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Abstract: In our study, we investigate the phenomenon of information loss, as measured by the Kullback–
Leibler divergence , in a many-fermion system, such as the Lipkin model. Information loss is introduced
as the number N of particles increases, particularly when the system is in a mixed state. We find that
there is a significant loss of information under these conditions. However, we observe that this loss
nearly disappears when the system is in a pure state. Our analysis employs tools from information
theory to quantify and understand these effects.
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1. Introduction

In this paper we study, using information theory tools, peculiarities of quantum
mixtures [1–5] in the context of an exactly solvable model of N interacting fermions of
mass m called the Lipkin model. Our focus is on information losses, as measured by the
Kullback–Leibler divergence (KL), that take place when N augments from a previous,
lower, reference fermion number No.

We present below the main contents of our study.
The Lipkin model [6–16] is a well-known model of N interacting fermions of mass m.

It is well known in nuclear physics and for quantum many-body systems, particularly in
the study of the interplay between pairing correlations and quantum phase transitions [6].
Using information theory tools to explore correlations between the degree of quantum
mixture (QMx) and some model traits is an interesting and valid research direction. Here,
we pay special attention to the QMx–particle number N relationship. Information theory
provides a formalism for quantifying and understanding correlations, entropy, and infor-
mation content in physical systems. Key concepts include entropy, mutual information,
and conditional entropy. These tools can be applied to analyze the relationships between
different parameters in a quantum system and provide insights into the complexity, cor-
relations, and entanglement present in the system. Such an interdisciplinary approach,
combining the Lipkin model, information theory, and quantum statistical mechanics, can
provide a rich framework for exploring the intricate connections between model traits and
special statistical quantifiers.

1.1. Quantum Mixtures

In this contribution, the concept of a quantum mixture (QMx) [1–4] is studied from the
viewpoint of interacting many-fermions systems. QMx is important in quantum mechanics
because it reflects the inherent probabilistic nature of quantum systems and provides a
way to describe their statistical behavior. Quantum mechanics is fundamentally different
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from classical mechanics and one of its key features is the existence of superposition states
and the associated concept of quantum entanglement. The concept of quantum mixtures is
important because [1–5]:

• In quantum mechanics, systems can exist in multiple states simultaneously, a phe-
nomenon known as superposition. A quantum mixture is a probabilistic combination
of these states, and it allows us to describe the overall state of a system when it is not
in a pure state;

• Probabilistic predictions: quantum mechanics predicts outcomes probabilistically. The
state of a system is described by a wave function, and the probabilities of different
outcomes are determined by the squared magnitudes of probability amplitudes. A
quantum mixture encapsulates these probabilistic predictions for composite systems;

• Measurement and observables: when a measurement is made on a quantum system,
the system typically collapses into one of its possible states, and the outcome of
the measurement is probabilistic. Quantum mixtures provide a way to express the
statistical distribution of outcomes for measurements on an ensemble of identically
prepared systems;

• Quantum information theory: quantum mixture concepts are fundamental in quantum
information theory, where the manipulation and transmission of quantum information
are studied. Understanding how mixed states evolve and interact is essential for
developing quantum algorithms and quantum communication protocols;

• Statistical mechanics: in the context of statistical mechanics, quantum mixtures are
used to describe the statistical ensembles of quantum systems. The grand canonical
ensemble, for example, involves a mixture of states with different particle numbers;

• In summary [1–5], the concept of a quantum mixture is a fundamental aspect of
quantum mechanics that allows us to handle the probabilistic and statistical nature of
quantum systems. It is a crucial tool for making predictions, understanding correla-
tions, and developing quantum technologies.

