
Powders 2023, 1, S1–S10. https://doi.org/10.3390/powders1010000 S1 of S10

Supplementary Materials: Size and shape selective classification
of nanoparticles
Cornelia Damm, Danny Long, Johannes Walter, and Wolfgang Peukert

S1. Code for creating the figures

All of the figures created in the main text (aside from the ones reproduced from other work) can be reproduced by
downloading the associated Matlab files from https://github.com/dklong-csu/nd_psds_final_report. There is a Matlab
script for each figure generated and a few additional files to define helpful functions.

S2. Details regarding multivariate normal and lognormal distributions

In the article, we present a formula for the multi-dimensional lognormal distribution (equation 6). This formula is
written concisely for publication through linear algebra notation, however we acknowledge that not all readers will be
familiar with this notation. For those readers whose background has not involved mathematics heavily, we would like to
walk through a few examples of what the verbose formulas are. Moreover, since many readers may not be familiar with
lognormal distributions or, more generally, multivariate distributions, we discuss the connection to the more familiar
normal distribution.

S2.1. Relating the normal distribution to the lognormal distribution

The univariate normal distribution is widely used in science. The probability density function is given by the formula

q(x) =
1

σ
√

2π
exp

{
−1

2

(
x − µ

σ

)2
}

, (1)

where µ is the mean value and σ is the standard deviation. The normal distribution is also described by its cumulative
distribution function

Q(x) =
∫ x

−∞
q(z)dz. (2)

In the context of a particle size distribution, Q(x) provides the percentage of particles smaller than size x (based on
the weighting of the distribution; see Section S3 for more on this). However, the normal distribution has an issue with
interpretation: negative values (i.e., negative sizes!) are included for x. Hence, the lognormal distribution is commonly
used to avoid this unphysical behavior.

The lognormal distribution is defined such that the natural logarithm of the independent variable (size) follows a
normal distribution. Vice versa, if data x follow a normal distribution, then y = exp(x) follow a lognormal distribution.
We can derive the equation for a lognormal distribution through calculus properties. We begin with the cumulative
distribution function:

Q(x) =
∫ x

−∞

1
σ
√

2π
exp

{
−1

2

(
z − µ

σ

)2
}

dz. (3)
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We now substitute variables with y = exp(z) ⇒ ln(y) = z. However, we are substituting within an integral and wish for
the integral to evaluate to the same value, hence we need to utilize u-substitution (or, in this case, y-substitution). The
calculus procedure for this is to replace z and the differential increment dz by noting

z = ln(y),
d

dy
(z) =

d
dy

(ln(y)),

dz
dy

=
1
|y| ,

⇒

dz =
dy
|y| .

(4)

Hence, in (3), we exchange every z with ln(y) and every dz with dy/|y|, which yields

Q(x̂ = ln(x)) =
∫ x̂

0

1
σ
√

2π
exp

{
−1

2

(
ln(y)− µ

σ

)2
}

dy
|y| . (5)

The integral bounds are computed as follows:

Lower: z = −∞ → y = lim
z→−∞+

exp(z) = 0,

Upper: z = x → y = ln(z) = ln(x) = x̂.

Therefore, by the fundamental theorem of calculus, the density function q(y) is equal to the integrand of (5):

q(y) =
1

yσ
√

2π
exp

{
−1

2

(
ln(y)− µ

σ

)2
}

, (6)

where we remove the absolute value from y in the preceding fraction since it is now understood that y only takes positive
values.

We can similarly understand the multivariate lognormal distribution through the multivariate normal distribution.
First of all, the multivariate normal distribution – where N is the number of dimensions – is defined as

q(x⃗) =
(

1
2π

)N/2( 1
|Σ|

)1/2
exp

(
−1

2
(x⃗ − µ⃗)⊺Σ−1(x⃗ − µ⃗)

)
. (7)

Here |Σ| is the matrix determinant, µ⃗ is a vector containing the average value for each dimension, and Σ is the covariance
matrix, which contains the variance and covariance terms.

