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Abstract: We develop a framework for creating distortion functions that are used to construct
new bivariate copulas. It is achieved by transforming non-negative random variables with Lomax-
related distributions. In this paper, we apply the distortions to the base copulas of independence,
Clayton, Frank, and Gumbel copulas. The properties of the tail dependence coefficient, tail order,
and concordance ordering are explored for the new families of distorted copulas. We conducted
an empirical study using the daily net returns of Amazon and Google stocks from January 2014 to
December 2023. We compared the popular Clayton, Gumbel, Frank, and Gaussian copula models
to their corresponding distorted copula models induced by the unit-Lomax and unit-inverse Pareto
distortions. The new families of distortion copulas are equipped with additional parameters inherent
in the distortion function, providing more flexibility, and are demonstrated to perform better than the
base copulas. After analyzing the data, we have found that the joint extremes of Amazon and Google
stocks are more likely for high daily net returns than for low daily net returns.

Keywords: Archimedean; concordance; Clayton copula; distortion; Frank copula; Gumbel copula;
Kendall’s τ; Lomax distribution; tail dependence coefficient; tail order

1. Introduction

Descriptions and measurements of correlation and dependence between risks and
losses have been important in various fields, such as finance, risk management, and
actuarial studies. Bivariate copulas of different dependence structures can model the tail
dependence in extreme risks Ref. [1] but be independent of the marginal distributions of the
risks. Ref. [2] numerically and graphically illustrated the types of relationships that various
copula-based measures of association can detect. Ref. [3] addressed the mathematics of
copula functions illustrated with a finance application to financial topics in derivative
pricing and credit risk analysis. The seminal paper by [4] demonstrated their practical
applications, such as the estimation of joint-life mortality and multi-decrement models.
Extreme or tail losses tend to occur together; see [5]. Ref. [6] employed copulas to study the
effect of tail dependence and tailedness by quantifying extreme risks. Refs. [7,8] applied
copula modeling to investigate the increasing hydroclimatic extremes associated with a
warming climate; see also [9] for flood and hydrological models. Overall, copula modeling
has shown to be an effective tool in analyzing dependent structures between variables.

Sklar’s theorem [10] states that the joint cumulative distribution function (cdf) can be
expressed as the product of the marginals and the copula, and conversely, the copula can be
uniquely determined if we know the cdf and marginals. For instance, the Gaussian copula
is derived from the bivariate Gaussian distribution and can also be used to generate new
bivariate probability distributions via (A1) in the appendix; see [11] for summaries of the
methods of constructing copulas. Necessary preliminaries on bivariate copulas corralled in
Appendix A can be found in [11,12].
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Most recently, Ref. [13] extended the traditional one-parameter Archimedean copulas
by integrating the log-gamma-generated margins. Ref. [14] proposed a class of bivariate
independence copula transformation of the form C(u, v) = uv f ((1 − u), (1 − v)), where f
is a twice differentiable. Let Π(u, v) = uv be the independence copula. Generalizing the
FGM copula given by π(u, v) + αxy(1− u)(1− v), Refs. [15,16] constructed new copulas of
the form Π(u, v) + Q(u, v; α), where Q is a perturbation function involving trigonometric,
hyperbolic, logarithmic, or exponential functions. Ref. [7] used a truncation of the log-
concave half-logistic distribution function F as a multiplicative Archimedean generator to
construct the copulas of the form F−1(F(u)F(v)

)
.

In this paper, we are concerned with the construction of new bivariate copulas via
distortion functions. A function T is called a distortion function if it is continuous and
increasing on the unit interval I = [0, 1], with T(0) = 0 and T(1) = 1. A new family of
copulas born of the distortion is given by

CT(u, v) = T
(
C
(
T−1(u), T−1(v)

))
, u, v ∈ [0, 1], (1)

T is termed as admissible distortion if (1) is a copula. If the initial copula is Archimedean
with generator ψ, then CT is Archimedean with generator ψ ◦ T−1; see [17,18]. Theorem 3.3.3
in [11] (p. 96) shows that T is admissible if and only if T is increasing and convex; see
also [19]. This key result dictates the convexity requirement and opens the door for ex-
plorations of admissible distortion functions. Ref. [20] showed that T is admissible
if T ◦ exp : (−∞, 0) → [0, 1] is log-convex and suggested several distortion functions.
Ref. [21] proposed to apply the distortion to the copula function only, marginals only, or
both. The induced copula in (1) is a result of distortions to both the copula and marginals.

Refs. [22,23] constructed new families of copulas via beta and Kumaraswamy cdf
distortions.Ref. [24] employed the unit-Lomax distortion. Ref. [25] studied families of
copulas generated by a unit-Weibull distortion. Ref. [26] investigated the properties of unit-
Gompertz distorted copulas and applied them to analyze the anthropocentric data. The
unit-Lomax, unit-Weibull, and unit-Gompertz distortions are derived from an exponential
transformation of the Lomax, Weibull, and Gompertz random variables.

Motivated by the fact that the cdf of a continuous random variable with unit interval
support meets the definition of a distortion function, we propose a transformation that
converts a non-negative random variable to one with unit interval support, which, con-
sequently, establishes a distortion function. The distortion can then be used to generate
new families of copulas by distorting existing ones. Similar to the other constructions of
new copulas in the literature, the aim is to obtain new families of copulas that may account
for a wider range of tail dependence values. With the parameters in the distortion cdf, the
distorted copulas have additional parameters in addition to those in the existing copulas,
making them more flexible.

The paper is organized as follows. Section 2 begins with the proposed mechanism
for generating new distortion functions and admissible parameter spaces of distortions
to be studied further. Section 3 provides Archimedean generators for the new families of
distorted copulas when the base copulas are independence, Clayton, Frank, and Gumbel.
The family of distorted independence copulas is presented to serve as a validation of the
results obtained in this paper. Sections 4 and 5 investigate the properties of tail dependence,
tail order, concordance order, and Kendall’s tau. Section 6 contains the numerical results of
a simulation study and empirical application, followed by concluding remarks. Copula
preliminaries and derivations of tail orders and concordance ordering are included in the
Appendices A and B.

2. Proposed Method

Let Y be a non-negative continuous random variable with cdf F. Consider the following
transformation of the random variable Y:
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X =
Y

θ + Y
, θ > 0. (2)

The random variable X has a support of the unit interval, and its cdf is given by

G(x) = P(X ≤ x) = P
(

Y ≤ θx
1 − x

)
= F

(
θx

1 − x

)
. (3)

The cdf G and its quantile or inverse function may both serve as distortion functions
to develop new copulas. If the variable Y assumes any value on the real number line, one
may consider a transformation of its absolute value; that is, |Y|/(1 + |Y|), whose cdf is not
as straightforward as (3).

We below demonstrate the method with F being the non-negative Lomax and inverse
Lomax distributions, and derive the parameter space on which each of the distortions is
convex. All the parameters in the generating distribution function F are assumed to be
positive. The prime symbol, such as G′ or G′′, denotes the derivative of a function.

Example 1. Unit-Lomax (UL) distortion and its quantile (QUL). Let Y be a Lomax or Pareto Type
II random variable with a cdf given by F(y) = 1 − [β/(β + y)]α, where y > 0. In this case, the
transformation in (2) produces the distortion given by

G(x) = 1 −
[

β(1 − x)
β(1 − x) + θx

]α

, (4)

where 0 < x < 1. Note that, for example,[
2(1 − x)

2(1 − x) + 1x

]α

=

[
4(1 − x)

4(1 − x) + 2x

]
=

[
8(1 − x)

4(1 − x) + 4x

]α

. (5)

Equation (5) demonstrates that multiple values of the parameters (β, θ) give rise to the same
distortion in (4), and thus the parameters cannot be uniquely identified. Therefore, to solve this
problem, with reparametrization, we consider the distortion GL (UL) and its inverse QL (QUL)
given by

GL(x) = 1 −
[

(1 − x)
(1 − x) + θx

]α

; QL(x) =
1

1 + θ[(1 − x)−1/α − 1]−1 .

Lemma 1. The distortion GL(x) = 1 −
[
(1 − x)

(
(1 − x) + θx

)−1
]α

is convex on I if 0 < θ ≤ 1
and 0 < α ≤ 1.

Proof. Let A(x) = (1 − x) + θx, B(x) = (1 − x)[A(x)]−1, and then GL(x) = 1 − [B(x)]α.
For simplicity, the argument notation of (x) is dropped. Note that (B)−1(A)−1 = (1− x)−1.
The derivatives are given by

B′ = −θA−2; G′
L = αθBα−1 A−2

G′′
L = −α(α − 1)θ2Bα−2 A−4 − 2αθBα−1 A−3(θ − 1)

= −αθBα−1 A−3
[
(α − 1)θ

1 − x
+ 2(θ − 1)

]
. (6)

If 0 < θ ≤ 1 and 0 < α ≤ 1, then G′′
L(x) ≥ 0 for all x ∈ I.

Lemma 2. The distortion QL(x) = 1/
[
1 + θ

(
(1 − x)−1/α − 1

)−1] is convex on I if θ ≥ 1 and
α ≥ 1.

