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Abstract: Ground- and drone-based surface emission monitoring (SEM) campaigns were performed
at two municipal solid waste landfills, during the same week as mobile tracer correlation method
(TCM) testing was used to measure the total methane emissions from the same landfills. The G-
SEM and the D-SEM data, along with wind data, were used as input into an inverse modeling
approach combined with an optimization-based methane emission estimation method (implemented
in a tool called SEM2Flux). This approach involves the use of backward dispersion modeling to
estimate the whole-site methane emissions from a given landfill and the identification of locations
and emission rates of major leaks. SEM2Flux is designed to exploit the measured surface methane
concentration concurrently with wind data and tackle two problems: (1) inferring the estimates of
methane rates from individual landfills, and (2) identifying the likely locations of the main emission
sources. SEM2Flux results were also compared with emission estimates obtained using TCM. In
Landfill B, the average TCM-measured methane emissions was 1178 Kg/h, with a standard deviation
of 271 Kg/h. In Landfill C, the average TCM-measured emission rate was 601 Kg/h, with a standard
deviation of 292 Kg/h. For both landfills, the D-SEM data yielded statistically similar estimates of
methane emissions as the TCM-measured emissions. On the other hand, the G-SEM data yielded
comparable estimates of emissions to TCM-measured emissions only for Landfill C, where the D-SEM
and G-SEM data were statistically not different. The results of this study showcase the ability of this
method using surface concentrations to provide a rapid and simple estimation of fugitive methane
emissions from landfills. Such an approach can also be used to assess the effectiveness of different
remedial actions in reducing fugitive methane emissions from a given landfill.
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1. Introduction

Attention to methane emissions from all sources, including landfills, is significantly
increasing. This is due to methane’s high global warming potential, which is 84 times
that of carbon dioxide over a 20-year period. Methane concentrations in the atmosphere
have risen by more than 50% since preindustrial times, posing significant threats to the
environment and global development [1].

The decomposition of organic materials in landfills under anaerobic conditions ranks
as the third-largest source of methane emissions in the United States, trailing behind
enteric fermentation and natural gas systems [2]. Municipal solid waste (MSW) landfills
contributed to 17% of the total methane emissions in the US in 2021 [2]. Quantifying the
amount of fugitive methane emissions is very important in the efforts to report greenhouse
gas emissions at the facility level. Reducing fugitive methane emissions from landfills
stands as a critical element of greenhouse gas mitigation. To accomplish this goal, it is
imperative to closely monitor landfills to ensure compliance with environmental protection
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regulations, which includes monitoring fugitive gases like methane. This task entails two
fundamental steps: firstly, employing efficient and precise methods for detecting and
estimating landfill methane emissions, and secondly, but equally important, leveraging
these measurement data to plan remedial actions and to quantify and monitor the pre-and
post-remediation activities of methane emission rates.

As for landfill methane measurement, a wide range of methods have been successfully
deployed during the few past decades [3]. Measurement techniques vary from point/local
assessment to aerial/global surveys [4]. Closed and open surface flux chambers are histori-
cally the most used methods to perform single-point methane measurement. However, this
method is not appropriate for whole-site methane emission quantification [5]. Downwind
cross-plume scanning through radial plume mapping (RPM) coupled with wind measure-
ment can be used to measure emission fluxes [6]. RPM uses optical remote sensing (ORS)
by means of laser infrared radiation emissions [7]. Recently, the mass balance approach
has been applied using aircraft and unmanned aerial vehicles (UAVs) [8,9]. In this method,
atmospheric methane concentration measurements across the downwind plume at several
heights are employed to generate a vertical plane concentration profile. Combined with
wind data, measured methane mass is used to estimate the emission rate. Methodologies for
measuring landfill methane emissions also include the tracer correlation method [10]. This
method relies on the controlled release of a tracer gas on top of the landfill and subsequent
downwind measurements of both methane and the tracer gas. The total methane emission
from landfills can be calculated by correlating downwind concentrations with the known
emission rate of the tracer gas. More recently, satellite-based remote sensing techniques are
increasingly being used and deployed, taking advantage of innovative methane-specific
detection instruments [11].