The mean vector µ⃗ is a simple extension of the mean in the univariate case:

µ⃗ =
[
µ1 µ2 · · · µN

]⊺
µi =

∫
x⃗∈RN

xiq(x⃗)dx⃗.
(8)

For estimating the mean from sample data, the formula is also similar to the univariate case

x̄i =
1
n

n

∑
j=1

x(j)
i , (9)

where x(j)
i indicates the ith dimension of the jth data point and n is the number of data points.

https://doi.org/10.3390/powders1010000


Powders 2023, 1, S1–S10. https://doi.org/10.3390/powders1010000 S3 of S10

The covariance matrix is defined such that the element in row i and column j is

σij = E
[
(xi − µi)

(
xj − µj

)]
=
∫

x⃗∈RN
(xi − µi)(xj − µj)q(x⃗)dx⃗.

(10)

If i = j, then (10) is the traditional variance formula. In addition, σij = σji since the multiplication order in (10) does not
matter. This leads to

Σ =


σ11 σ12 · · · σ1N
σ21 σ22 · · · σ2N

...
...

. . .
...

σN1 σN2 · · · σNN

. (11)

If estimating the covariance from sample data, the formula for each entry of the matrix is

σij =
1

n − 1

n

∑
k=1

(
x(k)i − x̄i

)(
x(k)j − x̄j

)
. (12)

We can then derive the formula for a multivariate lognormal distribution in a similar manner to the univariate case.
Here, we perform the log transform for each dimension xi = ln(yi) and perform u-substitution for each to find

Q(x⃗) =
∫ x⃗

0⃗

(
1

2π

)N/2( 1
|Σ|

)1/2
exp

(
−1

2
(⃗z − µ⃗)⊺Σ−1 (⃗z − µ⃗)

)
d⃗z,

Substitute:

(⃗
z = ln(⃗y) ⇒ d⃗z =

dy⃗

∏N
i=1 |yi|

)
,

Q(w⃗ = ln(x⃗)) =
∫ w⃗

0⃗

N

∏
i=1

y−1
i

(
1

2π

)N/2( 1
|Σ|

)1/2
exp

(
−1

2
(ln(⃗y)− µ⃗)⊺Σ−1(ln(⃗y)− µ⃗)

)
dy⃗.

(13)

Therefore, the density function is

q(⃗y) =
N

∏
i=1

y−1
i

(
1

2π

)N/2( 1
|Σ|

)1/2
exp

(
−1

2
(ln(⃗y)− µ⃗)⊺Σ−1(ln(⃗y)− µ⃗)

)
. (14)

S2.1.1. Specific formulas for two-dimensional distributions

To make things more explicit, we can write the formula for the two-dimensional density functions without vectors
and matrices. Let

y⃗ =
[
y1 y2

]⊺,

µ⃗ =
[
µ1 µ2

]⊺,

Σ =

[
σ2

1 σ12
σ12 σ2

2

]
.

(15)

The determinant of a 2 × 2 matrix has a simple formula, so we have

|Σ| = σ2
1 σ2

2 − σ2
12. (16)

Similarly, the inverse of a 2 × 2 matrix can be written easily as

Σ−1 =
1

σ2
1 σ2

2 − σ2
12

[
σ2

2 −σ12
−σ12 σ2

1

]
. (17)
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With these facts, we can write the equation for a two-dimensional lognormal density with

q(y1, y2) =
1

2πy1y2

1√
σ2

1 σ2
2 − σ2

12

exp

(
−1

2
σ2

2 (ln(y1)− µ1)
2 − 2σ12(ln(y1)− µ1)(ln(y2)− µ2) + σ2

1 (ln(y2)− µ2)
2

σ2
1 σ2

2 − σ2
12

)
.

(18)

We can also write (18) in terms of the correlation for a more intuitive form. By definition, the correlation ρ satisfies
σ12 = ρσ1σ2. Therefore,

σ2
1 σ2

2 − σ2
12 = σ2

1 σ2
2 − (ρσ1σ2)

2 = σ2
1 σ2

2 (1 − ρ2), (19)

and by substituting (19) into (18), we yield

q(y1, y2) =
1

2πy1y2σ1σ2
√

1 − ρ2
exp

[
− 1

2(1 − ρ2)

((
ln(y1)− µ1

σ1

)2

− 2ρ

(
ln(y1)− µ1

σ1

)(
ln(y2)− µ2

σ2

)
+

(
ln(y2)− µ2

σ2

)2
)]

.