Proof. Since QL is the inverse function of GL, and GL is an increasing function, by (6), we
obtain this lemma.
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Example 2. Unit-inverse Pareto (UIP) distortion and its quantile (QUP). Consider the inverse
Pareto random variable, defined to be the reciprocal of a Lomax random variable, with a cdf given by
F(y) =

[
y/(β + y)

]α, where y > 0. In this case, (3) gives

G(x) =
[

θx
β(1 − x) + θx

]α

,

where 0 < x < 1. For the same reason explained by (5), we propose the distortion GP (UIP) and its
inverse QP (QUP) given by

GP(x) =
[

θx
(1 − x) + θx

]α

; QP(x) =
1

1 + θ(x−1/α − 1)
.

Lemma 3. The distortion GP(x) =
[

θx
(1 − x) + θx

]α

is convex on I if 0 < θ ≤ 1 and 0 < α ≤ 1.

Proof. Let A(x) = (1 − x) + θx and B(x) = θx[A(x)]−1. Then [B(x)A(x)]−1 = 1/(θx)
and GP(x) = [B(x)]α. For simplicity, the argument notation of (x) is dropped. The relevant
derivatives are given by

B′ = θ(A)−1 − θxA−2(θ − 1) = θA−2; G′
P = αθBα−1 A−2

G′′
P = α(α − 1)θ2Bα−2 A−4 − 2αθBα−1 A−3(θ − 1)

= αθBα−1 A−3x−1[(α − 1)− 2(θ − 1)x]. (7)

If 0 < θ ≤ 1 and α ≥ 1, then the second derivative G′′
P ≥ 0 for all x ∈ I.

Lemma 4. QP(x) = [1 + θ(x−1/α − 1)]−1 is convex on I if θ ≥ 1 and 0 < α ≤ 1.

Proof. This lemma follows since QP is the inverse function of GP and GP is increasing and
concave by (7) when θ ≥ 1 and 0 < α ≤ 1.

In summary, applying the proposed transformation in (2) to non-negative Lomax-
related random variables, we are bestowed with four new admissible distortions tabulated
in Table 1. Two functional forms are displayed as they would come in handy for calculations.
Note that the admissible parameter spaces are only a sufficient condition for CT in (1) to be
a copula. The dual power distortion is a special case of GL with θ = 1. The power distortion
is a special case of GP with θ = 1. When θ = α = 1, it is important to note that all the
distortions in Table 1 become the identity function. This means that when these distortions
are applied to a base copula, the resulting family of copulas offers a greater flexibility when
fit to data because it includes the base copula as a special case.

Remark 1. Let Y be a Lomax random variable. We also considered the cdf of Y1/τ , i.e., the Burr
distribution, given by F(y) = 1 − (1 + yτ)−α, as the generating cdf. However, there does not exist
a parameter space on which the resulting distortion is convex. Another generating cdf candidate is
the exponentiated Lomax cdf of the form

[
1 − F

(
γ/(γ + y)

)α]γ, which is more complex and will
be investigated in the future.

Remark 2. Instead of (2), the transformation of X = 1/(1 + Y) also gives rise to a distortion cdf.
The cdf of X = 1/[1 + Y] is given by, for 0 < x < 1,

G(x) = P(X ≤ x) = 1 − F
(

Y ≥ 1 − X
X

)
.

In this case, when Y has a Lomax distribution in Example 1, we derive the GP. When Y has a
Lomax distribution in Example 2, we derive the GL.
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Table 1. Proposed distortions and admissible parameter spaces.

Distortion Function Form Convex Parameter Space

U-Lomax (UL) GL(x) = 1 −
[

1 − x
1 − x + θx

]α

0 < θ ≤ 1, 0 < α ≤ 1

= 1 − 1
{1 + θ[(1 − x)−1 − 1]}α

Quantile U-Lomax (QL) QL(x) =
(1 − x)−1/α − 1

θ + (1 − x)−1/α − 1
θ ≥ 1, α ≥ 1

=
1

1 + θ[(1 − x)−1/α − 1]−1

U-Inverse Pareto (UIP) GP(x) =

[
θx

1 − x + θx

]α

0 < θ ≤ 1, α ≥ 1.

=
1

[1 + θ−1(x−1 − 1)]α

Quantile U-Inverse Pareto (QUP) QP(x) =
x1/α

x1/α + θ(1 − x1/α)
θ ≥ 1, 0 < α ≤ 1

=
1

1 + θ(x−1/α − 1)

Remark 3. There are a multitude of cdfs that may be used as the generating cdf F in (3). For
instance, an exponential distribution with mean β. In this case, (3) gives a candidate distortion
given by 1 − exp

(
− x/[β(1 − x)]

)
. Another example, a generalized Pareto with a pdf given by

f (y) =
Γ(α + τ)

Γ(α)Γ(τ)
θτyτ−1

(y + θ)α+τ

where x > 0, α > 0, τ > 0, and θ > 0.

3. Families of New Distorted Copulas

The general form of copulas constructed by a distortion T is in (1). Archimedean
copulas are widely used [27] and are recognized for their flexibility in modeling dependence
within multivariate random variables. We formulate the Archimedean generators resulting
from the distortions in Section 3.1 when the base copulas are independence, Clayton, Frank,
and Gumbel; see Table A1 in Appendix A. The base copulas, except the independence
copula, have a single parameter, and the families of the distorted copulas contain more
parameters and are less restrictive. Let r denote the parameter in the base copula.

3.1. Archimedean Generators

Example 3 (Independence Copula). The Archimedean generators are

– UL-independence generator: log
(

θ
[
(1 − u)−1/α − 1

]−1
+ 1

)
.

– QUL-independence generator: − log
(

1 −
[
1 + θ

(
(1 − u)−1 − 1

)]−α
)

.

– UIP-independence generator: log
(

1 + θ(u−1/α − 1)
)

.

– QUP-independence generator: log
(
1 + θ−1(u−1 − 1)

)α.

Example 4 (Clayton Copula). In this case, we obtain the following:

– UL-Clayton generator:
{[

θ
(
(1 − u)−1/α − 1

)−1
+ 1

]−r − 1
}

/r.

– QUL-Clayton generator:
{[

1 −
(
1 + θ((1 − u)−1 − 1)

)−α]−r − 1
}

/r.

– UIP-Clayton generator:
{[

1 + θ
(
u−1/α − 1

)]−r − 1
}

/r.

– QUP-Clayton generator:
{[

1 + θ−1(u−1 − 1)
]αr − 1

}
/r.

Example 5 (Frank Copula). When the base copula C is Frank, we obtain the following:



AppliedMath 2024, 4 646

– UL-Frank generator: − log
(

1 +
[
e−r[θ((1−u)−1/α−1)−1+1]−1 − 1

]
/(e−r − 1)

)
.

– QUL-Frank generator: − log
(

1 +
[
e−r[1−(1+θ((1−u)−1−1))−α ] − 1

]
/(e−r − 1)

)
.

– UIP-Frank generator: − log
(

1 +
[
e−r[1+θ(u−1/α−1)]−1 − 1

]
/(e−r − 1)

)
.

– QUP-Frank generator: − log
(

1 +
[
e−r[1+θ−1(u−1−1)]−α − 1

]
/(e−r − 1)

)
.

Example 6 (Gumbel Copula). For Gumbel copula, we obtain the following:

– UL-Gumbel generator:
[
− log

(
θ((1 − u)−1/α − 1)−1 + 1

)]r
.

– QUL-Gumbel generator:
[
− log

(
1 − (1 + θ((1 − u)−1 − 1))−α

)]r.

– UIP-Gumbel generator:
[
log

(
1 + θ(u−1/α − 1)

)]r
.

– QUP-Gumbel generator:
[
log

(
1 + θ−1(u−1 − 1)

)α
]r

.

3.2. Distortions of Independence Copula

We stage here the copula families constructed by distortions of the independent copula
aiming to demonstrate the versatility of distortion and validate the results presented in
this paper. The distortions proposed distort the parameter-free independent copula into
diverse families of copulas adorned with two parameters and better flexibility.

Note that G−1
L = QL; see Table 1. For the UL-independence copula, C(u, v) = uv,

CGL(u, v) = 1 −
(

1

1 + θ
{[

1 − C
(
G−1

L (u), G−1
L (u)

)]−1 − 1
})α

(8)

= 1 −
(

θ + (1 − u)−1/α + (1 − v)−1/α − 2
θ + (1 − u)−1/α(1 − v)−1/α − 1

)α

.

When α = θ = 1, CGL(u, v) = uv. Let ū = (1 − u) and v̄ = (1 − v). When θ = 1,

CGL(u, v) = 1 − (ū1/α + v̄1/α − ū1/αv̄1/α
)α, (9)

which is the Joe or B5 copula. The Joe copula is given by C(u, v) = 1 −
(
(1 − u)r + (1 −

v)r − (1 − u)r(1 − v)r), r ∈ [1, ∞). It has κL = 2 and λU = 2 − 2α, 0 < α ≤ 1, which
endorses Proposition 1 in Section 4. The Joe copula in (9) is negatively ordered by α. When
α = 1, CGL(u, v) = uv/[1− (1− θ)ūv̄], which is the Ali–Mikhail–Haq (AMH) copula [11] and
is negatively ordered by the parameter θ. The AMH copula family has lower and upper tail
dependence coefficients of zero, and is given by C(u, v) = uv/[1− r(1− u)(1− v)], r ∈ [−1, 1].