In the US, landfill operators are required to perform surface emission monitoring
(SEM) campaigns on landfill surfaces to identify and remediate high-emitting zones quar-
terly. Such regulations caused SEM data to become the most abundant data related to
methane emissions in US landfills. Surface emission monitoring (SEM) can be performed
by employing walking-based measurements (using FID or equivalent equipment) or by
employing newer methodologies and technical advances offered through UAVs such as
drones [12–14]. Ground-based (G-SEM) campaigns are performed using relatively afford-
able equipment. However, scanning large areas can be time-consuming and may take
several days. In addition, G-SEM is limited to accessible parts of the landfill. In contrast,
drone-based (D-SEM) campaigns allow for the monitoring of difficult-to-access locations at
a given landfill. Furthermore, D-SEM allows for faster methane emission monitoring and a
larger sampling density as compared to G-SEM.

With the abundance of SEM data arises the question of how to make better use of
surface concentration measurements to locate emission sources and infer an estimate of
methane emissions at the monitored landfills, in other words, how to transform measured
methane concentrations (in ppmv) to an estimate of the emission rate (in Kg/h). Some
researchers tried to establish simple correlation equations linking surface methane concen-
trations to emission rates [12,13]. Ref. [15] used ambient air volatile organic compound
(VOC) measurements and Voronoi diagrams to predict the locations of potential methane
emission sources. Emission rates were then calculated using linear regression. Refs. [16,17]
used inverse plume modeling to estimate the whole-site methane emissions from a given
landfill. The proposed method was also used to identify high-emitting zones and emission
rates of major leaks.

The proposed method in this study builds upon previous work by Bel Hadj Ali
et al. [16] consisting of an inverse modeling approach combined with an optimization-
based methane emission estimation method. The fugitive methane emission estimation
method was implemented using SEM2Flux [16]. SEM2Flux is a tool implemented in
Matlab® (R2020a, MATLAB 9.8) and designed with a graphical user interface. The method
exploits measured surface methane concentration, simultaneously with wind data, to tackle
two objectives: inferring the estimates of methane rates and identifying the likely locations
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of the main emission sources. The G-SEM and D-SEM data were collected during the
same period when tracer correlation method (TCM) campaigns were performed at the two
landfill sites. This allowed for comparing estimates obtained through the SEM2Flux tool
with those obtained using the TCM approach. The remainder of the paper is organized
as follows: In Section 2, the main findings of the study are presented and discussed. In
Section 3, the studied landfills, fieldwork, and data collection are described. Section 3 also
includes a presentation of the main outlines of the SEM2Flux methodology. Finally, the
study’s main results and conclusions are presented in Section 4.

2. Results

As will be described in the Methods section, the fieldwork was performed at two
active municipal waste disposal sites located in Southeast, USA (Landfill B and Landfill C).
Three different monitoring methods were employed at each landfill during the same period:
ground-based SEM (G-SEM), drone-based SEM (D-SEM), and mobile tracer correlation
method (TCM). The measurement campaigns were carried out in 5 days at the two landfills.
Figures 1 and 2 show the serpentine path and the sampling points of the G-SEM and the
D-SEM data for both landfills. Note that the G-SEM and the D-SEM data were obtained
by different operators. Figures 1 and 2 showcase the difference in the sampling density
of G-SEM versus D-SEM. G-SEM data collection required multiple days as opposed to
D-SEM data collection. Figures 1 and 2 show that the extent of the area being sampled
was designed to cover the entire waste footprint. The different colors in Figures 1 and 2
correspond to the data collected on different days.

