
peripheral on a system-level (right path in Figure 1). For that the RTL HW peripheral
is integrated into the RISC-V VP that represents the system-level. We can compare the
peripherals’ behaviors when executing a FreeRTOS application. In a co-simulation setting,
differences in the behavioral description of the TLM and RTL peripheral can introduce
mismatches on non-functional dimensions like timing, thus affecting the application execu-
tion. By investigating program traces of executed FreeRTOS applications, we identify and
discuss timing mismatches.

2. Related Work

Functional verification of HW designs has a long history in using different techniques
from simulation-based testing to formal verification approaches [8]. While formal ap-
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proaches, such as [9–11], are obviously desirable to ensure a comprehensive verification
process, they are unfortunately susceptible to scalability issues due to state space explo-
sion [12]. Therefore, simulation-based approaches still form the backbone of the verification
effort. In particular testbenches that rely on constrained random techniques for input
generation and are assessed by coverage metrics play a very important role due to their
ease of use and scalability [13]. Best practices in this regard have led to the definition of the
Universal Verification Methodology (UVM), which now plays an important role in the design
of testbenches at the RTL [14]. Ref. [15] reports a case-study on the verification of a ARM
Advanced Microcontroller Bus (AMBA) protocol implementation using constrained random
verification in SystemVerilog. Assertions are placed to check for AMBA protocol violations.

While constraint-based approaches can be effective, they require significant effort
in order to set up high-quality testbenches. Inspired from the ongoing success story
of modern coverage-guided fuzzing techniques in the SW domain, fuzzing has been
adopted to enable test generation for HW designs at the RTL [16]. Motivated by the
promising results further research has been sparked that optimized the fuzzing approach by
employing directed test generation for guidance [17] and taking RTL specific characteristics
into account [18]. However, a complete co-simulation with a system-level model is not
considered in the fuzzing loop. Ref. [19] discusses general challenges in combining a
system-level model with a RTL model in a co-simulation setting from the verification
perspective. [20] proposes a co-simulation environment for SystemC and Verilog modules
by integrating both simulation kernels and using custom channels on top of the Verilog
Procedural Interface for communication. Ref. [21] describes a TLM to RTL UVM-based
verification methodology that attempts to re-use the TLM testbenches for RTL verification.
Ref. [22] proposes a simulation-based equivalence check for TLM and RTL SystemC
models. Beside simulation-based methods, formal equivalence checking between models at
different abstraction levels is supported by industrial tools such as SLEC [23], however, the
approach is proprietary and formal techniques tend to be susceptible to scalability issues.
Recently [5] describes another coverage-guided fuzzing approach in which, compared
to [16], RTL instrumentation for coverage tracing is not needed and very generic interfaces
for verification engineers are provided for use.

In our paper we enhance the fuzzing based approach with the TLM reference for
mismatch detection. Moreover, through the VP-driven setting we allow testing early from
the application perspective. We continue to leverage Verilator for the RTL models and
enhance the verification through the use of TLM based reference models. This also allows
an early evaluation of integrated RTL peripherals on a system-level. Furthermore, the
utilization of Verilator enables a speed up for RTL simulations of orders of magnitude
compared to traditional event-based RTL simulators [24].

3. Preliminaries

In this section we will provide the necessary background information that is utilized
for the proposed methodology. At first, we give a brief overview of the Platform Level
Interrupt Controller (PLIC) that is utilized in the case study in Section 3.1. We provide
relevant background information on SystemC in Section 3.2. Finally, in Section 3.3 we
discuss considerations on RTL-TLM transactors, as they are a key element for cross-level
methods.

