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Abstract: Particle aggregation is essential in many industrial processes, spanning the pharmaceutical
and food industries, polymer production, and the environment, among others. However, aggre-
gation can also occur, in some processes, as a non-desired side effect. Thus, to be able to monitor
aggregation in industrial processes is of high importance to guarantee that the final, required product
characteristics are obtained. In this paper, we present an extensive review of the different techniques
available for monitoring particle characteristics in industrial processes involving particulate materials,
with special emphasis on aggregation processes. These methods include both off-line and on-line
techniques, based either on image acquisition techniques or different radiation scattering techniques
(light-scattering and ultrasound spectroscopy). The principles behind each technique are addressed,
together with their relevant applications, advantages, and disadvantages.

Keywords: aggregation; on-line monitoring; multiphase systems; laser diffraction spectroscopy (LDS);
optical coherence tomography (OCT); in-line microscopy; focused beam reflectance measurement
(FBRM); acoustic spectroscopy

1. Introduction

Particle aggregation is a chemical–physical process present in many industrial sectors
and procedures. Aggregation is an essential mechanism in processes such as spray drying,
granulation, and flocculation, among others [1–4].

In the case of spray drying or granulation, one can find these processes in production
sectors from the pharmaceutical industry [5], the food and detergent industries [6,7],
polymer production [7], etc.

Flocculation, on the other hand, is an essential stage in papermaking production
to guarantee the adequate retention of the filler and the adequate properties of the final
product [8,9]. It is also relevant in the textile industry in the production of technical
textiles [10], among others. In mineral processing in the mining industry, flocculation is also
an essential stage [11]. Additionally, it is also a crucial stage in effluent treatments [12–14] in
the primary treatment stage. Here, tuning the flocculation level is essential to guaranteeing
the adequate efficiency of the effluent’s primary treatment.

However, aggregation can also occur as a non-desired side effect. This can be the
case in crystallization processes [15,16] and in different particle production processes, such
as nanoparticle and microparticle production processes, including grinding, coating, and
encapsulation, among others [2,3]. Too strong flocculation may deteriorate the quality of
the end product; this is the case, e.g., for paper that is made of cellulosic fibers [17], even
when foam forming is used [18], and films made of cellulose microfibrils or nanofibrils
(CMFs or CNFs) [19,20].

Thus, to be able to monitor the presence or development of aggregates in industrial
processes is of high importance to guarantee that the required final product characteristics
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are obtained and, eventually, to be able to tune process conditions to guarantee that the
objectives/characteristics previously defined are reached. Additionally, the pre-evaluation
of aggregation in certain processes, based on preliminary lab tests, may be aimed at
optimizing the dosage of additives, evaluating the rate of aggregation, or evaluating the
properties of the aggregates obtained (size, strength, and structure), as has already been
performed, for instance in flocculation processes [21–23]. Usually, aggregation can be
described based on two parameters: the collision frequency and the collision efficiency [24],
and preliminary tests may allow us to obtain information about those parameters [24–26].

In general, when speaking about monitoring aggregation processes, we are referring
to both off-line and on-line techniques since both can be of high importance to guarantee
the adequate performance of the process and that suitable final product characteristics are
obtained. In the first case, off-line monitoring helps in pre-tuning the most favorable process
operation conditions, while on-line monitoring contributes to adequate process control.

The monitoring of aggregation processes is a relatively new field that has been as-
suming increasing importance in recent years, with an increasing number of publications
appearing in the literature either adapting already existing techniques or even presenting
new ones.

Levente et al. (2015) [27] present a comprehensive review of the current trends in the
field of process analytical technology (PAT), including PAT-based process monitoring and
control strategies, stressing their importance and applications in industrial manufacturing,
with a special focus on the pharmaceutical industry, but not exclusively.

Different techniques can be identified to monitor the kinetics of particle aggregation,
which are based on different measuring principles. Those techniques can be classified into
two groups: direct and indirect techniques. In the first group, we can include, essentially,
techniques based on image acquisition. This is the case for in-line microscopy [28–30] and
optical coherence tomography—OCT [31–33].

In the second group, we can mainly include techniques based on radiation scat-
tering, such as laser diffraction spectroscopy—LDS [21,23,34]; focused beam reflectance
measurement—FBRM [34–36], which has been widely used for flocculation monitor-
ing [36,37]; and ultrasound doppler spectroscopy [38], all of which are the ones that
have been most used.

In this review paper, we will describe the principles behind the different techniques
discussed above, their advantages and disadvantages, and their relevant applications
concerning aggregation monitoring as presented in the existing literature.

Mechanisms behind Aggregation Processes

Aggregation usually occurs as the result of orthokinetic aggregation caused by shear-
induced collisions.

After particle collision, different mechanisms can be responsible for particle aggrega-
tion, which also influence the characteristics of the aggregates obtained (size and structure).
These mechanisms are mainly based on the predominance of van der Waals interactions or
electrostatic interactions [4].

One of the factors that influences particle aggregation is the thickness of the electric
double layer around the particle surface. Any parameter favoring a decrease in the electric
double-layer thickness—for instance, pH or ionic strength [4]—will augment particle
aggregation. A lower electric double-layer thickness leads to a decrease in the energy
barrier in the Lennard–Jones diagram (Figure 1) and, thus, makes it easier for particles to
aggregate after collision [4].
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Figure 1. Lennard–Jones Diagram: influence of electric double layer thickness on the energy barrier.

Charge neutralization is, in general, a mechanism leading to particle suspension
instability and, thus, to aggregation [4].

On the other hand, electrostatic interaction between particles of opposite charges leads,
naturally, to particle aggregation [4]. This interaction can be the result of opposite charges
in a particle’s surface or regions of it, as observed in crystalline systems and clays [16].
Alternatively, it may arise from the creation of zones with an opposite charge in the same
particle surface because of additives adsorbing on the particle surface without completely
neutralizing it. This can happen, for instance, after using highly charged polymers to
induce aggregation, which act based on the “patching” mechanism [4,14] (see Figure 2).

Powders 2024, 3 79 
 

 

 
Figure 1. Lennard–Jones Diagram: influence of electric double layer thickness on the energy barrier. 

Charge neutralization is, in general, a mechanism leading to particle suspension in-
stability and, thus, to aggregation [4]. 

On the other hand, electrostatic interaction between particles of opposite charges 
leads, naturally, to particle aggregation [4]. This interaction can be the result of opposite 
charges in a particle’s surface or regions of it, as observed in crystalline systems and clays 
[16]. Alternatively, it may arise from the creation of zones with an opposite charge in the 
same particle surface because of additives adsorbing on the particle surface without com-
pletely neutralizing it. This can happen, for instance, after using highly charged polymers 
to induce aggregation, which act based on the “patching” mechanism [4,14] (see Figure 
2). 

 
Figure 2. Scheme of the patching mechanism in aggregation (according to Bolto [14]). 

Hydrodynamic interactions can also induce aggregation. Using high-molecular-
weight polymers of low to medium charge density, which adsorb on the particle surface, 
can lead to interactions between the polymer chains. This gives rise to particle aggrega-
tion, driven by the so-called “bridging” mechanism (see Figure 3) [38]. 

Lennard-Jones Diagram 

Po
te

nt
ia

l e
ne

rg
y 

of
 in

te
ra

ct
io

n,
 Φ

 

Figure 2. Scheme of the patching mechanism in aggregation (according to Bolto [14]).

Hydrodynamic interactions can also induce aggregation. Using high-molecular-weight
polymers of low to medium charge density, which adsorb on the particle surface, can lead
to interactions between the polymer chains. This gives rise to particle aggregation, driven
by the so-called “bridging” mechanism (see Figure 3) [38].
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In some situations, depending on the system’s operation conditions and additives
used, different mechanisms can coexist simultaneously.

Another mechanism that can cause particle aggregation, especially in dry systems,
results from the presence of capillary forces [40]. This mechanism can be due to the presence
of a binder or simply result from the evaporation of the solvent in the feeding suspension.
Evaporation causes aggregation, e.g., in spray drying processes used in different industrial
sectors, such as pharmaceuticals, food, detergents, etc. [3,5,6].

The different aggregation mechanisms, discussed above, usually lead to aggregates
with different structures. For instance, aggregates produced through electrostatic interac-
tions are usually smaller, more compact, and more resistant to shear [4]. The same happens
if “patching” is the underlying mechanism [4]. On the other hand, if “bridging” is the main
mechanism, looser and larger aggregates will be obtained [4,22]. So, depending on the final
characteristics desired for the aggregates to be produced, different aggregation mechanisms
should be promoted in the process.

It is also important to stress that, in some processes, aggregate breakage can occur in
parallel with aggregate formation. This is, for instance, the case in papermaking, where
aggregation occurs in high shearing conditions, and as a consequence, the final charac-
teristics of the aggregates obtained are the result of the balance between aggregation and
breakage [8,41]. During breakage and re-aggregation, aggregate restructuring can occur,
for instance, because of the re-arrangement of polymer chains, and this usually leads, in
the end, to slightly smaller and more compact aggregates [34].