For the QUL-independence copula, from Table 1,

CQL(u, v) = 1 − 1
θ + [1 − C

(
Q−1

L (u), Q−1
L (u)

)
]−1/α − 1

, where (10)

C
(
Q−1

L (u), Q−1
L (u)

)
=

(
1 −

[
1 − u

1 − u + θu

]α)(
1 −

[
1 − v

1 − v + θv

]α)
.

When θ = 1, (10) produces the Joe copula in (9) with a different parametrization from
the one in [12]. When α = 1, (10) yields

1 − ūv̄ + θuv̄ + θūv
θ
(
ūv̄ + θuv̄ + θūv + θuv

) .
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For the UIP-independence copula, from Table 1,

CGP(u, v) =

(
1

1 + θ−1
{[

C
(
G−1

P (u), G−1
P (u)

)]−1 − 1
})α

(11)

=
[
1 + (u−1/α − 1) + (v−1/a − 1) + θ(u−1/α − 1)(v−1/α − 1)

]−α

= uv
{

1 − (1 − θ)
[
(1 − u1/α)(1 − v1/a)

]}−α, (12)

which is the BB10 copula [12] with κL = κU = 2. The BB10 copula is given by C(u, v) =
uv[1− r1(1− u1/r2)(1− v1/r2)]−r2 , where r1 ∈ [0, 1) and r2 > 0. As shown in Proposition 3,
UIP-distorted copulas have the same upper and lower tail orders as the base copula.

For the QUP-independence copula, from Table 1,

CQP(u, v) =
1

1 + θ
[
C
(
G−1

P (u), G−1
P (u)

)−1/α − 1
] (13)

=

[
1 +

(1 − u)(1 − v) + θu(1 − v) + θv(1 − u)
θuv

]−1

= uv
[

1 − θ − 1
θ

(1 − u)(1 − v)
]−1

,

which is the AMH copula or a special case of the BB10 copula.

4. Tail Dependence Coefficients and Tail Orders

In this section, we investigate the tail dependence coefficients, tail orders, and concor-
dances for the new families of copulas emerging from the four distortions in Table 1. The
lengthy derivations of tail orders are stationed in Appendix B.

Let t(u) = dT(u)/du and assume that the lower tail dependence (ltd) coefficient λL of
the base copula C and limτ→0+ t

(
C(u, u)

)
/t(u) exist. By definition in (A3) and L’Hopital’s

rule, the ltd coefficient for a T distortion-induced copula is given by

λT,L = lim
u→0+

T
(
C(T−1(u), T−1(u))

)
u

= lim
u→0+

T
(
C(u, u)

)
T(u)

= lim
u→0+

t
(
C(u, u)

)
t(u)

dC(u, u)
du

. (14)

Since limu→1− T(u) = 1, with the substitution of v = T−1(u), the upper tail depen-
dence (utd) coefficient of CT is given by

λT,U = 2 − lim
u→1−

1 − T
(
C(T−1(u), T−1(u))

)
1 − u

= 2 − lim
v→1−

1 − T(C(v, v))
1 − T(v)

= 2 − lim
v→1−

t
(
C(v, v)

)
t(v)

dC(v, v)
dv

. (15)

Below, we assume that the ltd coefficient λL = 0 when κL > 1 and the utd coefficient
λU = 0 when κU > 1 for the base copula C. Furthermore, we assume that C(u, u) ∼ uκLℓ(u)
as u → 0+ and C(1 − u, 1 − u) ∼ uκU ℓ∗(u) as u → 0+ for some slowly varying functions
ℓ and ℓ∗ at 0+. Let the subscript denote a property owner, e.g., the subscript T in λT,U is
used to denote the ltd coefficient of a T−distorted copula.

Proposition 1 (Unit-Lomax Distortion). Let CGL(u, v) be the GL-distorted copula defined in (8),
where 0 < θ ≤ 1 and 0 < α ≤ 1. Then,

(i) κGL ,L = κL and λGL ,L = λL.
(ii) κGL ,U = κU when α = 1 and κGL ,U = 1 when 0 < α < 1. And λGL ,U = 2 − (2 − λU)

α.
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Proof. The tail orders are shown in (A9) and (A17) in Appendix B. The ltd coefficient,
by (14) and L’Hopital’s rule, is given by

λGL ,L = lim
u→0+

{
1 −

(
1 − C(u, u)

1 − C(u, u) + θC(u, u)

)α}/ {
1 −

[
1 − u

1 − u + θu

]α}
= lim

u→0+

{
[1 − C(u, u)]

[1 − C(u, u) + θC(u, u)]
[(1 − u) + θu]

(1 − u)

}α−1

× C′(u, u)
[1 − C(u, u) + θC(u, u)]2

[(1 − u) + θu]2

1
= λL

since limu→0+ C(u, u)/u = limu→0+ dC(u, u)/du = λL. The utd coefficient, by (15) and
L’Hopital’s rule, we obtain that

λGL ,U = 2 − lim
u→1−

{
1 − C(u, u)

1 − C(u, u) + θC(u, u)

}α/ [
1 − u

1 − u + θu

]α

= 2 − lim
u→1−

{
1 − u + θu

[1 − C(u, u) + θC(u, u)]

}α[1 − C(u, u)
1 − u

]α

= 2 − (2 − λU)
α

since limu→1−[1 − C(u, u)]/(1 − u) = 2 − λU .

Proposition 2 (Quantile Unit-Lomax Distortion). Let CQL(u, v) be the QL-distorted copula
defined in (10), where θ ≥ 1 and α ≥ 1. Then,

(i) κQL ,L = κL and λQL ,L = λL.
(ii) κQL ,U = κU when α = 1 and κQL ,U = 1 when α > 1. And λQL ,U = 2 − (2 − λU)

1/α.

Proof. The tail orders are shown in (A10) and (A18) in Appendix B. By L’Hopital’s rule,

λQL ,L = lim
u→0+

(
1 − C(u, u)

)−1/α − 1(
1 − C(u, u)

)−1/α − 1 + θ

/
(1 − u)−1/α − 1

(1 − u)−1/α − 1 + θ

= lim
u→0+

[(1 − u)−1/α − 1 + θ]2

[
(
1 − C(u, u)

)−1/α − 1 + θ]2

(
1 − C(u, u)

)−1/α−1C′(u, u)
(1 − u)−1/α−1 = λL

since limu→0+ C(u, u)/u = limu→0+ dC(u, u)/du = λL. By (15) and L’Hopital’s rule, the ltd
coefficient is given by

λQL ,U = 2 − lim
u→1−

θ(
1 − C(u, u)

)−1/α − 1 + θ

/
θ

(1 − u)−1/α − 1 + θ

= 2 − lim
u→1−

[
1 − C(u, u)

1 − u

]1/α+1[dC(u, u)
du

]−1

= 2 − (2 − λU)
1/α

since limu→1−[1 − C(u, u)]/[1 − u] = 2 − λU .

Proposition 3 (Unit-Inverse Pareto Distortion). Let CGP(u, v) be the GP-distorted copula
defined in (11), where 0 < θ ≤ 1 and α ≥ 1. Then,

(i) κGP ,L = κL and λGP ,L = (λL)
a.

(ii) κGP ,U = κU and λGP ,U = λU .
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Proof. The tail orders are shown in (A11) and (A19) in Appendix B. For the ltd, with the
help of L’Hopital’s rule, we obtain that

λGP ,L = lim
u→0+

{C(u, u)/[1 − C(u, u) + θC(u, u)]}α

{u/[1 − u + θu]}α

= lim
u→0+

(
C(u, u)

u

)α{1 − C(u, u) + θC(u, u)
1 − u + θu

}−α

= (λL)
α.

The utd coefficient, by (15) and L’Hopital’s rule, is given by

λGP ,U = 2 − lim
u→1−

1 − {C(u, u)/[1 − C(u, u) + θC(u, u)]}α

1 − {u/[1 − u + θu]}α

= 2 − lim
u→1−

(
C(u, u)

u

)(α−1){1 − C(u, u) + θC(u, u)
1 − u + θu

}−α−1 dC(u, u)
du

= λU

since limu→1− C(u, u) = 1 and limu→1− dC(u, u)/du = 2 − λU .

Proposition 4 (Quantile Unit-Inverse Pareto Distortion). Let CQP(u, v) be the QP-distorted
copula defined in (13), where θ ≥ 1 and 0 < α ≤ 1. Then,

(i) κQP ,L = κL and λQP ,L = (λL)
1/α.

(ii) κQP ,U = κU . If κU = 1, then λQP ,U = λU .