3.1. Platform-Level Interrupt Controller (PLIC)

The PLIC [25] for RISC-V based processors describes an interrupt controller that
multiplexes numerous device interrupts to the external interrupt lines of the processor. It
was designed to support up to 1023 interrupts and is configurable with thresholds and
priorities. Moreover, the PLIC allows to distinguish between different execution modes
of the processor, as described in the privileged architecture specification of the RISC-V
Instruction Set Architecture (ISA) [26]. Furthermore, up to 15,872 contexts can be handled
by the PLIC, each context can either represent a single processor or a single thread within
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a multithreaded processor core. Inside the PLIC each interrupt source has a designated
Identifier (ID) by which it can be addressed. When devices request an interrupt through the
PLIC, the combination of priority, threshold, and ID is used to trigger interrupt notifications
to each available processing unit. If two interrupt sources have the same priority, the
source with the lower ID is selected over the source with the higher ID. A threshold can
be set for each context, meaning each processor’s interrupt sources can be finely tuned
to the needs of the application in which interrupts from various sources are handled by
multiple processors. Lastly, the PLIC features a message sequence to handle interrupts by a
targeted processor in order to notify, claim, and mark an interrupt as completed. At first,
interrupts are claimed by a processor by reading the designated register from the PLIC,
which returns the interrupt ID. Finally, the processor marks the interrupt as completed,
by writing the interrupt ID the designated register in the PLIC. Lastly, while the PLIC
Specification [25] defines that an arbitrary delay between an incoming interrupt and the
notification of the processor is allowed, in this work we consider an interrupt controller
with a single cycle delay.

3.2. SystemC

SystemC is a hardware and system modeling language. Initially SystemC provided a
formalism that allowed modeling at the RTL. With SystemC TLM [1] an additional model-
ing formalism inside the SystemC library is introduced that allows a higher abstraction in
component modeling. The TLM formalism allows modeling interactions between modules
as whole transactions, abstracting from the I/O pins used in RTL interfaces. While commu-
nication between RTL modules involves specific sequences on the I/O interfaces between
them, the TLM abstraction encapsulates this behavior into a function call. Commands and
payloads are passed as the functions parameters and are made available at the routing-
and end-points. The TLM 2.0 standard [27] defines designated interfaces to model generic
transactions with varying levels of detail. If only the sequence of communication between
modules is synchronized, the TLM standard terms this style loosely-timed. A more detailed
approach introduces timing points for protocol-specific behavior that demark phases of
protocols, this style is termed approximately-timed. These modeling styles allow the devel-
oper to have a range of mechanisms (e.g., Direct Memory Interface (DMI), global quantum,
blocking vs. non-blocking transport, etc.) to model fast or detailed TLM simulation mod-
els. Compared to the traditional RTL communications the TLM communication enable
increased simulation speeds.

3.3. RTL-TLM Transactors

As mentioned earlier one difference between the RTL and TLM level is the abstraction
of interfaces. In RTL interfaces are described as signals connecting to other modules, that
way data busses and control signals are realized. In the TLM style interfaces are abstracted
into sockets that act on function calls with commands and payloads encapsulated in
transactions. Specific sequences and timings of the RTL interfaces are simplified and allow
the TLM simulation to boost the simulation speed. Additionally, the notion of time in RTL
is represented through clocks and clock cycles. For TLM, the notion of time is achieved
by annotating events and function calls with associated delays. Furthermore, the TLM
coding styles also allow for a more detailed representation of bus transactions with multiple
phases and timing points. This allows TLM representations to offer either fast or detailed
simulations. The flexibility of the TLM coding styles allows closing the gaps between TLM
and RTL models if the VP design requires it.

For the cross-level technique, the verification engineer has to be aware of this abstrac-
tion technique. If a module is transformed from RTL to TLM, a wrapper (called transactor)
has to translate the function calls with their payload to the RTL signal sequences. Vice
versa, the RTL signals and sequences have to be mapped to the respective TLM equivalents.
The TLM timing annotations have to be used within the wrapper to synchronize to the RTL
clock with the rest of the simulation. Co-simulating TLM and RTL requires a separate clock
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thread for the RTL peripheral in place. One possible way to translate a TLM transaction to
the respective RTL sequence is to use a blocking transport and unroll the transaction to the
signal sequences throughout the clock cycles of the RTL clock, then returning the blocking
transport to the TLM initiator.