In many processes, it is important to evaluate the aggregates’ resistance to breakage,
which is also co-related to the prevailing aggregation mechanism and dependent on the
process’s operating conditions.

In this review, the focus will be on the discussion of available techniques/strategies
used to monitor aggregation processes, including imaging techniques, radiation scattering
techniques, and ultrasonic techniques. In the next sections, different techniques will be
presented in more detail, including the underlying principles, developments over the years,
and applications.

2. In-Line Microscopy

Imaging techniques can provide information about the evolution of particle charac-
teristics (size and morphology) in the process. Video-based microscopy is preferred for
process control since it allows for a quick analysis of the images to provide shape and
size characteristics.

One of the first on-line imaging systems to be developed was used for the on-line mon-
itoring of granule size distribution and shape in a fluidized bed granulation process [42].
The particle imaging probe included a CCD camera and an imaging processing system.
Continuous image acquisitions by the imaging probe were digitalized and processed by the
algorithm for image processing development, which involved filtering, binarization, noise
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reduction, labeling, and pattern recognition using parallel processing. In total, 4096 gran-
ules can be processed in a few seconds [41]. The application of this system to the dynamic
control of granule size and shape has been demonstrated [41].

There are several tools that are commercially available in this field: the Particle Image
System (Dupont); PVM (Particle Vision and Measurement—Mettler Toledo) [42]; the In Situ
Particle Viewer (IPSV—Perdix Analytical Systems) [43]; and photo-optical probes (such as
SOPAT) [44]. The last one is among the most recent, with high versatility and allowing for
a very high image processing speed because of the software developed.

The SOPAT probe is a photo-optical probe with integrated image analysis. It involves
an endoscope connected to a CCD high-speed camera as a microscope lens. A strobe
flashlight is guided by a fiber optic cable to ensure sharp images with an exposure of
1–10 µs, which allows for pseudo-static images (stroboscopy effectively stops the flow
during a measurement), as shown in Figure 4. Illumination plays an important role in the
settings; illumination intensity can be controlled to obtain clear and sharp images. This is a
high-speed probe that, depending on the system, can acquire up to 2500 images per second.
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The photo-optical probe from SOPAT can be used for low to relatively high particle
concentrations and is manufactured for use in extreme process conditions (up to 320 bar
and 450 ◦C). Also, it covers a particle size range from 0.5 to 10,000 µm. Moreover, it can
deal with different types of particles, including droplets and aggregates [46].

A specific configuration of the SOPAT probe must be selected depending on the
application. The most relevant properties to consider are the number and size of the
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particles to be measured and the transparency of the continuous and disperse phases.
These properties determine the angle and eventual overlapping of single-particle interfaces
and condition the way the illumination is guided. This system is designed with a narrow
depth of field to analyze higher particle concentrations [45]. It provides quantitative
information about the particles in the process regarding size, shape (circularity), and
morphology. One of the main features of this on-line photo-optical probe is the proprietary
image recognition algorithm (based on MATLAB) associated with this probe. This software
is based on two complementary methodologies: the pattern-matching methodology and
segmentation-based imaging processing. In the first case, a set of particles with similar
characteristics, representative of the system, is chosen, and typical features are extracted
and correlated during particle matching to identify similar objects in a series of images. A
normalized cross-correlation procedure is used. This methodology is highly effective when
objects appear in high contrast to the background and have a reasonable concentration in
the images (not too low; not too high). The user can define thresholds that decide how
close a match for the object is acceptable to the user-defined pattern [44]. Irregular particles
make the generation of a generic pattern more difficult.

The alternative procedure is segmentation-based image processing (flexible bound-
ary detection) [44]. This procedure is used to identify structures in an image. It allows
structures with complex boundaries to be detected. After initial image pre-processing,
segmentation is performed to identify structures in the images. The algorithm starts with
pre-filtering to enhance certain features of the images and remove irrelevant and misleading
information. Conversion into binary images is then performed with adaptive imaging
thresholding, overlaying of the resulting images, and double thresholding with morpho-
logical reconstruction. The identified segments are captured for a precise shape analysis.
The particles detected are classified, and after this training procedure, segmented particles
are compared, and particles possessing accepted features are retained. The segmentation
algorithm is better at identifying irregular particles. Figure 5 schematizes the two image
analysis procedures.
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segmentation-based processing) [44].

Image processing can supply different information about the particles analyzed: the
mean Feret or maximum Feret diameters, the Sauter mean diameter, the Martin diameter,
the particle circularity, and the aspect ratio [44]. Number distributions are usually supplied
as raw information, even if conversion into volume distribution can be performed.

Different applications of photo-optical probes (the on-line video microscope) in differ-
ent processes have already been reported in the literature, namely the following:

- The monitoring of crystallization processes [44];
- The monitoring of liquid–liquid emulsions [47];
- The monitoring of gas–liquid systems [48];
- The monitoring of drop size distribution (high concentration) in a pulsed column [49,50].

The present version of this on-line video microscope for in-line particle monitoring in
the process benefits from a very fast image acquisition and treatment system. This renders
it a very useful tool for in-line process monitoring. In the future, the possibility of using it
for control purposes coupled with other PAT tools can be considered. One of the limitations
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of this technique is the concentration that can be treated, even if, nowadays, with the
stroboscopic system and the adequate location of the probe, relatively high concentrations
can already be handled. Still, for instance, in the case of gas–liquid systems, the projection
of bubbles through other bubbles onto a camera sensor can lead to incorrect size measure-
ments. The optical properties of the system can also constitute a problem, as it is difficult to
handle systems with similar optical properties for the dispersed and continuous phases.
Also, by selecting the adequate image treatment algorithm, as described above, it is already
possible to handle irregular particles. Moreover, the quality and variability in the quality of
the images obtained greatly influence the success of the automated interpretation.

The main advantage of this technique is the possibility of directly observing the parti-
cles, which facilitates the introduction of modifications into the acquisition (the probe posi-
tion, illumination, etc.) to easily solve eventual drawbacks, for instance, particle overlap.

Monitoring Flocculation with In-Line Microscopy

Studies on the application of in-line microscopy for the monitoring of particle aggrega-
tion, specifically in industrial processes, are very limited, despite being a quite promising
technique for this field, considering the characteristics of the existing commercial equip-
ment. In a recent study [30], the possibility of using photo-optical measurement (a SOPAT
measurement system) to capture, in-line, the complex morphology of a clay system un-
dergoing flocculation induced by a cationic polyacrylamide was evaluated. This study
was performed in a lab-scale stirred tank equipped with different types of impellers. The
image-based analysis used a Convolutional Neural Network (CNN) trained for particle
detection. The camera used in the photo-optical probe captures a three-dimensional cylin-
drical measuring volume of 2.7 mm in diameter, which can reliably photograph particles
in a size range of 9–1200 µm. Keeping in mind dynamic changes in the system, one data
point corresponds to 300 acquired images at a frame rate of 12 images per second, which
corresponds to 6000–50,000 particles being analyzed per data point [30].

The image analysis algorithm by Panckow et al. (2021) [30] represents an advanced
methodology used to meet the requirements of floc detection. This study demonstrates
the detection of particles at various depths inside the bulk flow region [30]. As referenced,
a CNN architecture (U-Net) was employed in the image-processing chain [30] involving
different steps. One of the steps involved different training rounds (8), which enabled an
increase in the contour precision of the images. The authors mention that particle detection
with this neural network is very robust over a broad variety of operating conditions without
needing re-parametrization [30], which provides high-quality particle recognition for the
evaluation of the flocculation process based on the evolution of the size and shape of the
particles under different experimental conditions. The drawback of this methodology is
the very high amount of labor required.

The results presented in that study [30] show that, by using an in-line microscopy
system, the size distribution of morphologically complex clay flocs could be successfully
detected. By applying this measuring technique, the different phases of the flocculation
process could be identified. Also, the influence of the impeller characteristics (resulting in
different induced particle stress levels) on the flocculation process could be evaluated.

The maximum Feret diameter was chosen as a reliable parameter to characterize the
flocs to allow for a systematic analysis of the flocculation process, even if other parameters
were also calculated and tested to characterize floc sizes [30]. Additionally, the shape of
the flocs was also characterized based on the flocs’ circularity and aspect ratios. It was also
possible to assess how these parameters evolved with time and their dependence on the
impeller characteristics. Using the methodology described, it was possible to obtain further
insight into breakage mechanisms during the flocculation process.

Some studies have appeared recently in the field of biology aiming at the use of in-line
microscopy to monitor and study cell aggregation. This is the case, for instance, of the work
of Stuber et al. (2022) [51], which uses an in-house-developed in-line microscopy system to
detect cell aggregation in real time. The cells are cultivated and allowed to aggregate in a
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hanging droplet using a Teflon hanging drop device (THDD) developed by the authors,
and images are collected, on-line, every 30 min using an on-line video microscope system,
which is computer-controlled [51]. Image deconvolution was performed using the Huygens
Essential software [51]. Combining the THDD with on-line monitoring enables the study
of the kinetics and dynamics of characteristic changes in different cell types aggregation.