The above considerations make it abundantly clear that mixed states play a crucial
role in quantum mechanics, and that their importance lies in providing a more complete
and realistic description of physical systems compared to pure states alone. As stated
above, mixed state represents a statistical ensemble of pure states. This ensemble may
include different pure states with certain probabilities. Mathematically, a mixed state is
described by a density matrix, which is a positive semi-definite, Hermitian operator acting
on Hilbert’s space. Mixed states are essential when dealing with statistical ensembles,
thermal equilibrium, or open quantum systems that are subject to interactions with their
environment. In many practical situations, we may not have complete knowledge about
the exact state of a quantum system. Instead, we might have statistical information about
the probabilities of different pure states that the system could be in. Mixed states pro-
vide a natural way to describe such statistical ensembles. In quantum information theory,
mixed states play a central role in characterizing the performance of diverse quantum
algorithms and quantum communication protocols. Indeed, it must be emphasized that
mixed states are fundamental to a comprehensive understanding of quantum systems,
especially when considering the statistical nature of measurements, thermal effects, and
the impact of interactions with the environment. They provide a bridge between the
idealized concept of pure states and the practicalities of real-world quantum systems
[1–5]. Finally, it is interesting for our present purposes to note that the loss of quantum
characteristic behaviors as the number of particles becomes large is a well-known phe-
nomenon [5]. Indeed, we know that when the number of fermions in a collective becomes
very large, certain quantum systems can exhibit behavior that approximates classical
behavior. This is often referred to as the correspondence principle. The statistical comport-
ment of a large number of quantum particles can then resemble classical behavior on a
macroscopic scale [5].
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1.2. Nature of Our Results

Let us emphasize that in the present contribution, every result is exact. We use an
easily solvable many-fermion model called the Lipkin model (LM) [6] that is of significant
relevance in the field of quantum physics and condensed matter physics [6–16]. This model,
while simplified, offers valuable insights into the behavior of complex quantum systems
and provides simplified settings in which fundamental quantum principles can be explored
analytically. Researchers often use the LM to develop and test new theoretical frameworks,
such as many-body techniques and quantum field theory [6–16].

We will use here very low temperatures. This is a well-known statistical mechanics
technique to approximate the ground-state properties of a system. It results in a common
and powerful approach in condensed matter physics and quantum mechanics. This ap-
proach exploits the relationship between low-temperature properties and the ground state
of a system [15,16]. We take as our low temperatures T the values corresponding to the
inverse temperature β = 20 or 10, with β = 1/kT and k being the Boltzmann constant.

1.3. Present Goal and Organization

It is our goal to investigate some clues regarding the precedent considerations in
the context of a celebrated nuclear physics model called the Lipkin Model [7]. There are
hundreds of pertinent references that one could cite. Of course, there is no space for such a
task. We content ourselves with [6–16]. The model offers us a purely quantum environment.
We wish to investigate those of the model’s traits that depict quantum mixtures. The rest
of the paper is organized as follows. We begin in Section 2 by describing the mathematics
of the Lipkin model [6–16]. Section 3 recalls materials relevant to the Kullback–Leibler
divergence, one of the two main information tools that we employ herein. The second tool
is advanced in this effort in the context of the Likpin model (it is well known elsewhere),
being addressed in Section 4, where we show that it constitutes a valid quantifier for
assessing the mixture degree. Our central topic regarding information loss is discussed in
Section 5 and conclusions are drawn in Section 6.

2. The Lipkin Formalism [15,16]

We consider N interacting fermions of mass m and define Ω = N/2. The Lipkin model [6–16]
consists of N = 2Ω fermions of mass m that accommodate themselves into two distinct
single-particle (sp) energy levels, each of them N-fold degenerate. An energy gap separates
the two levels. This gap is called ϵ. Thus we face a total of 4Ω s.p. microstates, labeled
by two quantum numbers (denominated µ and p). The first quantum number µ attains
the values µ = −1 (lower level) and µ = +1 (upper level). The quantum number p, called
the quasi spin, pertains to a 2N-fold degeneracy. This pair p, µ is customarily viewed as a
“site”. This site can be occupied (by a fermion) or be empty. Lipkin sets [6]

N = 2J, (1)

where J acts as a sort of angular momentum. In addition, Lipkin [6] employs particular
angular-momentum-like operators denominated by quasi-spin operators, which are

Jz = ∑
p,µ

µ C+
p,µCp,µ, (2)

J+ = ∑
p

C+
p,+Cp,−, (3)

J− = ∑
p

C+
p,−Cp,+, (4)
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together with the Casimir operator

J2 = J2
z +

1
2
(J+ J− + J− J+). (5)

The eigenvalues of J2 take the form J(J + 1) and the Lipkin Hamiltonian takes the
form (v is a coupling constant) [6]