4. Hardware Peripheral Verification Methodology

Our proposed methodology incorporates a combination of verification strategies to
achieve the Cross-Level Verification (CLV) and application driven co-simulation. Starting
in Section 4.1, we give an overview on our methodology as a whole. Section 4.2 follows
up with a discussion on the CLV setting. In Section 4.3 we discuss the mapping of the
generated values of the CGF to the DUV. Finally, Section 4.4 discusses the details of the
application driven co-simulation setting.

4.1. Overview

Figure 2 shows an overview of our methodology employed for the CLV strategies.
The CGF approach ( A©) is shown at the top and the application driven co-simulation
approach ( B©) is shown at the bottom of the figure, respectively. The overview of the CLV
methodology reads along the circled numbers 1© to 8© within the figure. At first, the
specification ( 1©) is realized at the TLM abstraction level inside a VP ( 2©). The TLM-based
peripheral prototype serves as a reference in the RTL development. To develop the RTL
peripheral ( 3©) the specification and the TLM peripheral are used as references. Through
the Verilator tool and a RTL-TLM transactor ( 4©), we transform the RTL peripheral into
SystemC RTL, enabling usage with TLM transactions. From here on the methodology can
be taken apart into the CGF approach ( 5© and 6©) and the co-simulation-based approach
( 7© and 8©).
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Figure 2. Overview of the cross-level methodology employed for the RTL/TLM development.

For the CGF approach ( A©), the CGF testbench ( 5©) integrates the TLM and RTL
peripheral. The CGF (e.g., by utilizing LLVM libFuzzer) generates input and applies these
to the peripherals in order to evaluate the modules for behavioral mismatches ( 6©). Upon
detection of a mismatch, the specific input sequence uncovering the mismatch can be
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utilized by the engineer in the debugging process. Furthermore, we obtain a coverage
report on both the TLM and the RTL peripheral to assess the quality and completeness of
the generated inputs in terms of line, function, and branch coverage.

For the co-simulation-based approach ( B©), the transformed RTL peripheral is used as
a drop-in replacement for the TLM peripheral inside the VP. Thus we obtain a reference
VP, with the TLM peripheral and a modified VP with our DUV residing within. In this
co-simulation setting a software application can be executed on both VPs ( 7©) and the
mismatches (including non-functional mismatches like timing issues) can be identified
( 8©). Checking for mismatches in the application driven co-simulation setting occurs in
manually for this work. If mismatches are found the implementation can be refined, fixed,
and retested until no more mismatches occur.

Only if both approaches show no mismatches we consider the RTL peripheral verified.
The additional detection of non-functional mismatches (e.g., timing issues within the
system due to the peripheral) of approach B© complements the pure behavioral/functional
verification approach A©. Furthermore, the CGF approach A© can be considered to operate
on the unit-level, within the scope of the module and not . Whereas the application
driven co-simulation-based approach B© operates on a system-level by integrating the RTL
peripheral into the full VP. We believe both approaches complement each other and further
reduces the development time, until full integration in the RTL takes place. In Section 5.1
and Section 5.2 we elaborate our experimental setup and evaluate the CGF verification ( A©)
as well as the co-simulation ( B©) respectively.

4.2. Cross-Level Environment for Coverage-Guided Fuzzing

The first strategy in our cross-level verification incorporates CGF. By leveraging the
transformation of the RTL peripheral into the SystemC TLM domain, we can effectively
utilize modern and industry proven methods like CGF for hardware verification. CGF
allows us to drive the inputs of the DUV in a randomized manner. The DUV reports the
coverage these generated inputs achieve, allowing the fuzzer to generate new mutated
inputs with the goal of increasing the coverage metrics.

While the transformed RTL model offers some coverage metrics (e.g., line coverage,
branch coverage, etc.), it is still relatively open to research how the coverage on the trans-
formed model translates down to the RTL design [5]. The coverage term has a slightly
different terminology for RTL descriptions than for SW. As the RTL describes a digital
circuit that is not executed sequentially but in parallel at any point in time, while SW is
executed sequentially line by line. In the RTL domain coverage often refers to a functional
coverage or different types of coverage metrics like signal toggle coverage. These differ-
ences contribute to the difficulties assessing the same meaning to the coverage metrics
across layers of abstraction.