(20)

S3. Weighting particle size distributions differently

In the main article, a few nice relationships were made concerning transforming particle size distributions to be
weighted differently (e.g., number, surface, or volume weighted). It is worth showing how these relationships are derived,
but these proofs are tedious and would not contribute much to the main text. Instead, we provide our derivations here.

Let the dimension of the particle size vector x⃗ be N; that is, x⃗ ∈ RN . The most general result is as follows. If qr is
lognormal with mean µ and covariance Σ, then the generalized moment conversion to qk with

κ(x⃗) = C
N

∏
i=1

xbi
i

results in qr being lognormally distributed as well. If LN(µ, Σ) denotes the probability density function of the lognormal
distribution and

b⃗ :=
[
b1 b2 · · · bN

]⊺,

then it is the case that

qr(x⃗) = LN(µ, Σ)

=⇒ (by definition)

qk(x⃗) =
κ(x⃗)qr(x⃗)∫ ∞

0 κ(x⃗)qr(x⃗)

=⇒ (via my derivations below)

qk(x⃗) = LN(µ + Σ⃗b, Σ).

(21)

In the case that

q0(x⃗) = LN(µ, Σ),

and the particles are cylinders. We have that

x⃗ =
[
d ℓ

]⊺
and the conversion q0 → q3 is conducted via

κ(x⃗) =
π

4
d2ℓ.
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Therefore

b⃗ =
[
2 1

]⊺ (22)

and hence

q0(x⃗) = LN(µ, Σ)

=⇒

q3(x⃗) = LN
(

µ + Σ
[

2
1

]
, Σ
)

.

(23)

If the surface area of a cylinder is used as κ, then q2(x⃗) is constructed instead using

κ(x⃗) = πdℓ+
1
2

πd2

and as a result we find a weighted sum of two lognormal distributions

q0(x⃗) = LN(µ, Σ)

=⇒

q2(x⃗) = w1LN
(

µ + Σ
[

1
1

]
, Σ
)
+ w2LN

(
µ + Σ

[
2
0

]
, Σ
)

where

w1 =
πC1

πC1 +
1
2 πC2

and

w2 =
1
2 πC2

πC1 +
1
2 πC2

for constants

C1 = exp
{

1
2
[
1 1

](
Σ
[

1
1

]
− 2µ

)}
and

C2 = exp
{

1
2
[
2 0

](
Σ
[

2
0

]
− 2µ

)}
.

(24)

S3.1. Derivations
S3.1.1. General product of size components

First some notation. The following computations are easier to understand using inner-product notation from Linear
Algebra. Inner product for real-valued vectors is the dot product

⟨x, y⟩ := x⊺y.
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The following properties also hold for x, y, z, w being real-valued vectors, a being a scalar, and A being a real-valued
matrix:

Inner product is linear =⇒ ⟨x + y, z + w⟩ = ⟨y, z⟩+ ⟨y, w⟩+ ⟨x, z⟩+ ⟨x, w⟩
Inner product is linear =⇒ ⟨ax, y⟩ = a⟨x, y⟩

Matrix multiplication is linear =⇒ ⟨x, A(y + z)⟩ = ⟨x, Ay⟩+ ⟨x, Az⟩
Inner product has (conjugate) symmetry =⇒ ⟨x, y⟩ = ⟨y, x⟩

If A is symmetric =⇒ ⟨Ax, y⟩ = ⟨x, Ay⟩.

(25)

The covariance matrix Σ in a lognormal distribution is symmetric and positive-definite. This implies that Σ−1 exists and
is also symmetric.

Let a particle size distribution (PSD) be lognormally distributed. Denote this as q(x⃗) and let the parameters of the
lognormal distribution be µ and Σ. We then want to re-weight q(x⃗) to a different PSD qk(x⃗) through the generalized
moment method

qk(x⃗) =
q(x⃗)κ(x⃗)∫ ∞

0 q(x⃗)κ(x⃗)dx⃗
. (26)

Consider the special case of

κ(x⃗) = ∏ xbi
i .

The PSD q(x⃗) is lognormal and therefore – if the dimension of x⃗ is N – we have

q(x⃗) = (2π)−N/2|Σ|−1/2

(
N

∏
i=1

x−1
i

)
exp

{
−1
2

〈
ln(x⃗)− µ, Σ−1(ln(x⃗)− µ)

〉}
.