Also in the field of microorganism aggregation control, some recent studies mention
the use of in-site microscopy for that purpose, for instance, in biological wastewater treat-
ment processes, namely, by using laser scanning microscopy [52]. These new techniques
enable an in situ analysis of the structure, composition, and dynamics of the microbial
community [53]. The major challenges are related to the sampling procedure adopted,
which cannot damage the biomass integrity while allowing for the acquisition of sharp,
representative, and useful images. Further issues are related to the limited depth of focus
and the resolution at which the samples can be imaged, which depends on the wavelength
of the laser light used.

3. Optical Coherence Tomography—OCT

Optical coherence tomography (OCT) is a rather new optical measurement technique
that utilizes low-coherence, near-infrared light to obtain 1D reflectivity depth profiles
(A-scans) of the studied sample [32]. An extension of OCT, doppler optical coherence
tomography (DOCT) also enables the measurement of the depth profiles of local velocities
in a sample in the direction of the measurement beam [54]. Thus, 2D images (B scans) or
3D volumes can be constructed from a series of A-scans at different lateral positions.

The resolution and scanning speed of state-of-the-art laboratory OCT devices are
below one micrometer and hundreds of kilohertz, respectively. Although the performance
of commercial devices is lower, they are a more practical option for most researchers.
Currently, the most important manufacturer of generic OCT devices is Thorlabs (www.
thorlabs.com, accessed on 23 November 2023). Their devices enable the measurement of
structures and velocity fields simultaneously (see Figure 6a). There are many different
OCT devices available, and the optimal choice depends on the application. The maximum
scanning rates vary between 20 and 248 kHz; maximum imaging depths vary in the air
between 1.9 and 20 mm; and minimum axial resolutions in air vary between 3 and 14 µm.
Lateral resolution depends on the used optics and varies between 4 and 26 µm. Note that
in water, the maximum resolution and maximum imaging depth are 26% smaller.
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Figure 6. (a) Measurement of capillary flow with the Telesto I SD-OCT by Thorlabs, Inc., Newton, 
NJ, USA. (b) A Rheo–OCT setup where a Telesto I SD-OCT has been combined with a TA instru-
ments rheometer with a transparent vane-in-cup geometry. 

The achievable OCT imaging depth depends strongly on the studied material. The 
studied system needs to have enough, but not too many, light-scattering particles. OCT 

Figure 6. (a) Measurement of capillary flow with the Telesto I SD-OCT by Thorlabs, Inc., Newton, NJ,
USA. (b) A Rheo–OCT setup where a Telesto I SD-OCT has been combined with a TA instruments
rheometer with a transparent vane-in-cup geometry.

The achievable OCT imaging depth depends strongly on the studied material. The
studied system needs to have enough, but not too many, light-scattering particles. OCT
sensitivity decreases with increasing depth, and the penetration depth of the measurement
signal is very limited with highly scattering media. Optically dense particles can also

www.thorlabs.com
www.thorlabs.com
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block the penetration of the OCT signal deeper into the medium. This can produce dark
vertical lines in the OCT images. OCT can easily be combined with various (transparent)
flow geometries such as capillaries (see Figure 6a), pipes, and rotational rheometers (see
Figure 6b). Figure 7 shows examples of structural images taken with the Telesto I SD-OCT.

OCT is widely used for structural analysis, especially in the medical field [55], but also
in many other areas of science and technology. Examples of various industrial applications
are extensively documented in review papers [33,56], as well as in academic books [57,58].
OCT applications include crystallization processes in polymers [59], the thermal degrada-
tion of epoxy resin composites [60], automotive coatings [61], nanocomposites [62], quality
control for film coatings [63], biofilms [64], the drying of particle-laden droplets [65], and
fouling [66].
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Figure 7. Structural images taken with the Telesto I SD-OCT. (a) Images of a freezing polymer melt. 
(Unpublished. OCT imaging by Juha Salmela.) (b) Images of cellulose microfibrils (CMFs) in con-
centric cylindrical rheometer geometry with a one-millimeter gap. The numbers indicate the rhe-
ometer shear rates [67]. 

Unlike most other optical methods, OCT can also be applied to turbid and opaque 
materials, which makes it an attractive option for studying, e.g., particle suspensions [68]. 
Given its high temporal resolution, OCT can also be used to study relatively fast-moving 
suspensions. OCT needs optical access to the measured target, but the OCT beam is very 
thin, and the optical window needs to be only a few tens of micrometers wide. It is thus 
possible to make flow measurements in non-transparent pipes with a decent amount of 
preparatory work. 

Figure 7. Structural images taken with the Telesto I SD-OCT. (a) Images of a freezing polymer
melt. (Unpublished. OCT imaging by Juha Salmela.) (b) Images of cellulose microfibrils (CMFs)
in concentric cylindrical rheometer geometry with a one-millimeter gap. The numbers indicate the
rheometer shear rates [67].

Unlike most other optical methods, OCT can also be applied to turbid and opaque
materials, which makes it an attractive option for studying, e.g., particle suspensions [68].
Given its high temporal resolution, OCT can also be used to study relatively fast-moving
suspensions. OCT needs optical access to the measured target, but the OCT beam is very
thin, and the optical window needs to be only a few tens of micrometers wide. It is thus
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possible to make flow measurements in non-transparent pipes with a decent amount of
preparatory work.

Monitoring Flocculation with OCT

Applications of OCT to the analysis of particle dispersion flows are still rather limited
despite it being promising in this field. Lauri et al. [69] studied the distribution of single
red blood cells during capillary flow. Meeuw et al. [70] demonstrated the use of OCT in the
analysis of carbon nanotube–epoxy dispersions. The floc structure of CMFs was studied
with OCT in a rheometer using a concentric cylindrical geometry by Haavisto et al. [67] and
Saarinen et al. [71]. CMF floc structure during pipe flow was imaged with OCT by Kataja
et al. [72]. Jäsberg et al. used OCT in the analysis of the precipitation and agglomeration
of minerals on a hot surface during pipe flow [66]. CMF agglomeration (or flocculation)
during pipe flow was studied quantitatively by Koponen et al. [73] and Lauri et al. [74].
Below we will briefly review the work performed by Lauri et al., 2021 [74].

Lauri et al. [74] studied the flocculation of CMF fibrils during pipe flow with 0.4%,
1.0%, and 1.6% CMF consistency (w/w). A microscopic image of the used CMF grade is
shown in Figure 8. The experimental setup is shown in Figure 9. The studied suspension
was circulated in a flow loop equipped with a flow rate sensor and a temperature control
unit. The rheological measurements were performed consistently in a 2.5 m long glass
pipe with a diameter of 19 mm. Shear stress in the pipe was determined with a differential
pressure sensor—the distance between the measurement taps was one meter.
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Figure 8. A light microscopy image of the commercial-grade CMF Celish® KY-100G from Daicel 
Chemical Industries, Tokyo, Japan. (Image taken by Ulla Salo, VTT). 

The OCT measurements were performed with a Telesto I SD-OCT. The device depth 
resolution is approximately 5.6 µm in water. The lateral resolution is approximately 15 
µm. The maximum imaging depth range in water is 1.9 mm. As the A-scan consists of 512 
pixels, the pixel resolution is 3.7 µm. The available scanning rates are 5, 25, and 91 kHz. 
The OCT device was set to perform continuous A-scans, and the location of the OCT prob-
ing beam remained the same. The floc structure of the CMF suspension was captured in 
the resulting OCT images. There was a small angle between the beam and the normal of 
the pipe surface to prevent the reflected beam from hitting the OCT device. 

Figure 8. A light microscopy image of the commercial-grade CMF Celish® KY-100G from Daicel
Chemical Industries, Tokyo, Japan. (Image taken by Ulla Salo, VTT).

The OCT measurements were performed with a Telesto I SD-OCT. The device depth
resolution is approximately 5.6 µm in water. The lateral resolution is approximately 15 µm.
The maximum imaging depth range in water is 1.9 mm. As the A-scan consists of 512 pixels,
the pixel resolution is 3.7 µm. The available scanning rates are 5, 25, and 91 kHz. The OCT
device was set to perform continuous A-scans, and the location of the OCT probing beam
remained the same. The floc structure of the CMF suspension was captured in the resulting
OCT images. There was a small angle between the beam and the normal of the pipe surface
to prevent the reflected beam from hitting the OCT device.
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The floc sizes were determined in the radial (normal to pipe wall) and axial (along the
pipe) directions. The imaging depth was 500–700 µm depending on the CMF consistency.
The wall depletion layer close to the pipe wall was removed from the analysis.