H = ϵJz +
v
4
(J2

+ + J2
−). (6)

The matrix of our Hamiltonian reads [6]

⟨n′|HL|n⟩ =

{
N
2
− n + 1 −

(
Nn − N

2
− n2 + 2n − 1

)
ω

}
δn′ ,n

−v
2

√
(N − n)(N − n + 1)(n + 1)n δn′ ,n+2 (7)

−v
2

√
(N − n′)(N − n′ + 1)(n′ + 1)n′ δn′ ,n−2

with n = 0, 1, . . . , N for J = N/2. A diagonalization (numerical) gives the energetic
eigenvalues En(v, J) .

2.1. System’s External Environment: Gibb’s Canonical Ensemble Heat Bath at Temperature T

Our Lipkin structure is supposed to interact with a heat reservoir. With the above
eigenvalues [15,16] we construct a canonical ensemble partition function Z [15] from which
we obtain all the associated thermal quantifiers that emerge [15,16].

We build up Z employing probabilities entering Z [16]. Our thermal indicators and
Z derive from probability distributions [16] pn(v, J, β). β is, as we saw above, the inverse
temperature. The pertinent formulas are found in [16]. If we denominate the mean energy
U, the entropy S, and the free energy F, we obtain [15,16]

pn(v, J, β) =
1

Z(v, J, β)
e−βEn(v,J), (8)

Z(v, J, β) =
N

∑
n=0

e−βEn(v,J), (9)

U(v, J, β) = ⟨E⟩ = −∂lnZ(v, J, β)

∂β

=
N

∑
n=0

En(v, J)Pn(v, J, β)

=
1

Z(v, J, β)

N

∑
n=0

En(v, J)e−βEn(v,J), (10)

S(v, J, β) = −
N

∑
n=0

Pn(v, J, β) ln[Pn(v, J, β)] (11)

F(v, J, β) = U(v, J, β)− T S(v, J, β). (12)

These thermal quantifiers yield much more information than that derived via the quantum
quantifiers of zero temperature T [16]. As stated above, using a low enough T, our indica-
tors provide a reasonably good representation of the T = 0 panorama [16]. Below, we often
take β = 10 or even lower.

2.2. Lipkin’s Degree of Mixture for a Quantum State ρ

Purity and mixing are basic notions that play a significant role in describing quantum
systems like the Lipkin model. The two notions are very important in the analysis of
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quantum information, computation, entanglement, and measurements. Understanding the
difference between pure states and mixed ones requires an understanding of the coherence,
superposition, and statistical behavior. As is well known, the degree of mixture C f of a
state ρ is, in terms of the probabilities pi [17],

C f = 1 − Trρ2 = 1 − ∑
i

p2
i , (13)

where Trρ2 is the purity Py (upper case P). For a pure state, one has C f = 0 and Py = 1. C f

is a very important quantifier in this study. Py = ∑N
n=0(Pn(v, J, β))2 and C f = S2 = 1 − P2

y .
We reiterate also, at the risk of redundancy, that for a Lipkin’s state at the fixed temper-

ature T, one uses, for the probabilities and partition function, all the important quantities

pn(v, J, β) =
1

Z(v, J, β)
e−βEn(v,J)Z(v, J, β) =

N

∑
n=0

e−βEn(v,J). (14)

3. The Kullback–Leibler Divergence (KL) [18]

This is an important tool of information theory. The Kullback–Leibler divergence
(KL) quantifies the distinguishability between two states. For quantum states, the KL
divergence can capture differences related to interference and entanglement, providing
valuable information about the quantum system’s properties. One finds KL applications in
quantum information theory, quantum computing, and quantum communication, where
understanding and quantifying it yields a measure of the difference between two probability
distributions. In classical information theory, the KL divergence between probability
distributions P(x) and Q(x) is given by:

DKL(P||Q) = ∑
x

P(x)log(P(x)/Q(x)). (15)

The KL divergence quantifies how much information is lost when using Q to approx-
imate P. It is non-negative and equal to zero if and only if the two distributions are the
same. In the context of quantum mechanics, the concept of KL divergence can be extended
to compare two quantum states. For two quantum states described by density operators ρ
and σ, the quantum Kullback–Leibler FF divergence is given by