Therefore,

q(x⃗)κ(x⃗) =

(
N

∏
i=1

xbi
i

)
(2π)−N/2|Σ|−1/2

(
N

∏
i=1

x−1
i

)
exp

{
−1
2

〈
ln(x⃗)− µ, Σ−1(ln(x⃗)− µ)

〉}
. (27)

Note that

xbi
i = exp

(
ln
(

xbi
i

))
= exp(bi ln(xi))

and hence

N

∏
i=1

xbi
i =

N

∏
i=1

exp{bi ln(xi)} = exp
{
⟨⃗b, ln(x⃗)⟩

}
.

This can be substituted into (27) and the exponential terms can be combined to find

q(x⃗)κ(x⃗) = (2π)−N/2|Σ|−1/2

(
N

∏
i=1

x−1
i

)
exp

{
−1
2

〈
ln(x⃗)− µ, Σ−1(ln(x⃗)− µ)

〉
+ ⟨⃗b, ln(x⃗)⟩

}
. (28)
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Focus in on the expression inside the exponential. Using the properties (25), we perform a multivariate “complete the
squares” operation as follows:

− 1
2

〈
ln(x⃗)− µ, Σ−1(ln(x⃗)− µ)

〉
+ ⟨⃗b, ln(x⃗)⟩,

= −1
2

〈
ln(x⃗)− µ, Σ−1(ln(x⃗)− µ)

〉
− 1

2
⟨−2⃗b, ln(x⃗)⟩,

= −1
2

〈
ln(x⃗)− µ, Σ−1(ln(x⃗)− µ)

〉
− 1

2
⟨−⃗b, ln(x⃗)⟩ − 1

2
⟨−⃗b, ln(x⃗)⟩,

= −1
2

〈
ln(x⃗)− µ, Σ−1(ln(x⃗)− µ)

〉
− 1

2
⟨−Σ−1Σ⃗b, ln(x⃗)⟩ − 1

2
⟨ln(x⃗),−Σ−1Σ⃗b⟩.

Now let −Σ⃗b := c⃗. Then:

= −1
2

〈
ln(x⃗)− µ, Σ−1(ln(x⃗)− µ)

〉
− 1

2
⟨Σ−1⃗c, ln(x⃗)⟩ − 1

2
⟨ln(x⃗), Σ−1⃗c⟩,

= −1
2

〈
ln(x⃗)− µ, Σ−1(ln(x⃗)− µ)

〉
− 1

2
⟨Σ−1⃗c, ln(x⃗)⟩ − 1

2
⟨ln(x⃗), Σ−1⃗c⟩ − 1

2
⟨−µ, Σ−1⃗c⟩+ 1

2
⟨−µ, Σ−1⃗c⟩,

= −1
2

〈
ln(x⃗)− µ, Σ−1(ln(x⃗)− µ)

〉
− 1

2
⟨Σ−1⃗c, ln(x⃗)⟩ − 1

2
⟨ln(x⃗)− µ, Σ−1⃗c⟩+ 1

2
⟨−µ, Σ−1⃗c⟩,

= −1
2

〈
ln(x⃗)− µ, Σ−1(ln(x⃗)− µ + c⃗)

〉
− 1

2
⟨Σ−1⃗c, ln(x⃗)⟩+ 1

2
⟨−µ, Σ−1⃗c⟩.

To simplify notation, let µ − c⃗ := µ̂. With this substitution, we find:

= −1
2

〈
ln(x⃗)− µ, Σ−1(ln(x⃗)− µ̂)

〉
− 1

2
⟨Σ−1⃗c, ln(x⃗)⟩+ 1

2
⟨−µ, Σ−1⃗c⟩ − 1

2
⟨Σ−1⃗c,−µ̂⟩+ 1

2
⟨Σ−1⃗c,−µ̂⟩

= −1
2

〈
ln(x⃗)− µ, Σ−1(ln(x⃗)− µ̂)

〉
− 1

2
⟨Σ−1⃗c, ln(x⃗)− µ̂⟩+ 1

2
⟨−µ, Σ−1⃗c⟩+ 1

2
⟨Σ−1⃗c,−µ̂⟩

= −1
2

〈
ln(x⃗)− µ, Σ−1(ln(x⃗)− µ̂)