Proof. The tail orders are derived in (A13) and (A20) in Appendix B. For the ltd coefficient,

λQP ,L = lim
u→0+

1/
[
1 + θ

(
C(u, u)−1/α − 1

)]
1/[1 + θ(u−1/α − 1)]

= lim
u→0+

1 + θ(u−1/α − 1)
1 + θ

(
C(u, u)−1/α − 1

)]
= lim

u→0+

(
C(u, u)

u

)1+1/α du
dC(u, u)

= (λL)
1/α.

The utd coefficient, by (15) and L’Hopital’s rule, is given by

λQP ,U = 2 − lim
u→1−

θ[C(u, u)−1/α − 1]
1 + θ[C(u, u)−1/α − 1]

/
θ(u−1/α − 1)

1 + θ(u−1/α − 1)

= 2 − lim
u→1−

1 + θ(u−1/α − 1)
1 + θ[C(u, u)−1/α − 1]

C(u, u)−1/α − 1
(u−1/α − 1)

= 2 − lim
u→1−

1 + θ(u−1/α − 1)
1 + θ[C(u, u)−1/α − 1]

[C(u, u)]−1/α−1

u−1/α−1
dC(u, u)

du
= λU

since limu→1− C(u, u)/u = 1 and limu→1− dC(u, u)/du = 2 − λU .

The results of the propositions are summarized in Table 2. The utd coefficients of UL-
and QUL-distorted copulas differ from those of base copulas when α ̸= 1, while the ltd
coefficients remain unchanged. The UL and QUL distortions render new copulas with
upper tail dependence regardless of whether the base copula has it or not. Conversely, the
UIP and QUP distortions form copulas with different ltd coefficients when α ̸= 1 from
the base copula, while the utd coefficients remain the same. The Clayton copula has zero
upper tail dependence. However, based on Table 2, by applying UL and QUL distortions
to a Clayton copula, we create a new family of copulas that are more flexible in the sense
that they can accommodate upper tail dependence values ranging from 0 to 1. This same
conclusion can be applied to the Frank copula.
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Table 2. Tail dependence coefficients of the distorted copulas.

UL (0 < α ≤ 1) QUL (α ≥ 1) UIP (α ≥ 1) QUP (0 < α ≤ 1)

λT,L λL λL (λL)
α (λL)

1/α

λT,U 2 − (2 − λU)α 2 − (2 − λU)1/α λU λU

We next construct the density contour plots for UL- and UIP-distorted copulas in
Figures 1 and 2. Contour plots and observations for QUL- and QUP-distorted copulas
are displayed in Figures A1 and A2 in Appendix B.1, respectively. The joint pdf of a
copula is ∂C(u, v)/∂u∂v. Note, if a contour plot is elongated along one direction, it signals
a strong dependence in that direction. A circular contour shape indicates independence
between variables. For example, the Clayton has lower tail dependence and no upper tail
dependence, therefore, one expects to see a elongated or tightened contour line on the lower
left-hand side. Let r be the parameter in the base copula. When θ = α = 1, both the UL and
UIP distortions deliver us the base copulas shown in the first column of both figures.

While the Frank copula is tail-independent, the Clayton and Gumbel copulas are
characterized by asymmetric tail dependence with only utd and ltd, respectively. As
summarized in Table 2, UL distortions may yield new families of copulas with upper tail
dependence. Copulas constructed using the UL distortion exhibit upper tail dependence
and maintain the same patterns of lower tail behaviors as the base copula. Notably, UL-
distorted Clayton copulas have both lower and upper tails.

Figure 1. Density contour plots of the UL-Clayton, UL-Gumbel, and UL-Gaussian copulas with
standard normal margins and parameters (θ, α) = (1, 1), (1/2, 1/2), and (1/4, 3/4). For Clayton,
Gumbel, and Gaussian, the parameter r is selected so that the value of Kendall’s tau is 1/2.

As revealed in Table 2 and Figure 2, UIP-distorted copulas have similar characteristics
to the base copulas in the first column. If the base copula has lower tail dependence, the
family introduced an additional parameter to the ltd coefficient but retains the upper tail
dependence of the base copula.
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Figure 2. Density contour plots of the UIP-Clayton, UIP-Gumbel, and UIP-Gaussian copulas with
standard normal margins and parameters (θ, α) = (1, 1), (1/2, 1/2), and (1/4, 3/4). For Clayton,
Frank, and Gaussian, the parameter r is selected so that the value of Kendall’s tau is 1/2.

5. Concordance Order and Kendall’s Tau

In this section, we examine the concordance order and Kendall’s tau. We provide
formulas for Kendall’s tau of the UL- and UIP-distorted copulas by using the Formula (16)
and the Archimedean generators provided in Section 3. The formulas can be readily
adapted to write programs to compute Kendall’s tau values at various parameter values.

5.1. Concordance Ordering

A family of copula functions Cr(u, v) = C(u, v; r) with parameter r is positively
ordered, denoted by Cr1 ≺ Cr2 , if Cr1(u, v) ≤ Crr (u, v), and is negatively ordered, denoted
by Cr1 ≻ Cr2 , if Cr1(u, v) ≥ Crr (u, v) for all r1 ≤ r2 and u, v ∈ I. According to the definition
of a concordance measure, if a family of copulas is ordered by a parameter, its Kendall’s
tau is either nonincreasing or nondecreasing in the parameter; see [11].

One can compute the first derivative with respect to a parameter to determine if copula
C is positively or negatively ordered by the parameter, which can be a daunting task. If a
copula is of Archimedean class, in addition to Theorem A1 in Appendix C, we can utilize the
following corollary to examine the concordance orderings in the parameters; see [11] or [28].

Theorem 1 ([11]). Let C1 and C2 be Archimedean copulas with generators ψ1 and ψ2, respectively.
Then C1 ≺ C2 holds if one of the following conditions is satisfied: (i) ψ1 ◦ψ−1

2 is concave; (ii) ψ1/ψ2

is nondecreasing on I; and (iii) ψ1 and ψ2 are continuously differentiable on I and ψ
′
1/ψ

′
2 is

nondecreasing on I.

If the base copula C is positively ordered, then, for r1 ≤ r2, C(T−1(u), T−1(v); r1) ≤
C(T−1(u), T−1(v); r2) for all u, v ∈ I. Since T is increasing, T

(
C(T−1(u), T−1(v); r1)

)
≤

T
(
C(T−1(u), T−1(v); r2)

)
. Similar arguments can be applied to a negatively ordered base

copula. That is, a family of distortion copulas built by admissible distortions preserves
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the concordance order in the parameter of the base copula if the family of base copulas is
ordered by the parameter; see also [24].

If the base copula is Archimedean with generator ψ, which is free of the parameters
θ and α, the new family of T-distorted copulas can be written as

T
(
C(T−1(u), T−1(v))

)
= T ◦ ψ−1(ψ

(
T−1(u)

)
+ ψ

(
T−1(v)

))
,

with Archimedean with a generator given by ψ
(
T−1(u)

)
, a continuous, strictly decreasing,

convex function such that ψ
(
T−1(1)

)
= 0. Assume below the base copula is Archimedean

with generator ψ. Let T1 and T2 be the T distortion evaluated at parameter values r1 and r2,
where r1 ≤ r2, respectively.

Corollary 1. Let CT1 and CT2 be Archimedean copulas with generators ψ ◦ T−1
1 and ψ ◦ T−1

2 ,
respectively. If one of the following conditions holds: (i) ψ ◦ T−1

1 ◦ T2 ◦ ψ−1 is concave; (ii) ψ ◦
T−1

1 /ψ ◦ T−1
2 is nondecreasing on (0, 1); or (iii) ψ is continuously differentiable on I and (ψ

′ ◦
T−1

1 /ψ
′ ◦ T−1

2 )(T
′
2 ◦ T−1

2 /T
′
1 ◦ T−1

1 ) is nondecreasing on I holds, then CT1 ≺ CT2 .

5.2. Kendall’s Tau

For the T distortion-induced copulas in (1), by substituting T−1(u) = x and T−1(v) = y
in the definition of Kendall’s tau in (A5), then its Kendall’s tau can be expressed as

τ = 1 − 4
∫ 1

0

∫ 1

0
[t(C(x, y))]2C1|2(x|y)C2|1(y|x)dxdy,

where t(v) = dT(v)/dv, C2|1(u, v) = ∂C(u, v)/∂u and C1|2(u, v) = ∂C(u, v)/∂v. Numerical
integration methods will be required to compute Kendall’s tau. Define Ψ(u) = ψ

(
T−1(u)

)
.

By (A6), Kendall’s tau for a distorted copula is given by

τ = 1 + 4
∫ 1

0

Ψ(u)
Ψ′(u)

du = 1 + 4
∫ 1

0

ψ(v)
ψ

′(v)
t2(v)dv. (16)

We next present the explicit formulas of Kendall’s tau for UL and UIP distortions when
the base copulas are independence, Clayton, Gumbel, and Frank copulas. The Archimedean
generators for the base copulas are reported in Table A1 in Appendix A.

– UL-independence copula: 1− 4
∫ 1

0
α[(1− u)−1/α − 1] log

(
θ[(1− u)−1/α − 1]−1 − 1

)
θ[(1− u)−1/α−1][θ + (1− u)−1/α − 1]−1 du.