The floc size analysis was as follows: the depth-dependent decay of the OCT signal
(see Figure 10) was first corrected by calculating the average OCT signal as a function of
depth and then scaling the pixel values at a given depth with it. This process ensures
that the average OCT signal is equal to the corrected image at each depth. Next, the OCT
images were resized to 11 µm × 11 µm pixels to account for the different radial and axial
resolutions. This step can be omitted if only axial floc sizes are calculated. Finally, the
resized images were thresholded using Otsu’s method [75], and the radial and axial floc size
distributions were calculated as run-length distributions. Figure 11a shows resized images
(upper row) and Otsu-thresholded images (lower row) for 0.4% consistency. Figure 11b
shows the radial and the axial floc size distributions for 0.4% consistency at various flow
rates (and shear stresses). Figure 12 shows the radial and axial floc sizes as a function of
shear stress for 0.4% CMF consistency. We see in Figure 12 that axial floc size remains
constant in the used shear stress region, whereas radial floc size drops by almost 30%
before saturation.
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Figure 9. The measurement configuration of Lauri et al. [61]. The CMF suspension was pumped 
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Figure 10. An example of a backscattering amplitude from OCT measurements. The CMF con-
sistency is 0.4%. The data were extracted from a graph from [61]. 
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Figure 9. The measurement configuration of Lauri et al. [74]. The CMF suspension was pumped from
the fluid tank to the pipe, which included the flow rate sensor and the temperature control unit. OCT
and pressure loss measurements were performed in the loop section, which consisted of a glass pipe.

To sum up, OCT is a versatile imaging technique that provides high-resolution images
of the size, shape, and distribution of particles in a medium. It offers real-time information
with a high data acquisition rate, making it ideal for monitoring dynamic aggregation
processes in complex environments. OCT’s ability to penetrate turbid media adds to its
usefulness in understanding particle aggregation. The main limitation of this method is the
measurement depth, which depends strongly on the optical properties of the medium.
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Figure 10. An example of a backscattering amplitude from OCT measurements. The CMF consistency
is 0.4%. The data were extracted from a graph from [74].
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Figure 11. (a) Resized images with a uniform pixel size of 11 µm (upper row) and corresponding 
Otsu-thresholded images (bottom row) for 0.4% CMF. The white color depicts the fibrils, and black 
corresponds to water [61]. (b) Floc size distributions in the radial and axial directions at a CMF 
consistency of 0.4%. The numbers in the legend show the wall shear stress and the flow rate in the 
pipe. The data were extracted from a graph from [74]. 

 
Figure 12. Radial and axial floc sizes as a function of shear stress for 0.4% CMF consistency. The 
data were extracted from a graph from [74]. 
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Figure 11. (a) Resized images with a uniform pixel size of 11 µm (upper row) and corresponding
Otsu-thresholded images (bottom row) for 0.4% CMF. The white color depicts the fibrils, and black
corresponds to water [74]. (b) Floc size distributions in the radial and axial directions at a CMF
consistency of 0.4%. The numbers in the legend show the wall shear stress and the flow rate in the
pipe. The data were extracted from a graph from [74].



Powders 2024, 3 89

Powders 2024, 3 88 
 

 

(a)

 

(b)

 
Figure 11. (a) Resized images with a uniform pixel size of 11 µm (upper row) and corresponding 
Otsu-thresholded images (bottom row) for 0.4% CMF. The white color depicts the fibrils, and black 
corresponds to water [61]. (b) Floc size distributions in the radial and axial directions at a CMF 
consistency of 0.4%. The numbers in the legend show the wall shear stress and the flow rate in the 
pipe. The data were extracted from a graph from [74]. 
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data were extracted from a graph from [74]. 
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Figure 12. Radial and axial floc sizes as a function of shear stress for 0.4% CMF consistency. The data
were extracted from a graph from [74].

4. Laser Diffraction Spectroscopy—LDS

Laser diffraction spectroscopy (LDS) is a particle size analysis technique based on
the acquisition of light scattered by particles in the forward direction when a laser beam
interferes with the particles. When the particle size is larger than the wavelength, light
scatters mainly in the forward direction. Then, if diffraction is the main scattering mecha-
nism, the particle surface conditions the scattered light, and particles of different sizes will
scatter light in the forward direction to different scattering angles. Larger particles scatter
predominantly for low angles, while small particles will scatter mostly for large angles (see
Figure 13) [76].

When a sample is being analyzed following this principle, by collecting the light
scattered by the particles for different scattering angles, it is possible, after signal treatment
(light intensity versus angle), to obtain information about the particle size distribution
in the sample. Depending on the relationship between the size of the particles and the
laser wavelength, different theories can be used to treat the signal acquired, corresponding
to the scattered light, to retrieve the particle size distribution. For large particles, Fraun-
hofer theory can be used, while for small particles, Mie theory has to be used, which
requires additional information about the optical properties of the system [21,76]. LDS
supplies information about the full particle size distribution, intensity, or volume-weighted
distributions for a wide range of particle sizes (0.3–3000 µm).

Additionally, through adequate signal processing, it is also possible to acquire infor-
mation about the particles’ structure by calculating the fractal dimension of the particles
or the scattering exponent [21,77]. This information is extracted by plotting, at a log scale,
the intensity of the light scattered for the different angles (θ) as a function of the scattering
vector (q = 4πn0/λ sin(θ/2); here, n0 is the medium refractive index. and λ is the laser
wavelength). Figure 14 presents an example of this plot.
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Figure 13. Diffraction scattering angles as a function of particle size.

The slope of this plot supplies either the fractal coefficient (dF) or the scattering
exponent (SE), depending on the region being considered. It is known that the fractal
dimension (dF) (or the scattering exponent) provides a way of expressing the degree to
which primary particles fill the space occupied by a nominal volume, supplying information
about the particles’ structure, namely, porosity [21,77]. Biggs et al. [22] indicate that
scattering patterns at small-length scales refer to the light scattered by primary aggregates,
whereas the large-length scales correspond to the light scattered from secondary aggregates
that resulted from the aggregation of the primary ones. The coefficient associated with the
slope of the small-length scales is the fractal dimension (dF), while the coefficient associated
with the slope of large-length scales (larger particles/aggregates) is the scattering exponent
(SE) (Figure 14) [77].

The fractal dimension, dF, relates the mass of a porous particle or aggregate with its
diameter (Equation (1)).

m(R) ∝ RdF (1)

Standard LDS commercial equipment—equipped with one or two different laser
sources of different wavelengths and with a set of circular detectors corresponding to
different scattering angles—can be used to monitor, off-line, aggregation processes and to
supply the corresponding aggregation kinetic curves [8,23], including information on the
influence of different parameters on the flocculation process [41,78]. This monitoring strat-
egy allows for the optimization of the flocculation conditions, selecting the best polymer
for the process, considering the target flocs’ sizes and structure and also optimizing the
flocculant concentration [79].
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Figure 14. Logarithmic plot of scattered light intensity (black dots) versus scattering vector. 
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Additionally, LDS can also be used to monitor, on-line, particle formation/evolution,
including aggregation processes. This is the case, for instance, for the system developed
by Ma et al. [80] that adapted LDS for on-line particle size measurement in a jet mill. The
main novelty of this study was the use of a CMOS detector (a complementary metal oxide
semiconductor) of 512 × 512 pixels (two-dimensional pixel array sensor) to improve signal
acquisition, enabling the direct measurement of the scattering patterns. This sensor is much
more flexible than the standard fixed-ring detection array.

LDS has also been used to monitor, on-line, crystallization processes, including moni-
toring the formation of crystals and their size evolution with time [81,82].

The Insitec system by Malvern Panalytical, UK, which is based on LDS, delivers
continuous particle size analysis. It can be used on-line, in either dry or wet systems,
to monitor or control processes (batch or continuous) [83]. Representative samples are
automatically and consistently delivered to the measurement zone in an appropriate
dispersed state and adequate concentration for analysis. Applications have been reported
for food, pharmaceuticals, fine chemicals, and cement sectors. Chan et al. [84] reported the
use of the Insitec PAT (process analytical technology) in the monitoring of maltodextrin
microsphere production in a pilot-scale spray dryer. An important feature was the purge
airflow, whose velocity had to be set to a value greater than that of the primary flow to
prevent the adhesion of the particles to the lens’s surface.

Despite the many advantages of this technique, such as the ability to continuously
monitor processes in which particulate materials change over time and to easily and
quickly adjust process conditions based on information about particle size distribution and
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structure, it is important to recognize certain limitations. These limitations relate mainly
to the maximum particle concentration that can be effectively monitored in the system
and the optical properties of the particles themselves. However, detection systems are
constantly evolving to be able to detect smaller signals, and signal-processing models are
also evolving to take into account different phenomena associated with the scattered light.

Monitoring Flocculation with LDS

Regarding monitoring aggregation processes, LDS has been mainly used in the moni-
toring of flocculation in different applications. It was proved by Rasteiro et al. in 2008 [23]
that LDS can be used for the continuous monitoring of the flocculation process, following
the evolution of both floc size and structure, provided by the scattering exponent, with
time [8,21], and allowing for the selection of the best conditions for a certain flocculation
process aimed at obtaining targeted floc characteristics [79,85].