〉
− 1

2
⟨⃗c, Σ−1(ln(x⃗)− µ̂)⟩+ 1

2
⟨−µ, Σ−1⃗c⟩+ 1

2
⟨Σ−1⃗c,−µ̂⟩

= −1
2

〈
ln(x⃗)− µ + c⃗, Σ−1(ln(x⃗)− µ̂)

〉
⟩+ 1

2
⟨−µ, Σ−1⃗c⟩+ 1

2
⟨Σ−1⃗c,−µ̂⟩

= −1
2

〈
ln(x⃗)− µ̂, Σ−1(ln(x⃗)− µ̂)

〉
+

1
2
⟨−µ, Σ−1⃗c⟩+ 1

2
⟨Σ−1⃗c,−µ̂⟩

= −1
2

〈
ln(x⃗)− µ̂, Σ−1(ln(x⃗)− µ̂)

〉
+

1
2
⟨Σ−1⃗c,−µ̂ − µ⟩

= −1
2

〈
ln(x⃗)− µ̂, Σ−1(ln(x⃗)− µ̂)

〉
+

1
2
⟨Σ−1⃗c, c⃗ − 2µ⟩.

Therefore, we can express (28) as

q(x⃗)κ(x⃗) = exp
{

1
2
⟨Σ−1⃗c, c⃗ − 2µ⟩

}
(2π)−N/2|Σ|−1/2

(
N

∏
i=1

x−1
i

)
exp

{
−1
2

〈
ln(x⃗)− µ̂, Σ−1(ln(x⃗)− µ̂)

〉}

= exp
{

1
2

b⃗⊺(Σ⃗b − 2µ)

}
(2π)−N/2|Σ|−1/2

(
N

∏
i=1

x−1
i

)
exp

{
−1
2

(ln(x⃗)− µ̂)⊺Σ−1(ln(x⃗)− µ̂)

}
︸ ︷︷ ︸

Lognormal with mean µ̂ and covariance Σ→LN(µ̂,Σ)

.
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This is then substituted into the definition of qk(x⃗) (26) to find

qk(x⃗) =
exp

{
1
2 b⃗⊺(Σ⃗b − 2µ)

}
LN(µ̂, Σ)

exp
{

1
2 b⃗⊺(Σ⃗b − 2µ)

} ∫ ∞

0
LN(µ̂, Σ)dx⃗︸ ︷︷ ︸

=1

= LN(µ̂, Σ)

= LN(µ + Σ⃗b, Σ).

(29)

Therefore, we have shown that (21) holds.

S3.1.2. Surface area of cylinder

Given

q0(d, ℓ) = LN(µ, Σ)

and cylindrical particles, the conversion to q2(d, ℓ) is done with the surface area formula

κ(d, ℓ) := S(d, ℓ) = πdℓ+
1
2

πd2.

Thus we have

q2(d, ℓ) =
S(d, ℓ)q0(d, ℓ)∫ ∞

0 S(d, ℓ)q0(d, ℓ)dddℓ

=
πdℓLN(µ, Σ) + 1

2 πd2LN(µ, Σ)

π
∫ ∞

0 dℓLN(µ, Σ)dddℓ+ 1
2 π
∫ ∞

0 d2LN(µ, Σ)dddℓ
.

(30)

From the previous derivation we know that

dℓLN(µ, Σ) = exp
{

1
2
[
1 1

](
Σ
[

1
1

]
− 2µ

)}
︸ ︷︷ ︸

C1

LN
(

µ + Σ
[

1
1

]
, Σ
)

d2LN(µ, Σ) = exp
{

1
2
[
2 0

](
Σ
[

2
0

]
− 2µ

)}
︸ ︷︷ ︸

C2

LN
(

µ + Σ
[

2
0

]
, Σ
)

and thus we can substitute these into (30) to find

q2(d, ℓ) =
πC1LN

(
µ + Σ

[
1
1

]
, Σ
)
+ 1

2 πC2LN
(

µ + Σ
[

2
0

]
, Σ
)