– UL-Clayton copula: 1 − 4
∫ 1

0
αθu(1 − ur)

r(1 − u)2[1 + θ(−1 + (1 − u)−1)]α+1 du.

– UL-Gumbel copula: 1 − 4
∫ 1

0
αθu(− log u)

r(1 − u)2[1 + θ(−1 + (1 − u)−1)]α+1 du.

– UL-Frank copula: 1 − 4
∫ 1

0
αθ(1 − eru)

r(1 − u)2[1 + θ(−1 + (1 − u)−1)]α+1 log
(

e−ru − 1
e−r − 1

)
du.

– UIP-independence copula: 1 − 4
∫ 1

0
α[1 + θ(u−1/a − 1)] log

(
1 + θ(u−1/a − 1)

)
θu−1/α−1 du.

– UIP-Clayton copula: 1 − 4
∫ 1

0
αu(1 − ur)

rθu2[1 + θ−1(u−1 − 1)]α+1 du.

– UIP-Gumbel copula: 1 − 4
∫ 1

0
αu(− log u)

rθu2[1 + θ−1(u−1 − 1)]α+1 du.

– UIP-Frank copula: 1 − 4
∫ 1

0
α(1 − eru)

rθu2[1 + θ−1(u−1 − 1)]α+1 log
(

e−ru − 1
e−r − 1

)
du.

Example 7. We here illustrate only the ordering in the parameter θ for UL and UIP distortions of
the independence copula in Appendix C due to the page limit. While not all mathematically shown,
Kendall’s tau surface plots in Figure 3 indicate that UL, QUL, UIP, and QUP distortions of the
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independence copula result in new families that are negatively ordered in the parameter θ and α.
For the family of UIP-independence copulas in (12), the BB10 copula is negatively ordered by the
parameter θ, see [12]. The family of QUP-independence copulas in (13) does not depend on the
parameter α, and hence the flat lines along the α axis.

Figure 3. Surface plots of Kendall’s tau for UL-, QL-, QIP-, and QUP-independence copulas.

Not all families of distortion-generated copulas are ordered by concordance. For
example, the UL-distorted Clayton family. When a family of copulas is ordered by a
parameter, we expect Kendall’s tau values to increase or decrease with the parameter.
Figure 4 exhibits Kendall’s tau surface plots when distortions are applied to the Clayton
copula with parameter r. These plots indicate that the distortion copulas, just like the
base Clayton copula, are positively ordered by the parameter r. The UL-Clayton copula
with r = 15 and the QUL-Clayton copula with r = 20 are not ordered by the parameter α.
Regarding the UIP-Clayton copulas, the concordance order fails in the parameter α at r = 25
and at θ = 1/10, as well as in the parameter θ when α = 25. Furthermore, depending on
the α or r value, the QUL-Clayton copula can be positively or negatively ordered by the
parameter θ when r = 2 and α = 3/4.

Figure 4. Surface plots of Kendall’s tau constructed at various combinations of parameter values for
the UL-Clayton, QL-Clayton, UIP-Clayton, and QUP-Clayton copula.

6. Numerical Results

In this section, we run a simulation study to inspect how the newly minted families
of UL distortion copulas perform when fit to data generated from the beloved Clayton,
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Gumbel, Gaussian, and Frank copulas, and vice versa. Additionally, the copula models
are applied to a bivariate dataset consisting of the daily return rates of Amazon and
Google stocks.

6.1. A Simulation Study

A general algorithm to generate draws from a bivariate copula C is the conditional
distribution approach, as described by [19,24]. It consists of two steps: (i) generate
two independent uniform random values (u1, v) and (ii) solve C(u2|u1) − v = 0 for
u2, where C(u|v) = ∂C(u, v)/∂v. The desired pair is (u1, u2). Using this algorithm, we
generated 2000 bivariate pseudo-observations from the Clayton, Gumbel, Gaussian, and
Frank copulas. We also simulated the same number of pseudo-observations from the
families of UL-distorted copulas, where the four copulas served as base copulas. We do not
present the figures for QIP, QUL, and QUP distortions, as the conclusions are similar to
those from UL distortion.

The values of parameters in the base copulas are selected so they have Kendall’s tau
value of 0.5. The UL distortion has parameter values of α = 1/2 and θ = 1/2. We used
the pseudo-likelihood estimation method [12] that maximizes (17) to fit the base copula
and distorted copulas to the data. We then computed the empirical probabilities using
the estimated copula models and constructed the probability–probability (PP) plots of the
estimated probability distribution against the theoretical one. In the first row, the four base
copulas are approximated by their UL-distorted counterparts, UL-Clayton, UL-Gumbel,
UL-Gaussian, and UL-Frank copulas, and vice versa in the second row. The solid black line
is the one that resulted from fitting the data to the copula model, from which observations
were generated.

As another way of comparison, we also calculated the maximum distance in Table 3
between the theoretical and empirical probabilities at each data pair of (u1, u2). The
univariate Kolmogorov–Smirnov (KS) test came to mind, and for a sample size of 2000, the
95% critical value of 0.03 is used as an ad hoc threshold.

Based on Figure 5 and Table 3, the Clayton copula, which is represented in red in the
second row of Figure 5, shows greater deviations from the 45-degree line when fit to the
data generated from UL-distorted copulas. According to Lemma 1, the UL-distorted copula
has an upd coefficient of 2 − (2 − λU)

α, which may be attuned to zero. Furthermore, it
has zero ltd when the base copula has zero ltd. The Clayton copula does not have upper
tail dependence, so one would expect it to perform poorly when fit to the data generated
from the UL-distorted family. In contrast, e.g., the UL-Gumbel appears to do well when fit
to the data generated from the Frank and Gaussian copulas. In general, the performance
of a copula depends on its tail dependence characteristics, and the results show that the
UL-distorted copulas are more flexible as they have extra parameters.

Table 3. Maximum distance between the theoretical and empirical copula distributions.

Distorted Copula
Approximating

Clayton by Gumbel by Frank by Gaussian by

UL-Clayton 0.014 0.021 0.035 0.026
UL-Gumbel 0.028 0.012 0.019 0.008
UL-Frank 0.021 0.012 0.011 0.024

UL-Gaussian 0.031 0.021 0.031 0.016

Base Copula
Approximating

UL-Clayton by UL-Gumbel by UL-Frank by UL-Gaussian by

Clayton 0.035 0.047 0.042 0.042
Gumbel 0.050 0.013 0.034 0.033
Frank 0.046 0.024 0.030 0.032

Gaussian 0.021 0.019 0.017 0.022
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Figure 5. PP plots of UL and base copulas.

6.2. Empirical Application

We fit the proposed families of copula models to a bivariate dataset of daily return
rates on Amazon and Google stocks. Historical data for the daily open, close, high, and
low prices, and the adjusted closing price for stocks can be downloaded from Yahoo
Finance. The adjusted closing price accounts for any splits and dividend distributions. We
downloaded the data for Amazon and Google stocks for the period from January 2014 to
December 2023, which amounts to a sample size of 2516 daily data points. The daily net
return rates in percentages were then calculated based on the adjusted closing price. To
calculate the return rate for today, the difference between today’s price and yesterday’s
price is divided by yesterday’s price.

Table 4 displays the summary statistics for both variables. The sample Pearson correla-
tion and Kendall’s tau are 0.71 (p-value < 0.001) and 0.49 (p-value < 0.001), respectively,
both of which are significantly different from zero. Compared to Google, the center ten-
dency measures for Amazon are smaller, but there is no significant difference in means.
The Amazon daily rate return is significantly more variable based on the F test and is more
skewed judging from the skewness measures and histograms in Figure 6.

Table 4. Descriptive statistics of the dataset.

Mean Sd Min 1st Qu Median 3rd Qu Max Skew

Amazon −0.01 1.60 −8.56 −0.86 −0.01 0.91 8.24 −0.09
Google 0.04 1.35 −5.76 −0.67 0.05 0.84 6.65 −0.20

Let {xi, yi}n
i=1 denote the bivariate observations. The pseudo-observations or scaled

empirical distributions {ui, vi}n
i=1 are defined to be ui = ∑n

j=1 J(xj ≤ xi)/(n + 1) and vi =

∑n
j=1 J(yj ≤ yi)/(n + 1), where J(·) is the indicator function. Figure 6 contains the scatter

plots of yi versus xi and vi versus ui. Based on the histograms, the return rates for both
stocks are concentrated around their center, which is also reflected in the resulting scatter
plot. However, the pseudo-observations computed using a scaled empirical distribution are
uniformly distributed. Therefore, one would expect a more evenly dispersed scatter plot.

The maximum pseudo-likelihood estimation introduced by [18] is used to estimate
the parameters. It maximizes the pseudo-log-likelihood function, i.e., the log-likelihood
with the copula functions evaluated at pseudo-observations, given by

L(γ) =
n

∑
i=1

log cT(ui, vi; γ), (17)
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where cT is the copula pdf in (A1) and γ is the parameter vector.

Figure 6. Histograms of daily return rates for Amazon and Google stocks, and scatter plots of
Amazon against Google return rates and their corresponding pseudo-observations.