For our approach, the SystemC simulation kernel required additional modification
which we will discuss briefly. By default, the SystemC simulation kernel does not support
a reset of the simulation within the same simulator execution. In order to support a reset,
the global simulation variables are handled and a reset is executed, as the regular SystemC
simulation kernel was not designed with that in mind. Our approach itself is agnostic to
the coverage-guided fuzzer, but for this work in particular we choose LLVM libFuzzer. For
that, the LLVMFuzzerTestOneInput method has to be implemented as an entry point for the
coverage-guided fuzzer. In this method the SystemC simulation is set up and if it already
ran, the simulation state has to be reset properly. The generated inputs are fed into both,
the SystemC TLM peripheral and the transformed SystemC RTL peripheral in order to run
a simulation. During simulation the outputs are compared and on a mismatch the CGF
throws an exception, otherwise it generates another set of inputs and calls the simulation
for both peripherals.
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4.3. Input Mapping & Test Scenarios

The coverage-guided fuzzer generates an endless stream of bytes, that has to be
mapped onto the inputs of the modules to create test scenarios.

Figure 3 shows how the generated stream maps onto the PLICs functions. The first byte
(Threshold, purple) is used as the priority threshold value of the PLIC, signaling which
interrupt priorities can trigger a processor interrupt. The following byte (IRQ Source,
green) is utilized as an interrupt source, split into 7 bit encoding the priority (Priority,
purple) of that interrupt and 1 bit encoding whether it is currently activated as an interrupt
input of the PLIC (IRQ Fired, red). Such IRQ Source bytes repeat for as many interrupt
sources are declared. These bytes then become part of the TLM transactions, SystemC
events, and SystemC RTL inputs for the TLM reference and DUV, respectively.

1 Byte 
Threshold

1 Byte 
IRQ Source 1 ...

7 Bit 
Priority

1 Bit 
IRQ Fired

1 Byte 
IRQ Source N

Figure 3. Mapping of fuzzer generated byte stream onto the PLIC functionality.

Cross-level methods also requires additional attention for both RTL and TLM versions
of the peripheral. At TLM the abstraction from signal lines to abstract interfaces between
modules eases handling protocols and handshakes, as these will be the transaction to
and from a module. Applying fuzzer input data means varying the function parameters
and payloads. At the RTL, protocols and handshakes are represented in sequences of
signals with their corresponding signal levels. Thus, the fuzzer could often generate invalid
sequences or the fuzzer inputs have to serve as the basis to choose different transactions.
For example, instead of generating the control signals that finally lead to a complete write
transaction, the fuzzer generated bits can encode a transaction command (read or write)
that can be decoded to the transaction sequence that is then executed for a set of fuzzer
generated inputs. At first sight, both options (fuzzer induced transactions and directed
transactions) have advantages and disadvantages. If the fuzzer could induce transactions
that invoke a wrong sequence of signals, faulty handshake and protocol handling can
be detected. At the same time, creating valid positive test cases will happen less often.
If the CGF is guided to always trigger a transaction but never cause faulty handshake
and protocol attempts, the test cases cannot detect issues in the protocol handling. At the
same time, the functional behavior of the peripheral is inspected with the effectiveness of
CGF. Such trade-offs are covered by traditional constrained random approaches, due to
the possibilities to describe constraints, relaxations for these constraints and probability
distributions for cases of constraints (e.g., faulty transactions can be part of the test set).
Without attention to these details the verification engineer easily could run into wrong
assumptions about the results or the effectiveness of an approach.

For our case-study with the PLIC, we map the CGF-generated inputs to the interrupts
inputs and create respective bus transactions, writing the configuration registers of the
PLIC (e.g., if the fuzzer decides to enable a certain interrupt, the respective transaction
on the bus will be initiated). For a set of inputs (e.g., interrupts, enables, thresholds and
priorities) we compare the behavior of the TLM and RTL peripheral.