πC1
∫ ∞

0 LN
(

µ + Σ
[

1
1

]
, Σ
)

dddℓ+ 1
2 πC2

∫ ∞
0 LN

(
µ + Σ

[
2
0

]
, Σ
)

dddℓ

=

πC1LN
(

µ + Σ
[

1
1

]
, Σ
)
+ 1

2 πC2LN
(

µ + Σ
[

2
0

]
, Σ
)

πC1 +
1
2 πC2

= w1LN
(

µ + Σ
[

1
1

]
, Σ
)
+ w2LN

(
µ + Σ

[
2
0

]
, Σ
)

,
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where

w1 =
πC1

πC1 +
1
2 πC2

,

w2 =
1
2 πC2

πC1 +
1
2 πC2

.

Hence, we find the result (24).

S3.2. Equations for distributions in Figure 2

In Figure 2 of the main text, a number-weighted particle size distribution is adjusted to be surface- and volume-
weighted. For demonstration purposes, we carry out the explicit calculation here. The parameters of the number-weighted
distribution q0(d, ℓ) are chosen such that the marginal distribution for the diameter has a median value of 20 nm and the
marginal distribution for the length has a median value of 100 nm. These choices lead to the parameters of the lognormal
distribution being

µ0 =

[
ln(20)
ln(100)

]
≈
[

3.0
4.6

]
. (31)

Then, we let

Σ0 =

[
ln(1.1) 0.3 ln(1.1) ln(1.1)

0.3 ln(1.1) ln(1.1) ln(1.1)

]
≈
[

0.1 0.003
0.003 0.1

]
. (32)

In (32), the value of 0.3 simply provides a correlation between d and ℓ. The values of ln(1.1) indicate that in the univariate
case of a lognormal distribution, 95% of the particles would be within the interval[

median/1.12, 1.12 × median
]
.

In other words, 95% of the diameters within[
20/1.12 = 16.5, 1.12 × 20 = 24.2

]
and 95% of the lengths within [

100/1.12 = 82.6, 1.12 × 100 = 121
]
.

The correlation term of 0.3 distorts these ranges in the multivariate distribution.
The volume-weighted distribution q3(d, ℓ) is computed with the formula in (23). Thus we can compute

µ3 = µ0 + Σ0

[
2
1

]
=

[
ln(20)
ln(100)

]
+

[
ln(1.1) 0.3 ln(1.1) ln(1.1)

0.3 ln(1.1) ln(1.1) ln(1.1)

][
2
1

]
=

[
ln(20) + 2 ln(1.1) + 0.3 ln(1.1) ln(1.1)
ln(100) + 0.6 ln(1.1) ln(1.1) + ln(1.1)

]
≈
[

3.2
4.7

]
⇒

q3(d, ℓ) = LN
([

3.2
4.7

]
,
[

0.1 0.003
0.003 0.1

])

(33)
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The surface-weighted distribution q2(d, ℓ) is computed with the formulas in (24). This gives

Σ
[

1
1

]
=

[
ln(1.1) + 0.3 ln(1.1) ln(1.1)
ln(1.1) + 0.3 ln(1.1) ln(1.1)

]
Σ
[

2
0

]
=

[
2 ln(1.1)

0.6 ln(1.1) ln(1.1)

]
⇒

C1 = exp
{

1
2
[
1 1

]([ln(1.1) + 0.3 ln(1.1) ln(1.1)
ln(1.1) + 0.3 ln(1.1) ln(1.1)

]
− 2
[

ln(20)
ln(100)

])}
≈ 0.0005

C2 = exp
{

1
2
[
2 0

]([ 2 ln(1.1)
0.6 ln(1.1) ln(1.1)

]
− 2
[

ln(20)
ln(100)

])}
≈ 0.003

w1 =
πC1

πC1 +
1
2 πC2

=
1
4

w2 =
πC2

πC1 +
1
2 πC2

=
3
4

⇒

q2(d, ℓ) =
1
4

LN
(

µ0 + Σ0

[
1
1

]
, Σ0

)
+

3
4

LN
(

µ0 + Σ0

[
2
0

]
, Σ0

)
=

1
4

LN
([

3.1
4.7

]
,
[

0.1 0.003
0.003 0.1

])
+

3
4

LN
([

3.2
4.6

]
,
[

0.1 0.003
0.003 0.1

])
.
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