These first studies were directed at the application of flocculation in papermaking,
studying the effect of polymer characteristics (molecular weight, charge density, and branch-
ing) on flocculation kinetics and floc characteristics (size and structure) when precipitated
calcium carbonate (PCC), a standard filler in papermaking, is flocculated with different
polyacrylamides [8,79]. Also, the effect of medium characteristics on the flocculation pro-
cess and floc properties could be evaluated with this technique [86]. Using this technique, it
was possible to screen, in an efficient way, a wide range of polymers, assessing the influence
of polymer properties on aggregate characteristics to select a polymer that produces flocs
with the right characteristics for the targeted application [21].

Figure 15a shows how the molecular weight of a polymer (polyacrylamide) influences
both flocculation kinetics and the size of the flocs produced when flocculating PCC particles.
Three polymers of the same charge density (c.a. 50%) and with different molecular weights
were used in this study (molecular weight order: E1 > E2 > E3), and it was possible
to conclude that the lower the molecular weight, the lower the size of the flocs, and,
additionally, the flocculation rate slows down.

By analyzing the evolution of the scattering exponent with time using the same three
polymers (Figure 15b), it is also possible to conclude that, with the lower-molecular-weight
polymers (E2, E3), more compact flocs were obtained.

Also, using LDS, it was possible to study the influence of polymer concentration on
flocculation kinetics and floc characteristics, allowing for the optimization of the polymer
dosage considering the targeted flocs’ characteristics.

Soos et al. [41] used LDS to investigate coagulation mechanisms during the flocculation
of polystyrene latex particles in turbulent flow using Al(NO3)3 as a coagulant, specifically
regarding how collision efficiency depends on shear rate. Floc size was continuously (on-
line) monitored using LDS. Through the tests conducted, the authors could also determine
the aggregates’ cohesive force for the conditions tested and the re-flocculation ability of
the aggregates formed (the reversibility of the aggregation phenomena). They concluded
that LDS provides a tool to measure, in detail, various parameters of systems undergoing
aggregation and breakage and, thus, to compare the performance of the process for different
operating conditions.

Mietta et al. [78] studied the effect of the electrokinetic charge of the bentonite, pH,
and ionic strength of the medium, on floc size and floc size evolution for different shear
rates. LDS was used to measure floc size distribution at different times, but no continuous
monitoring was performed. In this case, samples were taken from a mixing jar at discrete
times and analyzed with the LDS equipment.
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Figure 15. Evolution of PCC floc sizes with time using three polymers of different molecular weights 
for flocculation (a); evolution of SE and dF with time for the same process conditions (b). Monitoring 
was performed using LDS. 

By analyzing the evolution of the scattering exponent with time using the same three 
polymers (Figure 15b), it is also possible to conclude that, with the lower-molecular-
weight polymers (E2, E3), more compact flocs were obtained. 

Figure 15. Evolution of PCC floc sizes with time using three polymers of different molecular weights
for flocculation (a); evolution of SE and dF with time for the same process conditions (b). Monitoring
was performed using LDS.

In a more recent study, Wilkinson et al. [87] used LDS to evaluate the influence of
polymer characteristics on the flocculation of anisotropic bentonite clay particles. The
influence of the medium ionic strength was also evaluated. The objective was to check
the existence of different flocculation mechanisms depending on the conditions used. The
results obtained with LDS were compared with results obtained using X-ray diffraction.
Again, only discrete measurements were conducted for different flocculation times. Floc-
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culation was conducted in a jar vessel, and samples were withdrawn from that vessel at
different times. Fractal dimension characterization was performed using image analysis.

LDS has also been used with success to follow de-flocculation (breakage) and re-
flocculation events in certain processes [34,86], specifically in order to optimize the con-
ditions allowing for better re-flocculation in processes where aggregates are submitted to
high shear rates. Figure 16 shows how re-flocculation depends on polymer characteristics
when PCC flocs produced with two different polyacrylamides varying in molecular weight
(E1 has a higher molecular weight than E2) are subjected to sudden breakage (application
of ultrasounds, 20 kHz, for 30 s) and then allowed to re-flocculate after this shearing event.
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Figure 16. Kinetic curves for two polymers, E1 and E2, for three different concentrations, as well as 
floc breakage due to sonication at 20 kHz and re-flocculation. Monitoring was performed using LDS. 
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vailing mechanisms. Besides particle size distribution, the fractal dimension of the aggre-
gates was also calculated during each stage. Since different stages of flocculation and 
breakage were performed, the re-flocculation ability of the flocs formed could also be eval-
uated. 

In general, LDS can be used to optimize flocculation conditions, select the best poly-
mer for the process considering the target flocs size and structure, and optimize the floc-
culant concentration. 

LDS has also been used to optimize flocculation conditions in effluent treatment pro-
cesses. Lourenço et al. [89] used LDS to optimize polymer dosage and polymer character-
istics to treat, via flocculation, an industrial oily effluent from potato crisp manufacturing. 
In another study, Grenda et al. [12] used LDS to evaluate the performance of different 
cationic and anionic cellulose-based polyelectrolytes with different lignin content in the 
treatment, via flocculation, of a textile industry effluent, discussing the possible floccula-
tion mechanisms. 
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Figure 16. Kinetic curves for two polymers, E1 and E2, for three different concentrations, as well as
floc breakage due to sonication at 20 kHz and re-flocculation. Monitoring was performed using LDS.

Guerin et al. [88] used LDS to monitor, in-line, in a Taylor Couette reactor, floc forma-
tion and floc characteristics in a model suspension of latex microspheres using different
coagulants and a cationic polymer. The objective was to evaluate not only the influence of
the coagulant/polymer used on the floc characteristics but also how shear rate can influence
the formation of flocs and their respective characteristics considering different prevailing
mechanisms. Besides particle size distribution, the fractal dimension of the aggregates was
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also calculated during each stage. Since different stages of flocculation and breakage were
performed, the re-flocculation ability of the flocs formed could also be evaluated.

In general, LDS can be used to optimize flocculation conditions, select the best poly-
mer for the process considering the target flocs size and structure, and optimize the
flocculant concentration.

LDS has also been used to optimize flocculation conditions in effluent treatment
processes. Lourenço et al. [89] used LDS to optimize polymer dosage and polymer char-
acteristics to treat, via flocculation, an industrial oily effluent from potato crisp manu-
facturing. In another study, Grenda et al. [12] used LDS to evaluate the performance of
different cationic and anionic cellulose-based polyelectrolytes with different lignin content
in the treatment, via flocculation, of a textile industry effluent, discussing the possible
flocculation mechanisms.

When using LDS for the on-line monitoring of processes involving particulate systems,
the main advantage is the fast continuous acquisition of the particle size distribution of the
materials in the process. With this technique, it is possible to obtain full size distributions
every few seconds, depending on the system. Moreover, with this technique, thousands
of particles can be analyzed in each run. So, representativeness is another advantage. The
wide range of particle sizes that can be analyzed (0.5–3000 µm), as well as the fact that
no calibration is required constitutes another advantage of this technique. Additionally,
more recently, the possibility of also retrieving information about particle structures [21]
constitutes another advantage.

Regarding limitations, the main limitation is related to the range of concentrations
that can be used, which involves relatively low concentrations. However, there have been
improvements in the last few years; higher concentrations are now being analyzed, either
by introducing corrections in the signal treatment model (Mie theory) or through improve-
ments to the detection system. Another important feature is related to the optical properties
of the system. Inaccuracies arise when the refractive indices of particles and media are very
similar, even when using Mie theory to treat the signal. This is particularly relevant if loose
aggregates are being analyzed. Additionally, the fouling of the measurement window can
be a problem, even if strategies have been developed to avoid or minimize this problem,
especially in dry systems [80,83,84].

In summary, LDS is now considered a process optimization tool that can supply fast
information about the evolution of particle size in a system, helping to control and maintain
product quality by continuously streaming data to the control room.

5. Focused Beam Reflectance Measurement—FBRM

The FBRM technique is a real-time (on-line) monitoring tool for the determination
of the size and shape of particles in a process by measuring the chord length of the
particles. Chord length distribution (CLD) provides indirect information about particle size
distribution (PSD) [35].

The underlying principle of the FBRM instrument (from Mettler Toledo) consists of
scanning with a highly focused rotating laser beam (an infrared laser) at a fixed speed
(2 m/s) across particles in a suspension and the measurement of the time duration of the
backscattered light from these particles. The sapphire window at the probe tip allows us to
set the best focus point for the laser and for the propagation of the laser beam through the
system of interest. The temporal duration of the reflection from each particle (measured
crossing time) is multiplied by the velocity of the scanning laser and supplies information
about a characteristic measurement of particle geometry, the chord length [35,90]. Figure 17
is a schematic representation of the FBRM probe.
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Figure 17. Schematic representation of the FBRM probe (the image was obtained by coupling an in-
line microscope with FBRM). 