4.4. Application Driven Co-Simulation Environment

The application driven co-simulation environment is set up as the second strategy
in our CLV methodology. By utilizing a VP, the DUV can be integrated in an early devel-
opment stage to reduce the time until system-level verification. Through an application
driven co-simulation of the VP early software can be utilized as use cases, and add further
momentum to the development cycles. Contrary to the CGF approach, in the co-simulation
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environment the peripheral is interconnected with other modules. The previously intro-
duced RTL-TLM transactor can be reused for the bus interconnect of the peripheral, this
part of the transactor is universal across different peripherals. Existing TLM peripherals
can therefore be drop-in replaced with their RTL counterparts. As the co-simulation within
a VP environment features a system-level model of the System-on-Chip (SoC), additional
non-functional aspects like timing behavior can be considered. In contrast to CGF the DUV
is driven indirectly and with narrower set of possible inputs through the software appli-
cation but offers a system integrated observation that features the interaction with other
modules and the possibility to consider further non-functional aspects like timing behavior.
Therefore, application driven co-simulation nicely complements the CGF approach.

For our case-study with the PLIC, we utilize the RISC-V VP [3] and an existing FreeR-
TOS application, which utilizes external interrupts. The PLIC is connected to all peripherals
offering external interrupts to the CPU, thus the use case of this application heavily depends
on the funcitonality of the DUV. This application is executed with the TLM peripheral as
well as the DUV on the RTL. For this purpose a modified copy of the VP with the RTL
peripheral is prepared. As the RTL peripheral runs on a different abstraction the effect
of the clock timing is observed in relation to the TLM based VP. As further introspection
and inspection is required to analyze a complex SoC model executing an application with
FreeRTOS we utilize the Tracalyzer (See https://percepio.com/tracealyzer/ (accessed on
7 September 2023) for more information) to collect timestamped traces of the application
execution. We use the existing TLM as a reference for the timing behavior, and prepare
the RTL to be executed on a range of clock periods to observe the possible effect on the
simulation timings.

5. Evaluation

This section presents and discusses the evaluation of our CLV methodology with
respect to our case study. For the case study a RISC-V PLIC is implemented, which serves
as an external interrupt controller. A PLIC informs available RISC-V processors about
external pending interrupts from peripherals (e.g., a serial interface, timer, etc.). The PLIC
interface uses a set of inputs and outputs (interrupt signals from peripherals and an output
signal to the processor to signal one or more pending interrupts) and a bus interface via
which the controller is configured and pending interrupt requests are claimed. We think
this peripheral is a reasonable case study as the complexity covers:

(a) handling bus transactions,
(b) timing specific behavior (e.g., incoming interrupts have a specified maximum delay

to reach the processor), and
(c) handling I/Os with configurations (e.g., enable, priorities, etc.).

Another aspect of the case-study is the VP, for which we use the open
source RISC-V VP [28]. The RISC-V VP operates on the TLM abstraction and thus is suited
to serve in exploring our previously described methodology. For the case-study, the bus
model of the VP on the TLM is used to derive a compatible RTL interface that allows the
PLIC to be interconnected into the system. Through Verilator the RTL description is trans-
formed from Verilog into SystemC and afterward connected via the RTL-TLM transactor
for (A) the CGF methodology and afterward for (B) the application driven co-simulation
environment. For the CGF LLVM libFuzzer is utilized to fuzz the modules.

The next sections cover the experiments and verification results for the PLIC peripheral
obtained by applying our CLV methodology. Section 5.1 covers the CLV with CGF, in
which the TLM-based PLIC is utilized as a reference for the RTL-based PLIC. In Section 5.2
we cover the application driven co-simulation inside the VP with FreeRTOS as an industry
grade application example. Our experiments were executed on an AMD Ryzen 9 5900X @
4.8 GHz with 64 GB RAM running on Ubuntu 20.04 LTS. The RTL-based PLIC is configured
with up to 53 incoming interrupts and a maximum priority of 7, resulting in a total of

https://percepio.com/tracealyzer/
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324 bit of register bits, spread across 60 registers, 124 input bits (across 59 signals) and
34 output bits (across 3 signals).