We did not fit a marginal distribution to each of the net returns. Our primary objective
was to compare the new families of the distorted copula with the base copulas. Let r be
the parameter in the base copula. Table 5 below reports the estimates with the estimated
standard error in the parentheses, the maximum pseudo-likelihood (MPL), and the AIC
values. All the parameter estimates fall within admissible spaces. Kendall’s tau estimates τ̂
were computed by plugging parameter estimates into either the theoretical Kendall’s tau
formula or (16).

Based on the scatter plots, it appears that there is a weak dependence in both the
lower and upper tails between the daily net returns of the two stocks. Table 5 shows that
among the base copulas considered, the Gaussian copula performs the best in terms of
MPL and AIC, followed by Gumbel. The estimated Kendall’s tau calculated from the
Gaussian copula produces the closest match to the sample Kendall’s tau between Google
and Amazon.

The Frank copula, which is supposedly suitable for data with weak tail dependence,
performs the worst. Note that the Gumbel copula with a parameter value of 1 represents
the independent copula where Kendall’s tau is equal to 0. It performs better than the
Clayton copula, which suggests that there might be a stronger upd than ltd. Furthermore,
a distortion copula that can accommodate a wider range of upper tail dependence, e.g., UL-
distorted copulas, may do well in fitting this net return dataset.

Table 5 indicates that the UL-distorted copula model outperforms the corresponding
base copula. The fitted UL-Clayton copula model has the largest AIC value, with the
estimated lower and upper tail dependence coefficients of 0.44 and 0.50. It is less satisfactory
than other UL-distorted copula models, probably due to weak lower tail dependence in
the data. Both the UL-distorted Frank and Gaussian copulas have an estimated upper tail
dependence coefficient of 0.39 and perform better than the Gaussian copula in terms of
MPL and AIC.
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The UIP-Clayton and UIP-Frank copulas do not exhibit tail dependence behaviors
and their performance is worse than their base copulas. The UL-Gumbel and UIP-Gumbel
copulas are the best performers, with UL-Gumbel being slightly better than UIP-Gumbel
in terms of MPL and AIC. The UIP-Gumbel model produces an estimated Kendall’s tau
closer to the sample Kendall’s tau. Both models have upper tail dependence, but not lower
tail tail dependence.

According to the copula models employed in this application, there is a moderate
linear correlation between the daily net returns of Amazon and Google stocks. Additionally,
there appears asymmetrical in the extreme co-movements; that is, joint extremes are more
likely for high daily net return values than for low daily net return values.

Table 5. MPL, AIC, τ̂, parameter estimates and their standard deviation in parentheses r̂, θ̂, α̂ for the
base, UL-distorted, and UIP-distorted copula models.

Family MPL τ̂ AIC r̂ θ̂ α̂

Clayton 756.0 0.488 −1510.1 1.907(0.055) – –
Gumbel 758.7 0.461 −1515.5 1.856(0.033) – –
Frank 754.3 0.491 −1506.7 5.582(0.165) – –

Gaussian 838.6 0.493 −1675.3 0.699(0.009) – –

UL-Clayton 877.3 0.450 −1748.6 4.855(0.192) 0.000(0.174) 0.562(0.029)
UL-Gumbel 906.4 0.461 −1806.9 1.256(0.043) 0.008(0.004) 0.873(0.056)
UL-Frank 900.0 0.476 −1794.0 4.223(0.319) 0.084(0.023) 0.640(0.019)

UL-Gaussian 901.9 0.484 −1797.9 0.527(0.034) 0.028(0.012) 0.686(0.026)

UIP-Clayton 748.3 0.353 −1490.6 1.413(0.097) 0.999(0.030) 1.296(0.108)
UIP-Gumbel 906.4 0.494 −1806.8 1.392(0.036) 0.010(0.006) 1.174(0.097)
UIP-Frank 748.5 0.481 −1494.9 9.281(0.443) 0.999(0.060) 3.484(0.043)

UIP-Gaussian 887.1 0.472 −1768.3 0.852(0.073) 0.022(0.062) 1.995(0.194)

7. Concluding Remarks

The framework advanced in the paper originates from the fact that a cumulative
distribution function with unit interval support is a distortion function. It employs a
transformation of a non-negative random variable into a variable with the support of the
unit interval. The additional parameters in the distortion allow for more modeling flexibility.
As demonstrated in Section 3.2, distortion of the independence copula creates a new family
of copulas that includes the base copula and other existing copulas as its members and
accommodates a wider range of tail dependence behaviors that the independence copula
would never dream of having.

The tail behavior of a copula model is a crucial factor in determining whether it
can adequately fit the data. The use of UL and QUL distortions can morph a family of
base copulas without upper tail dependence into a new family of copulas with upper tail
dependence. The upper tail dependence coefficient of the UL- and QUL-distorted copulas
involves more parameters than the one of the base copula. The distortions can ultimately
lead to a better accommodation of the upper tail dependence when compared to the base
copula. The tail behaviors in the families of the UIP- and QUP-distorted copulas are similar
to the ones in the base copula. However, they can accommodate better the lower tail
dependence when compared to the base copulas.

We are not certain whether a more complicated generating cdf or distortion, e.g., one
with more than two parameters, would result in a new family of copulas with both upper
and lower tail dependence when applied to a base copula with no tail dependence behavior.
The framework proposed in this article opens the door to a world of new distortions. Due
to the page length limit, further exploration of the concordance ordering of the new family
of distorted copulas will be pursued in more detail. The distortions of multivariate copulas
of higher dimensions may also be of interest. Unlike the distortions of bivariate copulas,
the distortions of multivariate copulas require more care and will be explored in the future.
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Appendix A. Preliminaries

Let F(x, y) be the joint cumulative probability distribution (cdf) of continuous random
variables (X, Y), and FX(x) and FY(y) be the respective marginal cdfs of X and Y. By Sklar’s
Theorem [10], there exists a unique copula C, satisfying the boundary and monotonicity
conditions, such that

F(x, y) = P(X ≤ x, Y ≤ y) = C
(

FX(x), FY(y)
)
, x, y ∈ (−∞, ∞). (A1)

The joint probability density function (pdf), denoted by f (x, y), of (X, Y) is

f (x, y) = c
(

FX(x), FY(y)
)

fX(x) fY(y), (A2)

where fX and fY are the respective pdfs of X, and Y and c(u, v) is the copula pdf such
that c(u, v) = ∂2C(u, v)/∂u∂v. The Equation (A2) implies that a joint bivariate probability
distribution can be separated into univariate marginals and a dependence structure, where
the dependence structure is represented by a copula.

A copula C by definition has the following properties: (i) C(u, 0) = C(0, v) = 0,
(u, v) ∈ I2 where I = [0, 1]; (ii) C(u, 1) = u and C(1, v) = v, (u, v) ∈ I2; and (iii) C(u2, v2)−
C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0, for u1 ≤ u2, v1 ≤ v2, and (u1, u2), (v1, v2) in I2.

If C is an Archimedean copula with a strict generator ψ(·) such that ψ(0) = ∞, it can
be expressed as C(u, v) = ψ−1(ψ(u) + ψ(v)), where ψ−1 is the inverse of ψ. The function
ψ : [0, 1] → [1, ∞) is convex, continuous, and strictly decreasing with ψ(1) = 0 and
ψ(0) = ∞. Archimedean copulas are popular because they admit explicit formulas and
can accommodate higher dimensions with only one parameter. Table A1 highlights some
prominent bivariate Archimedean copulas, their generators, and their tail dependence
behaviors. Let Π be the independence copula.

Table A1. Important Archimedean copulas and their generators.

Name Copula Function Generator ψ(t) κL or λL κU or λU

Π uv − log(t) κL = 2 κU = 2

Clayton (u−r + v−r − 1)−1/r, r > 0 (t−r − 1)/r λL = 2−1/r κU = 2

Frank
−1
r

log
[

1 +
(e−ru − 1)(e−rv − 1)

e−r − 1

]
, − log

(
e−rt − 1
e−r − 1

)
κL = 2 κU = 2

r ̸= 0

Gumbel e
[
−((− log(u))r+(− log(v))r)1/r

]
, r > 1

[
− log(t)

]r
κL = 21/r λU = 2 − 21/r

The lower and upper tail dependence parameters, λL and λU , are given by

λL = lim
u→0+

P(FX(X) < u | FY(Y) < u) = lim
u→0+

C(u, u)
u

, (A3)

λU = lim
u→0+

P(FX(X) > u | FY(Y) > u) = lim
u→1−

C(u, u)
(1 − u)

= 2 − lim
u→1−

1 − C(u, u)
1 − u

,
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where C(u, v) = P(U > u, V > v) = 1 − u − v + C(u, v). They measure the probability
that a random variable reaches extreme values given another variable attains extremes.