2.1. SEM Data Characteristics

Table 1 shows the summary statistics for the SEM collected data. For each dataset, the
maximum, minimum, median, mean, and standard deviation of methane concentrations
are presented in Table 1. The total number of readings, the surface area occupied by the
data, and the number of measurements exceeding 500 ppmv (exceedances) are also shown
in Table 1. Note that the background concentration (1.9 ppmv) was subtracted from all
measured methane concentrations prior to any statistical treatment.
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Figure 1. (a) G-SEM data for Landfill B; (b) D-SEM data for Landfill B. Figure 1. (a) G-SEM data for Landfill B; (b) D-SEM data for Landfill B.
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Figure 2. (a) G-SEM data for Landfill C; (b) D-SEM data for Landfill C (3 days because of drone
technical issues).

Table 1. Summary statistics of collected SEM data.

SEM Data (ppmv)

Data Name Dates Max Min Median Mean Std Dev. Count Exce. Area (Ha)

Landfill B Drone 12 April 2022 1603 0 26 55 90 23,398 98 62
Landfill B
Ground 13–14 April 2022 279 0 0 9 24 1898 0 68

Landfill C Drone 14 April 2022 787 0 2 7 20 51,867 7 152
Landfill C
Ground 14–16 April 2022 15,192 0 0 17 299 4894 21 152

In Landfill B, 23,398 surface methane concentrations were collected during the D-SEM
campaign as opposed to 1898 during the G-SEM campaign. The mean (average) of the D-
SEM data was 55 ppmv, with a standard deviation of 90 ppmv. The G-SEM data had a mean
of 9 ppmv and a standard deviation of 24 ppmv. A t-test was used to better investigate
the two measurement datasets. The calculated t-statistic was equal to 2.32. The t-test
performed at a 95% confidence level (1.96) revealed a statistically significant difference
between D-SEM and G-SEM datasets for Landfill B. This implies a statistically significant
difference between the means of these two datasets.

For Landfill C, 51,867 surface methane concentrations were collected using the drone,
as opposed to 4894 data points during the G-SEM campaign. The average methane concen-
tration for the D-SEM campaign was 7 ppmv, with a standard deviation of 20, as opposed
to 17 ppmv, with a standard deviation of 299 for the G-SEM data. Since the absolute value
of the calculated t-statistic (0.0776) was less than 1.96, the null hypothesis was rejected
when comparing the G-SEM and D-SEM datasets for Landfill C. Thus, at a 95% confidence
level, the means of datasets were not significantly different.

Table 2 shows the density of surface concentration reading per hectare of the surveyed
area. As expected, D-SEM allowed for sampling 10 to 13 times more points per hectare
than G-SEM. Note that the G-SEM spacing is dictated by the maximum spacing between
the walking path of the G-SEM operator (30 m). D-SEM allowed for a rapid survey of
the landfill and provided a larger number of concentration measurements compared with
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G-SEM. Table 2 shows the distributions of the surface concentration data from the G-SEM
and the D-SEM campaigns from both landfills.

Table 2. Distribution of D-SEM and G-SEM data collected at Landfills B and C *.

Data Name Data Density
(Number/Hectare) >500 ppmv 200 to 499

ppmv
100 to 199

ppmv 1 to 100 ppmv 0 ppmv

Landfill B D-SEM 376 98 (0.42) 1359 (5.81) 2438 (10.42) 11,169 (47.73) 8146 (34.81)
Landfill B G-SEM 28 0 (0) 4 (0.21) 24 (1.26) 628 (33.09) 1241 (65.38)
Landfill C D-SEM 340 7 (0.01) 90 (0.17) 262 (0.51) 26,933 (51.93) 23,424 (45.16)
Landfill C G-SEM 32 21 (0.43) 21 (0.43) 41 (0.84) 1828 (37.35) 2983 (60.95)

* All numbers in parentheses are %.

Table 2 shows the number and the percentile readings higher than 500 ppmv, which are
considered “exceedances” by the SEM regulations. Exceedances are likely to be caused by
leaks in the gas collection system or defects or cracks in the soil cover. The SEM regulations
require that areas with exceedances be remediated until surface methane concentrations
fall below 500 ppmv. For Landfill B, D-SEM data resulted in the identification of 98 (0.42%)
exceedances in need of remediation. Surprisingly, G-SEM performed at Landfill B contained
no exceedances. For Landfill C, 7 (0.01%) exceedances were identified with the D-SEM data,
and 21 (0.43) exceedances were identified with the G-SEM data.