5.1. Verification via Coverage-Guided Fuzzing

The CGF with libFuzzer was executed for a run time of 1 h. To implement the required
function that applies the CGF generated inputs to the DUV, we additionally modified
the SystemC simulation kernel significantly to support multiple simulation runs within a
single simulation context. For the run time of 1 h the CGF generated 39,445 input sequences
and detected three mismatches which will be further discussed in this section. These
mismatches were identified through the following behavior:

1. Two mismatches in the claim/complete behavior of the PLIC;
2. The order of the interrupt priority is handled wrong.

For 1 the mismatches lay in handling the claim/complete process of the pending
interrupts. The PLIC specification [25] defines, that handling an interrupt consist of a
two-step process. First, a processor claims the interrupt at the interrupt controller (and
in this process receives the respective interrupt ID). Second, the processor notifies the
interrupt controller about the completion of the claimed interrupt with the same interrupt
ID. A mismatch of this behavior was identified. In particular, on the TLM side any ID was
accepted to complete the described process. This was fixed to support only those IDs which
(according to specification) are enabled in the interrupt enable register. After re-running the
CGF another mismatch of the same type was found. In this particular case the behavior of
the RTL implementation was too strict, as it only accepted the exact interrupt ID which was
pending. This too was refined to support those interrupt IDs which are currently enabled.

For 2 consider the scenario of two interrupts arriving at the PLIC: Both interrupts
arrive at the same time but have differently configured priorities. Table 1 shows the
mismatch for this scenario between the TLM and the RTL module. The table shows how
the same scenario is interpreted for the TLM PLIC (top part of the table) and for the RTL
PLIC (bottom part of the table). Each interrupt consists of an ID, a priority, a masked
priority, and lastly an order which interrupt is handled first and second. According to the
specification, the interrupt with the ID 1 should be triggered at first, because the masked
priority is higher than the one with the ID 1. This behavior was implemented correctly
in the TLM design but was identified as a bug in the RTL implementation. In these cases,
the verification strategy employing CGF uncover mismatches in both TLM and RTL and
allowed for quick retesting of the inputs causing the mismatch to occur.

Table 1. Mismatches in the order of triggering interrupts.

PLIC ID-IRQ Priority Masked Priority Order of Trigger

TLM 1 17 1 0
2 45 5 1

RTL 2 45 5 0
1 17 1 1

Additionally, the CGF process collects coverage as libFuzzer guides the input genera-
tion with the obtained coverage metrics. Table 2 shows achieved coverage metrics after a
run time of 1 h. The table is split into three parts. The left part shows the description of
each coverage metric presented. The middle part show the coverage statistics for the TLM
implementation. The right part show the coverage statistics for the RTL implementation.
The middle and right part have the same columns regarding the coverage metrics. The
second and fifth column show the amount of hits for a coverage metric, the third and
sixth column show the available cover points and the fourth and seventh column show
the relative percentage of hit cover points to available cover points. For the TLM PLIC a
line coverage of 98.3 %, a function coverage of 100 % and a branch coverage of 61.0 % were
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achieved. On the RTL PLIC a line coverage of 86.3 %, a function coverage of 83.3 % and a
branch coverage of 73.7 % were achieved.

Table 2. Obtained coverage for the TLM and RTL peripheral.

Coverage Metric
TLM PLIC RTL PLIC

Hit Available Coverage Hit Available Coverage

Line coverage 119 121 98.3% 3212 3721 86.3%

Function coverage 13 13 100% 20 24 83.3%

Branch coverage 72 118 61.0% 1056 1432 73.7%

For both implementations there exist remarks regarding the interpretation of the
coverage metrics which should be noted here. In TLM, the memory mapped registers
are generated through an abstracted generator which does not allow to directly identify
which registers were written and read by means of coverage alone. This means writing
memory mapped registers are possibly covered through the CGF generated inputs, while
functional coverage is required to cover different register values specifically. In contrast,
for the RTL implementation, the memory mapped registers are not generated in such a
manner and thus are available in a different traceability for the coverage metrics. Due to
the SystemC RTL implementation being generated through the Verilator tool, the amount
of Lines of Code (LoC) is significantly higher. Optimizations in the code generation cause
some branches to be combined into nested ternary statements. Reaching such a branch
and maybe activating it once can be done through within CGF, but it will not cover the
complexity that these nested statements provide. Generally, it is advised to not only work
with the line coverage [29,30], and due to the big difference in LoC between the TLM
(121 LoC) and the RTL (3212 LoC) implementations.