D(ρ||σ) = Tr(ρlog(ρ)− ρlog(σ)). (16)

4. New Quantum-Thermal Indicator for the Lipkin Model

This may sound strange at first, but consider the quantity (with length units)

λ =
2πh̄√

2πmkBT
, (17)

called the de Broglie thermal length. Of course, there is no dimension of length in the
Lipkin model, but our scenario contains fermions of mass m (system’s mass Nm) at the
temperature T so that a λ value can be computed and is up to us to show its relevance to
the Lipkin model, which we do below. According to de Broglie convention, very small λ’s
should indicate classicality. This happens obviously for high T and large N as indicated by
(17), as should intuitively be expected.

The proton mass is mp = 1.67262192 × 10−27 kg. The Hydrogen atom’s radius rH is
∼ 10−10 m. One can plot λ versus Nmp. Since h̄ = 6.582119569 × 10−16 Js, one obtains

λ =

√
2πh̄2

mp

√
β

N
= 0.0403419

√
β

N
= 1.0857 × 1020

√
1

NT
rH , (18)

where the center considers kB = 1 and is expressed in meters, while the last equality is
expressed in rH units and we took β = 1/kBT with kB = 1.380648 × 10−23 J/K.
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4.1. Relationship between λ and N

Figure 1 depicts λ versus the fermion number N. The latter diminishes, as expected,
when N grows. We expect this behavior because it is well known that classicality begins to
insinuate itself for large N [5].
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Figure 1. Thermal length quantifier λ vs. N for several values of β = 1, 5, 10, and 20 (in meters for
the left vertical scale and in terms of the Hydrogen atom radius in the right vertical scale) taking
kB = 1 (left) and kB = 1.380648 × 10−23 (right). We see that the thermal length decreases as the
number of fermions in the system grows, at rates regulated by the temperature. The rates increase as
the temperature decreases. The length becomes smaller as N grows, which can be read as a vestige
of classicality. That the effects are more noticeable for lower temperatures than for higher ones, is
something that one should intuitively expect.

Let us repeat that the graph clearly indicates that our quantifier λ does work in
the fashion one would expect. Indeed, as mentioned above, the well-known emergence
of classicality as the number of particles N in a system grows is a fascinating aspect of
quantum physics [5]. We will NOT encounter this phenomenon further in this work.

4.2. Relationship between Purity, Temperature, and λ

Figure 2 plots Py = 1 − C f versus λ.
We see that, as promised above, the thermal length displays the expected properties of

growing when the purity is large and diminishing when the mixture degree is large. Thus,
λ is validated as a quantum indicator.

The limitation we observe in the Lipkin model, in which the degree of quantum
mixture cannot exceed one-half likely arises from the combination of the Pauli exclusion
principle and the specific characteristics of degenerate levels in the system. The Pauli
exclusion principle restricts the occupancy of sites by fermions. No two fermions can
occupy the same site simultaneously. In our case, each quasi-spin p−site can accommodate
two fermions (one with spin up and one with spin down).

In the Lipkin model, each level can host multiple fermions. However, the maximum
number of fermions that can occupy the pertinent degenerate levels is 2N. This is because
there are 2N available distinct sites.

When the system is half-filled, as is the case here, we have N fermions in total.
This situation corresponds to one fermion in each of the twice degenerate p-spins, and it
represents a scenario of maximum quantum mixture.
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The Pauli exclusion principle still applies independently to each spin site–state, al-
lowing for a maximum of two fermions (spin up and spin down) in each degenerate
p spin.

In summary, the Pauli exclusion principle, combined with the degeneracy of the levels,
results in a maximum quantum mixture when the system is half-filled by N fermions. This
situation corresponds to one fermion in each twice degenerate p quasi-spin, leading to a
state of maximum superposition. The specific structure of the Lipkin model, considering
quais-spin degeneracy, determines the constraints on the occupancy and the resulting
quantum mixture.

β=10 v=1

0.00 0.02 0.04 0.06 0.08 0.10

0.0

0.2

0.4

0.6

0.8

1.0

λ

P
y

Figure 2. Purity versus de Broglie thermal wavelength (in meters) for β = 10, N = 20, and v = 1.
When the purity is small, the wavelength is also small, and vice versa when the purity approaches
unity. One detects a minimum purity equal to one-half (see text).