The D-SEM data for both landfills consisted of 34.81% to 45.16% of zero ppmv (above
background). The G-SEM data consisted of 60.95% to 65.38% of zero ppmv (above back-
ground). The D-SEM data for both landfills consisted of 47.73% to 51.93% of 1 to 100 ppmv
(above background). The G-SEM data consisted of 33.09% to 37.35% of 1 to 100 ppmv
(above background). Therefore, the D-SEM data consisted of 83% to 97% of readings below
or equal to 100 ppmv. The G-SEM data consisted of 98% of readings below or equal to
100 ppmv (above background). For all four SEM data, the majority of the data consisted of
methane concentrations (above background) below 100 ppmv.

2.2. SEM2Flux™ Results

The measurement datasets obtained using G-SEM and D-SEM, along with wind
speed and wind direction measurements, were used as input using an inverse modeling
approach to determine the independent estimates of total methane emissions from Landfills
B and C, using the SEM2Flux tool, as described later in the Methods section. The output
of SEM2Flux corresponds to the optimal solution (source intensity and location) that
represents the best fit between measured and modeled concentrations. The search for the
optimal source configuration terminates when there is no improvement in the fitness of
the source configuration for a certain number of iterations. Three SEM2Flux runs were
performed for each G-SEM and D-SEM dataset. The results of the three simulations were
used to provide the average and standard deviations of total landfill fugitive methane
emission rates. Additionally, the SEM2Flux tool also yielded locations of major methane
emitting zones on the landfill and their individual emission rates in grams/second (g/s).
Table 3 shows the results of the SEM2Flux simulations.

Table 3. Summary of SEM2Flux simulations for Landfills B and C.

SEM2Flux Emission Results

Data Name Date N. Major Sources Total Fugitive
Emissions (Kg/h) StDev (Kg/h)

Landfill B D-SEM 12 April 2022 30 1309 331
Landfill B G-SEM 13–14 April 2022 12 531 75
Landfill C D-SEM 14 April 2022 15 657 214

Landfill C G-SEM 14–16 April 2022 12 573 99
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Thirty major methane emission sources were identified with SEM2Flux using the
D-SEM data collected from Landfill B. The 30 sources identified with SEM2Flux correspond
to an average total landfill fugitive emissions of 1309 Kg/h and a standard deviation of
331 Kg/h. The G-SEM data, on the other hand, yielded only 12 major emission sources,
corresponding to an average total fugitive emission rate of 531 Kg/h and a standard
deviation of 75 Kg/h. As expected, the G-SEM and the D-SEM data yielded statistically
different total fugitive emission rates because the actual data were shown to be statistically
different, as stated in the previous section.

For Landfill C, 15 and 12 major methane emission sources were identified with
SEM2Flux using D-SEM and G-SEM data, respectively. The total fugitive emission rate
estimated with SEM2Flux using D-SEM data was 675 Kg/h, with a standard deviation
of 214 Kg/h, and 573 Kg/h, with a standard deviation of 99 Kg/h using G-SEM data. In
Landfill C, the SEM2Flux results of G-SEM and D-SEM data were not significantly different.

Figure 3 shows the locations of the major methane emission sources as determined
with SEM2Flux using D-SEM for Landfill B and Landfill C. Figure 3a suggests that, for
Landfill B, the G-SEM data failed to identify some areas on the landfill responsible for the
majority of emissions (blue triangles) as opposed to the sources determined with the D-SEM
data (red squares). The red squares seem to be located in the central area of the landfill.
As for Landfill C, the G-SEM and D-SEM yielded generally sources in the same northeast
corner of the landfill. The SEM2Flux results from G-SEM data simulations demonstrate
that the emission sources identified at the northeast corner of Landfill C are responsible for
85.6% of the total methane emitted at the entire landfill. When D-SEM data were employed,
the results showed that the sources that were identified in the same zone contributed to
approximately 81% of the total estimated methane flux.