The probe detects pulses of backscattered light and relates them to the scanned chord 
lengths of particles (see Figure 18). 

 

Figure 18. Path of the focused beam and chord lengths of the particles. 

Thousands of chord length measurements are collected per second. These measure-
ments produce a chord length histogram in which the number of chords is sorted in dif-
ferent chord length intervals (bins) for a range of 0.5–1000 µm. For channel distribution, it 
is possible to use logarithmic or linear scales depending on which region a higher sensi-
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Figure 17. Schematic representation of the FBRM probe (the image was obtained by coupling an
in-line microscope with FBRM).

The probe detects pulses of backscattered light and relates them to the scanned chord
lengths of particles (see Figure 18).
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Thousands of chord length measurements are collected per second. These measure-
ments produce a chord length histogram in which the number of chords is sorted in different
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chord length intervals (bins) for a range of 0.5–1000 µm. For channel distribution, it is
possible to use logarithmic or linear scales depending on which region a higher sensitivity
is required for. Considering the width of the laser beam, lower-size-range acquisitions have
a higher uncertainty. Some statistical parameters—such as mean chord length, square mean
chord length, or cubic mean chord length; median; and the number of chords between any
size interval—can be extracted from the measurements. The more counts/channels are
acquired, the better the statistical stability is. Additionally, different strategies can also be
used to represent the histogram, such as number weight, square weight, and cubic weight,
which determine the sensitivity of the distribution to different regions of the population.
Figure 19 presents an example of a chord length distribution obtained via FBRM.
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Figure 19. Example of a chord length distribution obtained using FBRM [91]. 
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characteristic fingerprint of the particle, which is then used to convert the CLD into a PSD. 
Pre-information about the shape of the particles is, of course, necessary for this conver-
sion. Statistical and empirical models are usually favored when the objective is to trans-
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FBRM can also supply information about the particle size distribution of the particle
population. However, this requires a pre-definition/knowledge of the properties of the
particles to build a preliminary 3D model that can be used to convert the chord length
distribution into size distributions [90]. If no complementary information is available, in
standard FBRM data treatment, the particles are assumed to be spherical to obtain the
size distribution.

Previous studies have used a 2D representation of the particles to convert the chord
length distribution (CLD) to a full particle size distribution (PSD). This, however, leads
to a more inaccurate transformation of CLD into PSD [92]. Still, the construction of a
3D model also involves several assumptions; for example, the particles are assumed to
be static with respect to the laser beam during the chord measurement. Considering the
assumptions referred to, the CLD of a single particle is calculated, and this constitutes the
characteristic fingerprint of the particle, which is then used to convert the CLD into a PSD.
Pre-information about the shape of the particles is, of course, necessary for this conversion.
Statistical and empirical models are usually favored when the objective is to transform the
CLD into a particle size distribution [35,90].

It must be recalled that FBRM measurements can be affected by the distance of the
particles from the laser focal point, continuous medium characteristics (for example, the
refractive index), the refractive index of the particles, the existence of a multimodal size
distribution in the sample, and the sample concentration [35,90]. Thus, it is important to
control the operation conditions in the measurement system to guarantee a representa-
tive/accurate measurement. FBRM can be used in a particle size range of 0.5–1000 µm.

FBRM is mainly used as an in-line qualitative tool to access the evolution of particle
characteristics in different processes. One of the main advantages is the fast acquisition
of data, which allows for the monitoring of the rapid evolution of particle characteristics.
Examples of processes where FBRM is used for in-line monitoring and, especially, processes
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where it is already being applied as a reference technique are as follows: crystallization pro-
cesses, granulation processes, and flocculation/aggregation processes. In these processes,
FBRM is used to monitor size change kinetics and to track qualitative trends in particle
populations, providing good sensitivity to real-time changes in the count and dimensions
of particle populations, with the potential to be used for control purposes.

In the case of crystallization, FBRM can be used to follow nucleation, crystal growth,
agglomeration, attrition, and breakage of crystals [93–95]. It can be used to follow the pro-
gression of crystal size distribution in a batch crystallization process, that is, crystallization
kinetics, even if it does not directly provide the crystal size distribution. Additionally, it
allows for the evaluation of the response of crystallization to operation parameters such as
solute concentration and temperature. So far, it has been used in both batch and continuous
crystallization processes. In general, the FBRM technique shows potential to be part of
process analytical technologies (PATs) to monitor and control crystallization processes.

Another frequently found application is the monitoring of mixing processes. This is,
e.g., the case for the analysis of suspensions during the pre-clinical formulation stage in the
pharmaceutical industry [96]. Using FBRM, it is possible to obtain real-time information on
suspension characteristics. For instance, it allows for the rapid in situ analysis of system
homogeneity. In these systems, FBRM can monitor particle sedimentation in the process, as
well as the attrition of particles and subsequent size degradation during prolonged stirring.
Also, in this case, it is possible to establish a correlation between particle concentration and
count rate for lower particle sizes. Overall, FBRM has shown the potential to be a useful
tool for qualitative and quantitative analyses of pharmaceutical suspensions.

In the case of flocculation, FBRM has proven to be suitable for the rapid analysis
of flocculation processes [37]. It allows for the interpretation of the evolution of the
flocculation process of suspended particles in real time. Through this monitoring, it
is possible to optimize the flocculant dosage necessary for each type of suspension; to
obtain insight into predominant flocculation mechanisms; and to evaluate floc stability,
strength, and re-flocculation ability [34,37]. Thus, FBRM is a useful tool for optimizing
flocculation in different processes, specifically in environmental applications and the pulp
and paper industry.

FBRM has also been recently applied to real-time (on-line) monitoring in the fabrication
of composite materials, especially in the synthesis of various polyacrylamide composite
materials through an in situ polymerization process [97]. It could be effectively used
for the determination of particle-size-change kinetics, providing an understanding of the
material formation mechanism. FBRM can reveal different trends in particle size evolution
depending on the nature of the filler and the composites produced.

The main advantage of this technique is related to the speed of acquisition, which
allows for the monitoring of rapidly changing particulate systems and, thus, the acquisition
of information about the kinetics of transformation. Thousands of chord lengths are
counted every second, and a high sensitivity to changing particle sizes and counting can be
achieved in real time [91]. Moreover, it allows for the evaluation of a wide range of particle
sizes, going from 0.5 to 1000 µm. Also, as mentioned, it can be used up to intermediate
concentrations and track changes in particle concentrations in an easy way.

The disadvantages of FBRM are related to some limitations regarding the optical prop-
erties of this system: a too-high refractive index in the medium can cause absorption of the
laser beam by the carrier liquid and degrade the intensity of the focused beam. On the other
hand, similar optical properties of the particles and the liquid can cause “chord splitting”
phenomena (large and nearly transparent particles are not recognized as one chord but as
multiple small chords), which affects the accuracy of the measurements. Because of these
effects, some suspension characteristics can degrade the quality of the signal, for example, a
high concentration of particles can degrade the intensity of the focused beam and the return
signal. Fouling of the probe window can also have the same effect. Also, the measurement
signal can be affected by the rotation velocity. Additionally, the count rate for very small
particles is sometimes too low and affected by noise. Particles passing the measuring point
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must be sufficiently representative. FBRM is, in general, quite sensitive to experimental
conditions; for instance, particle mean size and solid concentrations, as mentioned, have
a significant impact on the total counts and fouling index. To achieve the best sensitivity,
probe location, probe angle, the duration of data acquisition, and data averaging need to be
optimized. For instance, placing the probe in an inclined position can reduce fouling.

In summary, FBRM can be considered a rather powerful PAT technique since it can be
used on-line and in situ, without the need for sampling, to monitor changes in certain pro-
cesses. CLD measurements provide, however, only indirect information about the particle
size distribution, which, nevertheless, supplies information about the overall microscopic
properties of interest to characterize the quality/characteristics of solid particles. Presently,
studies are ongoing regarding the use of FBRM for control purposes in different processes,
in particular, crystallization processes.

Monitoring Aggregation with FBRM

Regarding the monitoring of aggregation processes, FBRM has been mainly used to
monitor flocculation processes [37,98], including re-flocculation ability [34]. Still, lately,
FBRM has found application in the monitoring of other aggregation processes, including
granulation processes [99], flotation during mineral treatment [100], and the onset of
asphaltene aggregation during crude oil extraction or processing [36].

In the case of granulation, FBRM was applied to study, in-line, granule growth kinetics
in a fluidized bed granulator [99]. The effect of different parameters on the granules’
growth was evaluated, and the spray rate was found to be the most significant factor.
The CLD evolution measured by FBRM confirmed that the granule agglomeration was
mainly dominated by the amount of binder on the granule surface. FBRM proved to be a
valuable PAT tool to be applied to high shear granulation, supplying process information
immediately and, thus, providing opportunities to control the granules’ growth.