Through CGF approach a reasonable high degree of coverage is achieved within a run
time of 1 h. With the TLM reference from the VP-aided development, we can additionally
find mismatches between the available peripheral models.

5.2. Verification via Application Driven Co-Simulation

For the application driven co-simulation, an existing FreeRTOS application utilizing
external interrupts from the RISC-V VP is utilized and executed with the TLM and RTL
peripheral in place, respectively. Additionally, other features of the system architecture (e.g.,
timer interrupts, serial interfaces, etc.) are utilized to embed the implemented peripheral
inside a system-level scenario. The FreeRTOS application therefore acts as a system-level
use case and utilizes the peripheral in a realistic scenario. To inspect the FreeRTOS applica-
tion, we instrument it with the Tracealyzer tool in order to record the application traces
for each VP. Obtained traces are manually compared for functional and non-functional
mismatches like timing behavior. Additionally, we measure the total execution time and
performance for various RTL clock speeds to gain insights on the impact of the additional
simulation overhead. For this, we run the FreeRTOS application for clock periods between
10 ns and 10,000 ns in increments of 10 ns. Executing the VP with the FreeRTOS application
for all clock periods takes around 7 min.

Figure 4 shows the collected performance for the TLM and RTL based PLIC utilization
in the VP for the internal simulation time (Figure 4a) as well as the total execution time on
the host system (Figure 4b). Figure 4 a shows how the internal simulation time changes
with respect to the SystemC RTL clock period. The blue lines represent the simulation with
the RTL PLIC peripheral as part of the VP simulation. While the light blue represents the
raw collected data, a darker dotted blue line is added as a moving average in order to make
the trend more visible and the plot more readable. The orange line represents the pure
TLM-based simulation, which always remains at the same simulation time as no RTL clock
is utilized. An increase in the simulation time can be explained through the application
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awaiting the responses from the PLIC peripheral. A slower clock causes longer times for
handling bus interaction and incoming interrupts. It should be noted, that the increase is in
the order of 80 µs while the total execution time is in the order of 75 ms. But this deviation
of the internal simulation time caused through the RTL clock still affects the non-functional
behavior on the application traces.
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Figure 4. Performance comparison of VP executions with TLM and RTL PLIC respectively.
(a) Internal simulation time against clock period of RTL PLIC; (b) Host execution time in relation to
clock period of RTL PLIC.

Figure 4b shows the execution time of the simulation on the host system. The blue
line represents the run time with the RTL PLIC inside the VP, while the orange line shows
the run time with the TLM PLIC. For better readability of the graph a zoomed frame shows
the clock periods up to 1500 ns as the majority of run time change can be observed for
these clock periods. For very small clock periods (e.g., below 500 ns) the SystemC thread of
the RTL clock requires the simulation kernel to perform many additional context switches
while progressing other threads. Relating to Figure 4a to Figure 4 it can be concluded
that small clock periods are necessary to achieve more accurate simulation times, that also
affect non-functional aspects like signal and event timings. In summary, the cost for this
accuracy is the additional run time for the additional RTL simulation and clock threads. For
longer RTL clock periods the total run time of the simulation is close to the pure SystemC
TLM-based simulation. Analogously, the internal simulation time and respective signal and
event timings might experience inaccuracies though when fast simulation run times are
desired. This trade-off is essential when using TLM-based modeling simulation techniques
but not necessarily expected when introducing cross-level techniques into the simulation.