Methane 2023, 2, FOR PEER REVIEW 6 
 

corresponding to an average total fugitive emission rate of 531 Kg/h and a standard devi-
ation of 75 Kg/h. As expected, the G-SEM and the D-SEM data yielded statistically differ-
ent total fugitive emission rates because the actual data were shown to be statistically dif-
ferent, as stated in the previous section.  

For Landfill C, 15 and 12 major methane emission sources were identified with 
SEM2Flux using D-SEM and G-SEM data, respectively. The total fugitive emission rate 
estimated with SEM2Flux using D-SEM data was 675 Kg/h, with a standard deviation of 
214 Kg/h, and 573 Kg/h, with a standard deviation of 99 Kg/h using G-SEM data. In Land-
fill C, the SEM2Flux results of G-SEM and D-SEM data were not significantly different. 

Figure 3 shows the locations of the major methane emission sources as determined 
with SEM2Flux using D-SEM for Landfill B and Landfill C. Figure 3a suggests that, for 
Landfill B, the G-SEM data failed to identify some areas on the landfill responsible for the 
majority of emissions (blue triangles) as opposed to the sources determined with the D-
SEM data (red squares). The red squares seem to be located in the central area of the land-
fill. As for Landfill C, the G-SEM and D-SEM yielded generally sources in the same north-
east corner of the landfill. The SEM2Flux results from G-SEM data simulations demon-
strate that the emission sources identified at the northeast corner of Landfill C are respon-
sible for 85.6% of the total methane emitted at the entire landfill. When D-SEM data were 
employed, the results showed that the sources that were identified in the same zone con-
tributed to approximately 81% of the total estimated methane flux.  

Table 3. Summary of SEM2Flux simulations for Landfills B and C. 

  SEM2Flux Emission Results 
Data Name Date N. Major Sources Total Fugitive Emissions (Kg/h) StDev (Kg/h) 

Landfill B D-SEM 12 April 2022 30 1309 331 
Landfill B G-SEM 13-14 April 2022 12 531 75 
Landfill C D-SEM 14 April 2022 15 657 214 
Landfill C G-SEM 14–16 April 2022 12 573 99 

 

  
(a) (b) 

Figure 3. Locations of major methane emission sources as predicted with SEM2Flux (red squares 
using D-SEM data, blue triangles using G-SEM data): (a) Landfill B; (b) Landfill C. 
Figure 3. Locations of major methane emission sources as predicted with SEM2Flux (red squares
using D-SEM data, blue triangles using G-SEM data): (a) Landfill B; (b) Landfill C.

2.3. Comparison of SEM2Flux™ Results and Tracer Correlation Method (TCM)

As described in the Methods section, tracer correlation method (TCM) testing was
performed during the same week as the D-SEM and G-SEM data collection campaigns. The
tracer correlation method is considered the most reliable technique for estimating emission
rates in landfills and is often used to provide ground truth data for other technologies
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or techniques. Table 4 shows the summary of the TCM estimates of fugitive methane
emissions from both of the landfills during the monitoring period. Twenty estimates
of methane emissions were obtained in Landfill B over the monitoring campaign. The
average TCM-measured methane emissions for Landfill B was 1178 Kg/h, with a standard
deviation of 271 Kg/h. In Landfill C, 16 measurements of methane emissions were obtained
during the monitoring period. The average TCM-measured emission rate for Landfill C
was 601 Kg/h, with a standard deviation of 292 Kg/h. Figure 4 shows the TCM-reported
emissions plotted with emission estimates as predicted with SEM2Flux using the G-SEM
and D-SEM data. For both landfills, the D-SEM data yielded statistically similar estimates
of methane emissions as the TCM-measured emissions. On the other hand, the G-SEM data
yielded comparable estimates of emissions to TCM-measured emissions only for Landfill
C, where the D-SEM and G-SEM data were statistically not different.