FBRM has also been used recently to monitor in situ particle aggregation during
the agitated flotation of chalcopyrite in saline water [100]. The objective was to evaluate
kaolinite aggregation in order to assess which conditions lead to a reduction in kaolinite
entrainment, thus guaranteeing the higher recovery of the floated chalcopyrite and a
selective reduction in kaolinite entrainment. This study enables a better understanding of
the selective entrainment of undesired particles/materials during mineral flotation, leading
to the better design of future systems using different polymers.

In the case of a study directed at the monitoring of asphaltene aggregation, to mimic
what happens during crude oil extraction or production, which can lead to plugging
problems, FBRM was used to continuously monitor asphaltene aggregation in the presence
of different precipitants, supplying the kinetic evolution of aggregate sizes [36]. In this case,
FBRM presented the additional advantage of the capacity to be applied at higher pressures
and temperatures in comparison with other techniques. In the study conducted, it was
possible to identify the conditions that can lead to asphaltene aggregation, which should
be avoided, and guarantee more stable asphaltenes.

So far, the most widely reported application of FBRM in the monitoring of aggregation
processes is in the field of flocculation monitoring. The first studies in this field were
from Blanco et al., who reported, for the first time, in 2001, the use of FBRM to measure
flocculation related to papermaking [98]. Other studies from the same research group ap-
peared later, also regarding the flocculation of filler in papermaking [37], with the objective
of identifying the optimum flocculation conditions that allow for simultaneously good
retention and drainage in papermaking, also guaranteeing the adequate re-flocculation
of the suspension. According to Angles et al. [37], the availability of a sensor to directly
monitor flocculation can considerably improve process control. FBRM can be used in the
laboratory or directly on-line [37]. Using this monitoring strategy, it is possible to optimize
the flocculant concentration and type for a certain pulp fraction and to determine the
strength of the flocs, the behavior of the different types of flocs under the influence of shear
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forces, and the respective re-flocculation levels [37]. Thus, FBRM is a very useful tool for
optimizing flocculation and providing a better understanding of flocculation mechanisms.

FBRM was also used by Antunes et al., 2015 [34], to continuously monitor the floc-
culation and re-flocculation of PCC-particles targeting applications in papermaking. The
objective was to evaluate the possible advantages of using branched polyacrylamides in
the flocculation process, specifically in relation to the size and structure of the obtained
aggregates. However, since branched polymers can hinder the re-flocculation capacity of
aggregates, the possibility of introducing clay particles (bentonite) into the system after
aggregates breakage was also considered, leading to positive results. Figure 20 presents the
kinetic curves obtained for this process, where FBRM was used to monitor the flocculation
process, comparing results using a linear polymer and a branched polymer of a similar
molecular weight.
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Figure 20. Monitoring PCC flocculation using FBRM: breakup of flocs and re-flocculation with
bentonite addition. (a) flocculant used, E1; (b) flocculant used, E1++++ [34].

It was found that bentonite significantly improved the re-flocculation stage, especially
when the branched polymer E1++++ was used. In this study, FBRM monitoring was
compared with monitoring using LDS. The trends obtained using both techniques were
similar, even if the accurate monitoring of the initial instants of flocculation was more
difficult when using FBRM. On the other hand, FBRM is better suited for speedy analysis
of the flocculation processes.

In another study [101], FBRM was used to monitor, in real time, aggregate formation
in kaolin suspensions, specifically with respect to the relationship between operation
conditions and aggregate structure. Flocculation was conducted in a Couette mixing device.
The influence of the co-addition of bentonite to enhance the flocculation process was also
evaluated using FBRM. The advantages of using FBRM are most evident in the ability to
capture the onset of aggregation, co-relating the FBRM response to a significant elevation
of the settling rate. FBRM is a viable option for controlling the flocculation process and
more effectively optimizing flocculant dosage requirements, identifying relative trends in
the flocculation process as a function of different operation parameters. The responses for
settling rate versus mean square-weighted chord length after flocculation could be used to
successfully identify differences in the mineralogy of clays and differences in aggregate
density due to mixing conditions during flocculation. In general, FBRM has shown the
potential for flocculation control.

FBRM was also used in another study to monitor wastewater treatment systems [102].
FBRM was applied to a full-scale municipal wastewater treatment plant, measuring, in situ,
activated floc size distributions. The issue of the optimal focal point was discussed in this
study. It is essential to optimize the focal point of the FBRM probe. This is especially true
for highly irregular particles and large flocs. The optimum focal point corresponds to the
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point leading to maximum reflectance. At high solid concentrations, the signal becomes
increasingly shadowed with increasing focal distance. So, in concentrated suspensions, the
focal point has to be close to the sapphire window. FBRM proved to be able to determine
the spatial evolution of PSDs in settling tanks for a wide range of solid concentrations and
to be able to be used in the evaluation of the performance of settling tanks.

In another study [103], FBRM was successfully used to evaluate, in-line, whether
flocculation was occurring as expected during the production of cement reinforced with
cellulose fibers. The measurements were performed in an industrial Hatschek machine
using different mineral raw materials and flocculants. FBRM enabled the quantification of
flocculation changes resulting from changes in flocculant dosage and the type of flocculant.
Also, a good correlation was obtained between the FBRM data and the density of the final
product. Thus, FBRM can be used as an alarm sensor to predict eventual quality problems
related to low density values in the final product.

6. Ultrasonic Monitoring

Ultrasonic techniques are quite common for characterizing colloidal dispersions and
suspensions [104]. The attenuation of ultrasonic waves as a function of frequency depends
on the concentration, size, and density of the particles. Figure 21 presents a typical scheme
of an ultrasound attenuation device. Ultrasound typically works with concentrated systems
that are out of reach for optical methods because of opacity [104]. Also, the technique is
quite suited for on-line applications in process monitoring [104].
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Figure 21. Scheme of an ultrasonic attenuation system for particle characterization.

Ultrasound backscattering techniques have been developed for various health applica-
tions, including blood cell monitoring [105]. Analyses of changes in the scattering power
spectrum of the echoes resulting from the interaction of ultrasound with particles have the
potential to detect the particles’ structures. However, here, an adequate model is needed to
treat the signal [106]; this can be, e.g., the structure factor model (SFM) [107].

In the case of ultrasound attenuation, particles affect the speed and attenuation of
ultrasonic waves in a suspension, and an acoustic attenuation spectrum is obtained over
a defined frequency range. Information is obtained by measuring the attenuation of a
low acoustic wave by the disperse phase at various frequencies. The changes observed
depend on the particle size and concentration. Acoustic wave attenuation via dispersion
(α), as a function of frequency, is obtained based on the amplitude of the collected wave
signal. The phase of the wave signal is used to determine the speed of sound through
the dispersion [108]. The attenuation of sound by the suspension provides important
information, particularly related to particle size and concentrations.

The interaction of ultrasound waves with particles is well described, in most cases,
by the mathematical framework known as the ECAH theory (Epstein, Carhart, Allegro,
and Hawley) [38,109], which predicts the attenuation spectrum by taking into account
three main types of particle–wave interactions: thermo-elastic, scattering, and visco-elastic
effects. This model can cover a wide range of particle sizes.

It has been demonstrated that acoustic spectroscopy, based on ultrasound attenuation,
provides interesting information to monitor particulate processes, even if does not lead to
precise PSD results [38].

Ultrasound backscattering analysis, has, so far, been mainly applied to blood con-
trol [97,106]. Here, the approach is to analyze the magnitude and frequency dependence of
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backscatter echoes when the ultrasound wave interacts with red blood cells (RBCs) [107].
Savery and Coultier, 2001 [107], proposed the structure factor model (SFM) to predict
backscattering by RBCs or their respective aggregates. The structure factor is related to
the standard Fourier transform of the projection on the ultrasound propagation axis of
the total correlation function. The ultrasound scattering power strongly depends on the
frequency. The slope of the scattering power versus frequency depends on the size of the
disperse phase in a limited frequency range. As the disperse phase increases in size, the
frequency dependence becomes weaker, and the scattering power increases. That is, both
the frequency dependence and the intensity of the scattering power depend on the size of
the disperse phase [105].

Another cellular ultrasound imaging technique, based on backscattering, uses the
structure factor size and attenuation estimator (SFSAE) to estimate RBC size, including
aggregate size [110]. In these systems, high-frequency ultrasounds are used. The SFSAE
uses a spectral model that can extract information about the mean aggregate diameter
based on the analysis of radio frequency echoes backscattered by blood.

From what has been presented, we can conclude that ultrasound (acoustic spec-
troscopy) can be applied to monitor on-line and in situ concentrated systems, allowing for
the real-time monitoring and control of industrial processes. Also, these systems are robust
enough to be placed, for instance, inside a chemical reactor, allowing for the real-time
measurement of particle size and concentration, evidencing suitability to be used in an
industrial environment. Despite its similarity to light-scattering techniques, the ultrasound
technology is not restricted by the optical properties of the system. Also, it can be made
portable and robust for application in hostile environments.