Table 3 shows the Tracealyzer logs for the co-simulation with the FreeRTOS application
using interrupts and thus employing the interrupt controller. The table is split into two
parts. The left part shows time stamps for TLM simulation, and two RTL simulations
one with 10 ns clock and one with 100,000 ns clock. The resolution of the timestamps is
given in µs. The right part shows the actor and event for a particular time stamp. For
example the first line of the trace shows that at the timestamp of 74 µs (80 µs for RTL
100,000 ns respectively) the actor Task 1 triggers the event of a context switch on the CPU
into Task 1. In the table the actors are application two tasks (Task 1 and Task 2) as well
as the FreeRTOS meta task (#WFR) for handling and scheduling tasks and other events.
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Table 3. Excerpt from a FreeRTOS Tracealyzer log with the TLM PLIC and two configurations of the
RTL PLIC.

Timestamp/µs
Actor Event

TLM RTL (10 ns) RTL (100,000 ns )

74 74 80 Task 1 Context switch on CPU 0 to Task 1

165 165 175 #WFR Context switch on CPU 0 to #WFR

165 165 175 #WFR xSemaphoreGiveFromISR(0x800545DC)

165 165 175 #WFR Actor Ready: Task 2

165 165 177 Task 2 Context switch on CPU 0 to Task 2

165 165 177 Task 2 xSemaphoreTake(0x800545DC, 100)

167 167 179 Task 2 xSemaphoreTake(0x800545DC, 100)blocks

167 167 - Task 1 Context switch on CPU 0 to Task 1

173 173 179 Task 1 Actor Ready: TzCtrl

173 173 180 Task 1 Context switch on CPU 0 to Task 1

265 265 275 #WFR Context switch on CPU 0 to #WFR

The TLM-based simulation provides the baseline that can be compared with the RTL
simulations. The RTL simulation with a clock period of 10 ns follows the TLM simulation
in lockstep. RTL with 100,000 ns lags behind the events due to its late synchronization
(and loses a time stamp around 167 µs reference time), but can be executed almost with the
same host system execution time as the TLM simulation. While functionally covering the
same tasks in the same order, the non-functional aspects like timings change, which in turn
would require the faster clock periods with the higher simulation run time.

Such non-functional aspects only become visible on a system-level integration and
not during the unit-level. With the VP-aided development flow, the RTL peripherals can
be integrated early into a full (prototype) system and checked for possible non-functional
faults and mismatches. At the same time, the system-level also allows errors to be visible if
execution traces of RTL and TLM peripherals and their system interaction is compared.

We believe the application driven co-simulation method aids synergistically and
complements the CGF based method, thus allowing for a seamlessly and widely applicable
CLV methodology that is available at the unit- and system-level.

6. Conclusions and Future Work

In this work we presented a Cross-Level Verification (CLV) methodology for HW periph-
erals. The CLV methodology utilizes Coverage Guided Fuzzing (CGF) between TLM and RTL
descriptions as well as an application driven co-simulation to find and identify mismatches.
For the application driven co-simulation we integrate both models into the RISC-V VP in
order to enable system-level use cases such as executing an RTOS to simulate scenarios in
order to find timing behavior mismatches. The execution traces of these system-level scenar-
ios can be investigated for additional mismatches that cover non-functional aspects too. We
applied our methodology to a PLIC, a RISC-V compliant interrupt controller. Through the
CGF approach we find three mismatches across the TLM and RTL implementation. With
the application driven co-simulation we executed a FreeRTOS based application, which
utilizes interrupts and other components in order to model a system-level use case. We
investigated the application trace for various RTL clock speeds and observed mismatches
non-functional timing behavior. Furthermore, our additional insights gained through the
application driven co-simulations highlight the importance of such methods. To further
boost our approach we plan to:
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• Investigate more peripherals as well as combinations of peripherals under verification
in additional case studies in order to investigate the scalability and efficiency of our
approach more quantitatively.

• Compare the effectiveness of different state-of-the-art fuzzers (e.g., libFuzzer [7] vs.
AFL/AFL++ [31]) in order to highlight the trade-offs between available fuzzers for
input generation.

• Investigate how additional software-based verification methods (e.g., formal methods
such as symbolic execution) can be utilized to fill the coverage gap that usually exist
with simulation-based verification methods like CGF.

• Additionally, we envision to offer guidelines for verification and design engineers
for challenges along the development cycle. These considerations should cover how
to deal with various system-level aspects like system buses and their abstractions
between RTL and TLM.
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