Table 4. Summary of TCM results.

Tracer Correlation Testing Data

Date TCM Emissions (Kg/h) n StDev (Kg/h)

11–13 April 2022 1178 23 271
14–16 April 2022 601 16 292
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Figure 4. Comparison of fugitive methane emissions as estimated with SEM2Flux using D-SEM and
G-SEM data and those measured with TCM.

3. Materials and Methods
3.1. Fieldwork and Data Collection

The studied landfills are active municipal waste disposals (located in FL, USA). A
ground-based monitoring campaign (G-SEM), a drone-based air monitoring campaign
(D-SEM), and a mobile tracer correlation monitoring campaign (TCM) were conducted at
the two studied landfills during the time same period. All fieldwork data were collected
between 11 and 16 April 2022. An ultrasonic anemometer (Model 81000V from Young, Inc.,
Traverse City, MI, USA) was installed at an elevation of 2 m from the ground during the
field measurement campaigns to measure wind speed, with a precision of 0.01 m/s and
an accuracy of ±0.05 m/s. The anemometer was located at the highest elevation of the
landfill, next to one of the tracer release points used for TCM testing. The wind direction
measurements precision was 0.1 degrees, with an accuracy of ±2 degrees. The wind data
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collected with a field-installed anemometer was used with the G-SEM data only. For D-
SEM, wind speed and wind direction were collected using the drone itself. Wind velocities
and direction were collected during the flight from the drone scan data via an algorithmic
developed for determination of wind data from the rotor power of Sniffer Robotics drone.
The drone is programmed to measure methane concentrations on the surface of a landfill
while flying at a specific elevation above the landfill surface.

The field testing campaign lasted 4 days of data collection. The TCM testing consisted
of 3 to 4 days (daytime only) of the continuous release of acetylene and downwind plume
monitoring at distances varying from 1.5 to 2.5 Km from the landfill. The data from all
three days were then averaged as an estimate of total emissions from the landfill during
the 3–4 days of measurements. The ground- and drone-based SEM data consist of ppmv
above the background concentration, which is typically 1.9 ppmv.

Ground-based surface monitoring was performed using a portable Flame Ionization
Detector (MicroFID from PhotoVac, Inc. (Waltham, MA USA) with readings performed
every 15 s. The MicroFID was calibrated at the beginning of each monitoring event,
in accordance with the USEPA regulations. Ground-level methane concentrations were
collected via an integrated pump, and the emitted gas was drawn using the MicroFID. A
GPS unit registered measurement positions along the monitoring path.

Drone-based air monitoring (D-SEM) was performed by Sniffer Robotics, LLC (Ann
Arbor, MI USA), following a test procedure that was approved by the US EPA. The test
method is designed to automate the ground-based SEM by using a methane detection
payload onboard an unmanned aerial system (UAS) coupled with a ground-level UAS
sampling system. Methane samples were collected through the nozzle inlet placed within
5–10 cm of the ground. The geolocated methane readings were transmitted from the drone
to the operator via a wireless communication system. During the D-SEM test, the flying
height of the drone was continuously measured from the ground surface and was kept
constant at 6 m above the ground surface.

In addition to the G-SEM and D-SEM tests, a tracer correlation method (TCM) was
used for quantifying methane emissions from the two landfills. TCM is a remote sensing
method that involves releasing a tracer gas at a specific rate at the source area. Methane
and tracer gas concentrations are then measured simultaneously. Measurements are to be
performed downwind of the emitting area following a sampling path that should preferably
be perpendicular to the wind direction and sufficiently far (1 to 3 km) from the emitting
area. From the well-mixed plume of both gases, as measured downwind from the landfill,
the methane emission rate of the landfill can be retrieved directly using a ratio method.
The downwind concentrations of methane and the tracer gas (acetylene) were measured
simultaneously by employing a mobile cavity ring-down spectrometer (CRDS). Several
downwind traverses were performed during the monitoring period for each landfill. Mobile
downwind plume measurements were performed using a CRDS Picarro G2203 Analyzer
for methane and acetylene. The CRDS measures methane and acetylene in ppb levels. The
precision of the CRDS is 3 ppb for methane and less than 600 ppt for acetylene. The CRDS
was mounted in an SUV fitted with an external snorkel intake for gas sample collection
at an elevation of around 2 m from the ground surface. Methane and tracer concentration
measurements and GPS positions were recorded in a time-synchronized data file.