A non-negative function f is said to be slowly varying if for s > 0, limx→0 f (sx)/ f (x) = 1.
Let f1 and f2 be two functions. If limu→u0 f1(u)/ f2(u) = 1, we denote it by f1(u) ∼ f2(u) as
u → u0. For a bivariate copula if

C(u, u) ∼ uκLℓ(u), u → 0+,

where ℓ(u) is slowly varying at 0+, then κL is referred to as the lower tail order of C. The
survival copula is given by

Ĉ(u, v) = u + v − 1 + C(1 − u, 1 − v). (A4)

The upper tail order κU meets the condition that

Ĉ(u, u) ∼ uκU ℓ∗(u), u → 0+

for some slowly varying function ℓ∗(u). Note that 1 ≤ κL, κU ≤ 2. If κL > 1 and κU > 1,
then λL = λU = 0. If κL = 1, λL = limu→0+ ℓ(u); and if κU = 1, λU = limu→0+ ℓ∗(u). When
κL = 2 and ℓ(u) → q as u → 0+, for some positive q, the variables are near independent in
the lower tail. If 1 < κL < 2, the variables are positively associated and have intermediate
tail dependence. Similar conclusions can be made for the upper tail dependence; see [12,29]
for more details. Kendall’s tau value of a bivariate copula can be expressed as

τ = 1 − 4
∫ 1

0

∫ 1

0

∂C
∂u

(u, v)
∂C
∂v

(u, v) dudv. (A5)

For an Archimedean copula Kendall’s tau can also be calculated by

τ = 1 + 4
∫ 1

0

ψ(u)
ψ′(u)

du. (A6)

Appendix B. Contour Plots and Derivations of Tail Orders

Appendix B.1. Contour Plots

Figure A1 shows that the upper tail dependence tails of QUL-Clayton, QUL-Gumbel,
and QUL-Gaussian appear more pronounced than the corresponding base copula for
the selected α values, similar to those of UL-Clayton, UL-Gumbel, and UL-Gaussian,
respectively. The UL- and QUL-distorted copulas have no lower tail dependence when
the base copulas have no lower tail dependence. While the parameters are selected so that
τ = 0.5, the contour plots in Figures 1 and A1 show various shapes and sparsities.

Table 2 indicates that the upper tail dependence coefficient of the UIP- and QUP-
distorted copulas is the same as that of the base copula. However, the lower tail dependence
coefficients are (λL)

α where α ≥ 1 and (λL)
α where 0 < α ≤ 1, respectively. That is, the UIP

distortion with α = 3/2 in Figure 2 and the QUP distortion with α = 1/2 in Figure A2 have
similar if not the same shapes on the upper right side. Asymmetry is present in QUP-Frank
and UIP-Frank when θ and α do not equal 1. The contour plots for UIP-Gaussian and
QUP-Gaussian show little change.
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Figure A1. Density contour plots of the QUL-Clayton, QUL-Gumbel, and QUL-Gaussian copulas
with standard normal margins and parameters (θ, α) = (1, 1), (3/2, 1/2), and (2, 3/4). For Clayton,
Gumbel, and Gaussian, the parameter r is selected so that the value of Kendall’s tau is 1/2.

Figure A2. Density contour plots of the QUP-Clayton, QUP-Frank, and QUP-Gaussian copulas with
standard normal margins and parameters (θ, α) = (1, 1), (3/2, 1/2), and (2, 3/4). For Clayton, Frank,
and Gaussian, the parameter r is selected so that the value of Kendall’s tau is 1/2.

Appendix B.2. Derivations of Tail Orders

The following Talyor’s series approximations are key workhorses for calculating the
tail orders of proposed distortions. For two constants a and b, we have that

(1 + u)a ∼ 1 + au,
1

1 + au
∼ 1 − au,

u
1 + au

∼ u,
u

b + au
∼ u

b
as u → 0. (A7)
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Assume C(u, u) ∼ uκLℓ(u) as u → 0+ and C(1 − u, 1 − u) ∼ uκU ℓ∗(u) as u → 0+ for
some slowly varying functions ℓ and ℓ∗ at 0+.

Appendix B.3. Lower Tail Orders

Note that G−1
L = QL and G−1

P = QP. From (A7) and Table 1, we obtain that, as u → 0+,

GL(u) = 1 −
(

1 − θu
1 − (1 − θ)u

)α

∼ 1 − (1 − θu)α ∼ αθu;

QL(u) =
(1 − u)−1/α − 1

θ + (1 − u)−1/α − 1
∼ u/α

θ + (1 − u)−1/α − 1
∼ u/(αθ);

GP(u) ∼ θαuα; QP(u) ∼ u1/α/θ. (A8)

For UL-distorted copulas, since C
(
G−1

L (u), G−1
L (u)

)
→ 0 as u → 0+, applying

(A8) yields

GL

(
C
(
G−1

L (u), G−1
L (u)

))
= 1 −

[
1 − C

(
G−1

L (u), G−1
L (u)

)
1 − C

(
G−1

L (u), G−1
L (u)

)
+ θC

(
G−1

L (u), G−1
L (u)

)]α

∼ αθC
(
G−1

L (u), G−1
L (u)

)
∼ αθ[QL(u)]κLℓ

(
QL(u)

)
∼ uκL(αθ)1−κLℓ

(
QL(u)

)
as u → 0+. (A9)

By (A8), ℓ
(
QL(u)

)
∼ ℓ

(
u/(αθ)

)
and by definition, (αθ)1−κLℓ

(
QL(u)

)
is slowly varying.

For the QUL-distorted copulas, QL, by Table 1, (A7) and (A8), we have

QL

(
C
(
Q−1

L (u), Q−1
L (u)

))
=

[
1 − C

(
Q−1

L (u), Q−1
L (u)

)]−1/α − 1

θ +
[
1 − C

(
Q−1

L (u), Q−1
L (u)

)]−1/α − 1

∼ (αθ)−1C
(
Q−1

L (u), Q−1
L (u)

)
∼ (αθ)−1[GL(u)]κLℓ

(
Q−1

L (u)
)

∼ uκL(αθ)κL−1ℓ
(
GL(u)

)
as u → 0+. (A10)

By (A8), ℓ
(
GL(u)

)
∼ ℓ

(
αθu

)
and by definition, (αθ)κL−1ℓ

(
GL(u)

)
is slowly varying.

For the UIP-distorted copulas, since C
(
G−1

P (u), G−1
P (u)

)
→ 0 as u → 0+ and by (A8),

GP

(
C
(
G−1

P (u), G−1
P (u)

))
=

[
θC

(
G−1

P (u), G−1
P (u)

)
1 − C

(
G−1

P (u), G−1
P (u)

)
+ θC

(
G−1

P (u), G−1
P (u)

)]α

∼ θα
[
C
(
G−1

P (u), G−1
P (u)

)]α ∼ θα
{
[QP(u)]κLℓ

(
QP(u)

)}α

∼ uκL θα(1−κL)
[
ℓ
(
QP(u)

)]α as u → 0+. (A11)

Since GP(u) ∼ θαuα and ℓ is slowly varying at 0+, for s, α > 0,

lim
u→0+

ℓ(su)
ℓ(u)

= lim
u→0+

[
ℓ(su)
ℓ(u)

]α

= 1;

lim
u→0+

ℓ(GP(su))
ℓ(GP(u)

= lim
u→0+

ℓ(θasαuα)

ℓ(θauα)
= lim

v→0+

ℓ(sαv)
ℓ(v)

= 1. (A12)

Therefore,
[
ℓ
(
QP(u)

)]α is slowly varying.
For the QUP-distorted copulas, C

(
Q−1

P (u), Q−1
P (u)

)
→ 0 and by (A8), we obtain
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QP

(
C
(
Q−1

P (u), Q−1
P (u)

))
=

1
1 + θ

{[
C
(
Q−1

P (u), Q−1
P (u)

)
]−1/α − 1

}
∼ θ−1[C(

Q−1
P (u), Q−1

P (u)
)]1/α ∼ θ−1{[GP(u)]κLℓ

(
GP(u)

)}1/α

∼ uκL θκL−1[ℓ(GP(u)
)]1/α as u → 0+. (A13)

By similar arguments in (A12),
[
ℓ
(
GP(u)

)]1/α can be shown to be slowly varying.