Additionally, as also referred to above, ultrasounds are a promising, reliable, and non-
invasive tool for the in vivo measurement of RBC characteristics, including the presence of
aggregates in the blood.

The application of ultrasound has been reported in the literature to monitor crystalliza-
tion from solution, in real time, as shown in Figure 22, enabling to distinguish crystalline
dispersion states and crystal morphology; obtaining the volume fraction of the disperse
phase and the size of the particles, as well as the progress of the crystallization process; and
detecting the final product forms [110–112].
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Figure 22. Scheme of an ultrasonic attenuation spectroscopy sensor for monitoring particle size evo-
lution during cooling crystallization (adapted from [112]). 
Figure 22. Scheme of an ultrasonic attenuation spectroscopy sensor for monitoring particle size
evolution during cooling crystallization (adapted from [112]).

The onset of crystallization can clearly be seen in the ultrasonic attenuation response,
which increases significantly at that moment, particularly at high frequencies [112,113].
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Ultrasonic attenuation is sensitive to the onset of nucleation. Ultrasounds have also been
used to monitor the growth of the volume fractions of crystals. This type of monitoring
can be important in different industrial sectors, particularly in the pharmaceutical and
agrochemical sectors.

The long-term objective for ultrasonic characterization is to provide an on-line instru-
ment that will measure crystal size distribution immediately after nucleation occurs and
to update information in real time as crystal growth takes place. This technique has the
potential to be incorporated into rugged instrumentation for monitoring crystallization in
an industrial process environment.

Ultrasonic attenuation has also been used for the real-time monitoring of the size
and concentration of nanoparticle synthesis [108], providing real-time monitoring of the
growth of nanoparticles. Nanoparticles affect the speed and attenuation of ultrasonic
waves through dispersion. This method is cheap and can perform measurements at high
concentrations in opaque dispersions, allowing for real-time measurements. Ultrasounds
can also be used to characterize colloidal dispersions, in real time, based on the attenuation
approach [104].

At the industrial level, there are several industrial applications where a yes/no decision
is required from a monitoring system to determine whether the production process remains
within specifications. Ultrasound monitoring can provide this information.

In addition, it is also important to stress the application of ultrasonic monitoring based
on ultrasound wave backscattering for monitoring, in vivo, blood cell aggregation in the
human body, which can contribute to the development of vascular complications [105,110].
Studies have been conducted aimed at explaining factors affecting the frequency-dependent
backscatter coefficient [106] and taking into account the attenuation effects of intervening
tissues between the probe and the blood flow. In the case of ultrasonic blood characteriza-
tion, the aim is to obtain quantitative parameters that reflect the RBCs’ state.

In what refers to aggregation monitoring, ultrasound measurements have been used in
different systems/processes to detect the existence of aggregation or to monitor aggregate
formation, including the kinetics of aggregation. This is, for instance, the case for the
monitoring of shear-induced floc disruption in oil–water emulsions through the analysis
of ultrasound attenuation [114] and also the monitoring of the flocculation of oil–water
emulsions [115]. Also, ultrasound has been used to monitor, on-line, the aggregation of
colloidal silica suspensions to evaluate the evolution of silica suspension properties during
aggregation [38]. In all these studies, the main advantage observed was the capacity to test
higher-concentration systems.

Regarding applications in health control, ultrasound techniques (based on backscatter-
ing) have been used in the last few years to monitor, in vivo, the aggregation of red blood
cells [105,110], which can have strong health implications.

The application of ultrasounds to monitor aggregation processes will be discussed in
more detail in the next section.

Monitoring Aggregation Processes Using Ultrasound

As noted, ultrasound has been used with success to monitor aggregation processes in
different systems. When referring to industrial processes, aggregation monitoring using
ultrasound is based on ultrasonic attenuation spectroscopy. The main advantage of this
monitoring strategy is related to the fact that it can be applied in highly concentrated
systems, even if the level of detail obtained is less than the one obtained when using other
approaches, for example, light-scattering strategies [104].

In one study, ultrasonic attenuation was used to study the flocculation of oil–water
emulsions, including the shear-induced disruption of the flocs, using low-intensity ultra-
sounds [114]. Ultrasound was successfully used to monitor the influence of shear on the
flocculation of emulsions. At low frequencies, the attenuation coefficient decreased with
increasing flocculation. The effect of surfactant concentration on emulsion flocculation
was also studied using ultrasonic attenuation [115]. The attenuation spectrum of floccu-
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lated emulsions depends on the fraction of flocculated droplets, floc size, and the packing
of droplets within the aggregate. Attenuation did reduce as the internal packing of the
droplets within the floc increased. These studies did show that ultrasounds are sensitive to
the state of aggregation of droplets in an emulsion and can be used to probe droplet–droplet
interactions. The flocculation of droplets in emulsions can be monitored by measuring
the frequency dependency of the attenuation coefficient. In summary, ultrasound offers a
sensitive tool to investigate the structure of concentrated and optically opaque emulsions.

The studies discussed above showed that the ECAH theory, referred to previously,
could be used to estimate the floc size of evolving flocs in an oil–water emulsion, assuming
the thermo-physical properties of the flocs are similar to those of the individual droplets.

Regarding the flocculation of dense colloidal silica suspensions of high concentration,
on-line acoustic spectroscopy was used in one study to evaluate the evolution of silica
suspension properties during aggregation processes, under flow conditions [38], based
on the analysis of the attenuation of the acoustic spectrum. Information about the size
evolution of the aggregates and the suspension concentration can be obtained by analyzing
the attenuation of ultrasound over a given frequency range. Again, the ECAH theory
was used to predict the attenuation spectrum. The influence of physicochemical and
hydrodynamic parameters on the aggregation process could be detected based on the
acoustic attenuation spectra. The direct analysis of spectra could supply information on
the kinetics of aggregation and also a fast comparison of the effect of different operation
parameters on the aggregation process.

As referred to before, ultrasonic monitoring has also been used in health applications
to evaluate the presence of red blood cell aggregates in blood, which can contribute to
the development of vascular complications [106]. In this case, the strategy used is to
monitor ultrasound backscattering. The objective is to obtain quantitative parameters that
reflect the RBCs’ aggregation stage. One of the most relevant parameters is the aggregates’
size. The magnitude and frequency dependence of the backscattered echoes depend on
the aggregation stage of the RBCs. A structure factor model (SFM) has been produced
to predict backscattering by blood aggregates. This SFM sums the contributions from
individual RBC interactions and models the cells’ interactions using a statistical mechanics
structure factor [106]. The main limitation of this model is the assumption of isotropic
aggregates, which can limit the use of the model in the case of pathological blood analysis.
These techniques require the use of high-frequency ultrasounds.

Tripette et al. [110] developed a new ultrasound imaging technique using the structure
factor size and attenuation estimator (SFSAE) to estimate, in vivo, RBC aggregate sizes in
diabetic patients non-invasively and in real time. The SFSAE factor uses a spectral model
to extract the mean aggregate diameter from the analysis of the backscattered ultrasound.

In a recent study, a new strategy for evaluating the condition of a patient’s blood using
medical ultrasound—which uses two new parameters determined from changes in the
backscattering power spectrum of the echoes from RBCs before and after the cessation of
blood flow—was developed [105].

In summary, ultrasound backscattering has the potential to measure, non-invasively,
RBC states, including their aggregation, in vivo and in situ, in flow conditions, specifically
in abnormal blood conditions.

7. Final Remarks

Particle aggregation plays an important role in many industrial sectors. In many cases,
aggregation is an important part of the process, but it can also be an undesired side effect.
In both cases, monitoring and measuring the level of aggregation is essential for ensuring
good performance in the process.

In this paper, we presented the current status of several methods for aggregate analysis.
These techniques have developed rapidly during the last few years, to a large extent because
of an increase in computing power and the development of new algorithms. On a laboratory
scale, most of these methods are quite straightforward to use, but the in-line analysis of
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real industrial processes is often also possible with proper pre-arrangements, even if a lot
of research is still required.

The discussed techniques have their advantages and disadvantages. Direct techniques,
such as in-line microscopy and optical coherence tomography, have an advantage in that the
interpretation of the measurement data is straightforward. Laser diffraction spectroscopy
and focused beam reflectance measurement are very fast, but they require proper models
to obtain the particle size distribution, especially for complex aggregates. Unlike other
optical methods, OCT works for turbid fluids if scattering is not very intensive. Ultrasonic
monitoring is a complementary method to optical methods, as it works for highly scattered
turbid fluids. However, it also necessitates good models to transform the measurement
data into meaningful information.

The presented methods offer a wide selection of options for both laboratory-scale
investigations and in-line processes. These methods have different advantages and disad-
vantages, and the choice between them has to be made considering the specific needs and
purpose of the application. In the future, the continuous improvement of these techniques,
and possibly emerging new ones, will further help to improve process control, thus ensur-
ing the desired results and products and reducing the undesirable consequences of particle
aggregation in different industrial applications.
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