3.2. Proposed Methodology for Inferring Emission Rates from SEM Data

The main idea behind the proposed methodology is to exploit ambient-air methane
concentration measurements, widely collected during landfill surface emission monitoring
(SEM) to identify major emission sources and to infer an estimate of the total methane
emission of landfill sites. The methodology is based on a simplified approach using in-
verse dispersion modeling largely employed in environmental studies. Inverse plume
modeling relies on the backward application of atmospheric dispersion equations in order
to determine a pollutant emission flux based on a dataset of measured concentrations.
The methodology is widely employed with a broad variety of measurement technologies
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ranging from point/terrestrial to satellite-based sampling. The initiation of the proposed
method is by obtaining the collected methane concentration data. Concentration measure-
ments could be obtained through walking-based (G-SEM) campaigns or by using drones
(D-SEM) equipped to make an equivalent measurement. Landfill surveys using drones are
becoming more popular due to the simplicity offered by drone flights over landfill areas.
G-SEM and D-SEM data were both used in this study.

In the proposed approach, input data include methane concentrations at specified
locations in the studied landfill. Meteorological conditions during the measurement cam-
paign are also usually known (wind speed, wind direction, insolation, and temperature).
The collected concentration data were used to identify major emission sources through
inverse dispersion modeling and optimization. High emitting zones in the landfill were
also identified. This was achieved through tracing dispersed methane back to emission
sources. This task was formulated as an optimization problem where the variables were
the locations and the emission rates of the sources inside the landfill. The objective of
this optimization task was to identify the configuration of emission sources (locations and
leakage rates) that fit the best to the measured concentrations. The fitness of a defined
configuration of sources was evaluated by calculating the corresponding methane con-
centrations at the same locations where measured concentrations are available. This was
accomplished using an atmospheric dispersion model yielding a model-predicted value
of methane concentration for each measurement location. The predicted concentration
values are then compared with the actual measured methane concentrations. Hence, the
performance of a source configuration was evaluated through the difference between the
measured and predicted methane concentrations. The norm of absolute residuals calculated
for all measurement points was the metric to be minimized in the optimization task.

The predicted methane concentrations were obtained using the Gaussian dispersion
Equation (1). This equation models the dispersion of a nonreactive gaseous pollutant from
an elevated point source. Equation (1) predicts the steady-state concentration (C) in µg/m3

at a point (x, y, z) located downwind from the source.
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In Equation (1), Q is the emission rate (µg/s); σy and σz (m) are the horizontal
and vertical spread parameters that are functions of the along wind distance x and the
atmospheric stability; u is the average wind speed at stack height (m/s); y is the crosswind
distance from source to receptor (m); z is the vertical distance above the ground (m); and H
is the effective stack height (the physical stack height plus the plume rise expressed in m).

In most cases, wind is measured at several meters above the ground. In fixed weather
stations, wind measurements are usually performed at 2 m height above the ground. In
the case of drone-based measurements, wind data are typically obtained at the drone
flight elevation. Since the developed approach assumes ground sources, the wind speed at
ground level needs to be calculated from the collected wind data. At the ground level, the
logarithmic wind profile (Equation (2)) allows for estimating the vertical wind variation
with height:

v2 = v1 ln
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h2

z0

)/
ln
(

h1

z0

)
(2)

In Equation (2), the reference wind speed v1 is the measured wind speed at height h1;
v2 is the corrected wind speed at height h2; and z0 is the roughness length depending on
land cover types.