Appendix B.4. Upper Tail Orders

By the approximations in (A7), as u → 0+,

GL(1 − u) = 1 −
[

u
θ + (1 − θ)u

]α

∼ 1 −
(
u/θ

)α,

QL(1 − u) =
u−1/α − 1

θ + u−1/α − 1
= 1 − θu1/α

1 + (θ − 1)u1/α
∼ 1 − θu1/α,

GP(1 − u) =

[
θ(1 − u)

u + θ(1 − u)

]α

=

[
1 − u

θ + (1 − θ)u

]α

∼ 1 − αu/θ,

QP(1 − u) =
(1 − u)1/α

θ + (1 − θ)(1 − u)1/α
∼ 1 − u/α

θ + (1 − θ)(1 − u/α)

∼ 1 − θu/α

1 − u/α + θu/a
∼ 1 − θu/α. (A14)

By (A4), if Ĉ(u, u) ∼ uκU ℓ∗(u) as u → 0+, C(1 − u, 1 − u) ∼ 1 − 2u + uκU ℓ∗(u), as
u → 0+. Therefore, by (A14),

C
(
G−1

L (1 − u), G−1
L (1 − u)

)
∼ C

(
1 − θu1/α, 1 − θu1/α

)
∼ 1 − 2θu1/α + (θu1/α)κU ℓ∗(θu1/α) = 1 − kGL(u),

C
(
Q−1

L (1 − u), Q−1
L (1 − u)

)
∼ C

(
1 − (u/θ)α, 1 − (u/θ)α

)
∼ 1 − 2(u/θ)α + (u/θ)α)κU ℓ∗((u/θ)α) = 1 − kQL(u),

C
(
G−1

P (1 − u), G−1
P (1 − u)

)
∼ C

(
1 − θu/α, 1 − θu/α

)
∼ 1 − 2θu/α + (θu/α)κU ℓ∗(θu/α) = 1 − kGP(u),

C
(
Q−1

P (1 − u), Q−1
P (1 − u)

)
∼ C

(
1 − αu/θ, 1 − αu/θ

)
∼ 1 − 2αu/θ + (αu/θ)κU ℓ∗(αu/θ) = 1 − kQP(u). (A15)

Note that the remainder terms kGL(u), kQL(u), kGP(u), and kQP(u) go to 0 as u → 0+.
For UL-distorted copulas, by (A14) and then (A7), GL

(
C
(
G−1

L (1 − u), G−1
L (1 − u)

))
is

given by

1 −
[

1 − C
(
G−1

L (1 − u), G−1
L (1 − u)

)
1 − C

(
G−1

L (1 − u), G−1
L (1 − u)

)
+ θC

(
G−1

L (1 − u), G−1
L (1 − u)

)]α

∼ 1 −
[

kGL(u)
θ + (1 − θ)kGL(u)

]α

∼ 1 −
[
kGL(u)/θ

]α. (A16)

Therefore, by (A4), for 0 < α ≤ 1, and κU ≥ 1, as u → 0+,
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ĜL

(
C
(
G−1

L (1 − u), G−1
L (1 − u)

))
= 2u − 1 + GL

(
C
(
G−1

L (1 − u), G−1
L (1 − u)

))
∼ 2u −

[
kGL(u)/θ

]α
= 2u − [2u1/α − θκU−1uκU/αℓ∗(θu1/α)]α

∼ u
{

2 − 2α[1 − 2−1θκU−1u(κU−1)/αℓ∗(θu1/α)]α
}

∼ u
{

2 − 2α[1 − α2−1θκU−1u(κU−1)/αℓ∗(θu1/α)]
}

∼ θκU−1uκU ℓ∗(θu) if α = 1. (A17)

For QUL-distorted copulas, by (A15), QL
(
C
(
Q−1

L (1 − u), Q−1
L (1 − u)

))
is given by[

1 − C
(
Q−1

L (1 − u), Q−1
L (1 − u)

)]−1/α − 1

θ +
[
1 − C

(
Q−1

L (1 − u), Q−1
L (1 − u)

)]−1/α − 1
=

[
kQL(u)]

−1/α − 1

θ +
[
kQL(u)

]−1/α − 1

= 1 −
θ
[
kQL(u)]

1/α

θ
[
kQL(u)

]1/α
+ 1 −

[
kQL(u)

]1/α
∼ 1 − θ

[
kQL(u)]

1/α.

Therefore, for α ≥ 1, and κU ≥ 1, as u → 0+,

Q̂L
(
C
(
G−1

L (1 − u), G−1
L (1 − u)

))
= 2u − 1 + QL

(
C
(
Q−1

L (1 − u), Q−1
L (1 − u)

))
∼ 2u − θ

[
kQL(u)]

1/α = 2u − θ
[
2(u/θ)α − (u/θ)α)κU ℓ∗((u/θ)α)

]1/α

= 2u − 21/αu
[
1 − 2−1(u/θ)α(κU−1)ℓ∗((u/θ)α)

]1/α

∼ u
{

2 − 21/α
[
1 − 2−1α−1(u/θ)α(κU−1)ℓ∗((u/θ)α)

]}
∼ (u/θ)κU ℓ∗(u/θ) if α = 1. (A18)

For UIP-distorted copulas, by (A7) and (A15), GP
(
C
(
G−1

P (1 − u), G−1
P (1 − u)

))
is

given by [
θC

(
G−1

P (1 − u), G−1
P (1 − u)

)
1 − C

(
G−1

P (1 − u), G−1
P (1 − u)

)
+ θC

(
G−1

P (1 − u), G−1
P (1 − u)

)]α

=

[
θ[1 − kGP(u)]

kGP(u)] + θ[1 − kGP(u)]

]α

=

[
1 −

kGP(u)
kGP(u)] + θ[1 − kGP(u)]

]α

∼
[
1 − kGP(u)/θ

]α ∼ 1 − αθ−1kGP(u).

Therefore, for α ≥ 1, and κU ≥ 1, as u → 0+,

ĜP
(
C
(
G−1

P (1 − u), G−1
P (1 − u)

))
= 2u − 1 + GP

(
C
(
G−1

P (1 − u), G−1
P (1 − u)

))
∼ 2u − αθ−1kGP(u) = 2u − αθ−1[2θu/α − (θu/α)κU ℓ∗(θu/α)]

∼ αθ−1(θu/α)κU ℓ∗(θu/α). (A19)

For QIP-distorted copulas, by (A7) and (A15), QP
(
C
(
Q−1

P (1 − u), Q−1
P (1 − u)

))
is given by[

C
(
Q−1

P (1 − u), Q−1
P (1 − u)

)
]1/α[

C
(
Q−1

P (1 − u), Q−1
P (1 − u)

)
]1/α + θ

{
1 −

[
C
(
Q−1

P (1 − u), Q−1
P (1 − u)

)
]1/α

}
=

[1 − kQP(u)]
1/α[

1 − kQP(u)]
1/α + θ

{
1 −

[
1 − kQP(u)]

1/α
}

=
1 − kQP(u)/α

1 − kQP(u)/α + θkQP(u)/α
=

α − kQP(u)
α − kQP(u) + θkQP(u)

= 1 −
θkQP(u)

α − kQP(u) + θkQP(u)
∼ 1 − θkQP(u)/α.
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Therefore,

Q̂P

(
C
(
Q−1

P (1 − u), Q−1
P (1 − u)

))
= 2u − 1 + QP

(
C
(
Q−1

P (1 − u), Q−1
P (1 − u)

))
∼ 2u − θkQP(u)/α = 2u − θα−1[2αu/θ − (αu/θ)κU ℓ∗(αu/θ)]

∼ uκU (α/)κU−1ℓ∗(αu/θ). (A20)

By applying similar arguments as in (A12), we can show that ℓ∗ in (A17)–(A20) are
slowly varying.

Appendix C. Concordance Ordering

A function f is subadditive if f (x + y) ≤ f (x) + f (y) for all x and y in its domain. A
function f is superadditive if f (x + y) ≥ f (x) + f (y) for all x and y in its domain.

Theorem A1 ([11]). let C1 and C2 be two Archimedean copulas generated by ψ1 and ψ2. Then
C1 ≺ C2 if and only if ψ1 ◦ ψ−1

2 is subadditive.

Furthermore, C1 ≻ C2 if only if ψ1 ◦ ψ−1
2 is superadditive.

Here, we show by using Theorem A1 that the families of UL- and UIP-independence
copulas are ordered in the parameter θ. For the UL-independence copula, Ψ1 ◦ Ψ−1

2 = ψ ◦
T−1

1 ◦ T2 ◦ ψ−1, where ψ(t) = − log(t) and T(u) = GL(u) = Q−1
L (u). Let h(u) = T−1

1 ◦ T2.
For θ1 < θ2 ≤ 1, by Table 1, we derive that

h(u) = QL1 ◦ GL2(u) =
1

1 + θ1(1 − u)/(θ2u)
=

θ2u
(θ2 − θ1)u + θ1

Ψ1 ◦ Ψ−1
2 (x + y) = − log

(
θ2

2e−(x+y)

θ2
[
(θ2 − θ1)e−(x+y) + θ1

]) (A21)

Ψ1 ◦ Ψ−1
2 (x) + Ψ1 ◦ Ψ−1

2 (y) = − log
(

θ2e−x[
(θ2 − θ1)e−x + θ1

] θ2e−y[
(θ2 − θ1)e−y + θ1

]) (A22)

We wish to compare (A21) and (A22) to determine if Ψ1 ◦ Ψ−1
2 is subadditive or

superadditive. Since e−(x+y) + 1 ≥ e−x + e−y for x, y ≥ 0, we obtain that

θ2

θ2 − θ1
≥ −ex+y + e−x + e−y +

θ1

θ2 − θ1

and θ2e−(x+y) +
θ1θ2

θ2 − θ1
≥ (θ2 − θ1)e−(x+y) + θ1e−x + θ1e−y +

θ2
1

(θ2 − θ1)
.

Therefore, (A21) is greater than or equal to (A22). That is, Ψ1 ◦ Ψ−1
2 is superadditive.

Hence, the family of UL-independence copulas is negatively ordered by the parameter θ.
Since the UIP distortion gives rise to the same h(u), the family of UIP-independence copulas
is also negatively ordered by the parameter θ.
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