The Gaussian dispersion equation uses relatively simple calculations requiring only
two dispersion parameters (σy and σz) to identify the variation in gas concentrations away
from the diffusion source. Dispersion coefficients, σy and σz, are functions of wind speed,
cloud cover, and surface heating by the sun. Generally, the evaluation of the diffusion
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coefficients is based on atmospheric stability classes. In this study, the Pasquill–Gifford
stability classes were employed, and dispersion coefficients were calculated using the
Briggs model [17].

The core component of the proposed method was to identify the configuration of
sources that fit the best to the measurement data. To this end, stochastic optimization
was employed to explore the set of all possible configurations and progressively converge
to the source configuration with the best fit to the measurement data. Source positions
were generated inside the borders of the landfill. The corresponding emission fluxes were
generated between 0 and an upper limit correlated with the highest measured concentration.
The optimization task was performed using genetic algorithms (GAs): a global search
method that belongs to the class of stochastic search algorithms [16].

The optimization procedure in GAs mimics the principles of natural evolution. Start-
ing from an initial set of possible solutions, an iterative procedure yields new solutions
using specific nature-inspired operators (selection, mutation, and crossover). Solutions
that have higher fitness (i.e., better satisfy the optimization objectives) are identified, and
these are given more opportunities to produce newer solutions. The GA algorithm evolves,
in successive generations, changing the composition of the solution population, and thus
enables convergence toward near-optimal global solutions. Through thousands of applica-
tions in various disciplines, GA techniques proved generally capable of traversing large
and complex search spaces to provide near-optimal solutions.

4. Summary and Conclusions

Ground- and drone-based surface emission monitoring (SEMs) campaigns were per-
formed at two municipal solid waste landfills, during the same week as mobile tracer
correlation method (TCM) testing was used to measure the total methane emissions from
the same sites. The G-SEM and D-SEM data, along with wind data, were used as input us-
ing an inverse modeling approach combined with an optimization-based methane emission
estimation method (SEM2Flux).

In addition to the measurement density differences between G-SEM and D-SEM, the
statistical analysis of the measurement datasets showed that the means of the datasets could
be significantly different even if measurement campaigns were performed in the same
period. Statistical differences can help interpret the discrepancies observed in SEM2Flux
results for Landfill B, where 30 major methane emission sources were identified using the
D-SEM data as opposed to only 12 major emission sources identified using the G-SEM data.

In Landfill C, SEM2Flux results obtained using G-SEM data show that the emission
sources identified at the northeast corner are responsible for 85.6% of the total methane
emitted at the entire landfill. At this zone, emission sources identified using D-SEM data
contribute to approximately 81% of the total estimated methane flux. These findings
suggest that, based on the geographic distribution of the predicted sources, SEM2Flux can
reveal high emitting zones at the studied landfills.

SEM2Flux results were also compared with emission estimates obtained using TCM.
In Landfill B, the average TCM measured methane emissions was 1178 Kg/h, with a
standard deviation of 271 Kg/h. In Landfill C, the average TCM-measured emission rate
was 601 Kg/h, with a standard deviation of 292 Kg/h. For both landfills, the D-SEM
data yielded statistically similar estimates of methane emissions as the TCM-measured
emissions. On the other hand, the G-SEM data yielded comparable estimates of emissions
to TCM-measured emissions only for Landfill C, where the D-SEM and G-SEM data were
statistically not different. The results showcase the importance of the sampling density
and the extent to which it could influence both emission quantification and high-emitting
zone localization.

In addition, the comparison between TCM results and SEM2Flux predictions demon-
strates that the SEM2Flux tool allows for the rapid and simple estimation of landfill methane
emissions. This tool is promising when combined with both ground and drone SEM meth-
ods. Future research will involve an assessment of the ability of SEM2Flux to identify
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locations of high emissions using controlled release studies, which will be performed by
the research team.
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