5. Information Loss and λ

5.1. The KL–Information Loss Relationship

We reframe here our Kullback–Leibler material in terms of the number of fermions
N that our Lipkin system contains. The Kullback–Leibler (KL) divergence between two
probability distributions P1 and P2 provides, as we saw, a measure of how one probability
distribution diverges from another. Specifically, KL(P1||P2) quantifies the information
lost when P2 is used to approximate P1.In other words, the KL divergence measures
the expected additional amount of information needed to encode data from P1 using a
probability distribution P2 that is, it quantifies how much information is lost when the
true distribution P1 is approximated by P2 In this work, the first distribution will be
that describing an N-fermion system while P2 does the same for an identical system but
containing 2N particles.

5.2. The Degree of Information Loss as N changes

We tackle now an issue regarding the degree of information loss as N changes, using
KL as a measure of how one probability distribution (PD) diverges from a second PD in the
context of comparing systems with different particle numbers. We will find that the KL
divergence diminishes when comparing a system with a relatively small particle number
N to one with a larger N for quantum mixed systems. The diminution effect is drastically
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smaller if the systems are in a pure state. This issue is addressed in Figure 3, which relates
λ (in meters) to the KL divergence between N and 2N fermions (N = 100). Information is
lost when N increases, but it does so in a very different manner if the state is mixed or pure.
This fact constitutes the main finding of the present work.

The graph shows that this loss process also occurs at larger thermal lengths, the larger
v becomes. The main feature here is that the degree of information loss is rather big for
small thermal lengths. We contend that the loss continues to exist at large lengths. We do
not see this occur in our graph for scale reasons. What becomes clear is that the larger the
purity, the smaller the information loss.
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v=0.75
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Figure 3. KL vs. λ for several v values, obtained by comparing probability distributions pertaining to
N versus 2N scenarios. These KL values measure our information loss. We take β = 20. When we
reach λ ∼ 13 cm, we are in the pure-state range of our indicator, as we saw above. In this pure-state
regime, the information loss is so small that it cannot be seen in the vertical scale we have chosen here.
Differences are smaller than the dots used there. We see that information loss when we augment N is
immensely larger for mixed states than for pure ones.

5.3. Possible Interpretations

In quantum mechanics, entanglement is a unique feature that can exist in pure states.
When a system is in a pure state, the entanglement between particles can lead to more
complex and correlated probability distributions. In contrast, mixed states arise from
ensembles of quantum systems, potentially with reduced entanglement. The presence
of mixed states might lead to a more gradual change in the probability distribution with
increasing particle number, resulting in a smaller KL divergence.

Mixed states can be viewed as statistical ensembles of pure states. When comparing
a system of small particle number to one with a large particle number in a mixed-state
scenario, you are effectively considering an average over a variety of possible pure states
within the ensemble. This averaging might lead to a smoother and less pronounced change
in the probability distribution, contributing to a smaller KL divergence.

Quantum mixtures can exhibit reduced correlations between particles compared to
entangled pure states. As the particle number increases, the statistical independence
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between particles might become more pronounced, leading to a less complex and more
predictable probability distribution.

Mixed states often have higher entropy than pure states. The increased entropy may
contribute to a more uniform and less informative probability distribution, particularly as
the particle number increases. This can result in a smaller KL divergence.

6. Conclusions

We have encountered different ways of visualizing the difference between mixed and
pure states and also introduced a new quantifier for the quantum mixture degree, called λ,
that can be cast as a length.

For the systems considered in this work, λ-values larger than ∼12 cm indicate purity
equal to unity while smaller values indicate increasing degrees of state mixing (see Figure 3).
It should be noted that, according to Equation (18), λ values smaller than, say, 0.001 mm,
might be evidence of the vestiges of classical behavior. Thus, we can properly call our λ
a pseudo thermal length that is a helpful purity indicator for the Lipkin model. For high
purity, it yields large values, and vice versa for a large degree of of state mixing.

We saw that, at a finite temperature T, the system purity Py diminishes in a faster
fashion when the degree of fermion–fermion interaction v becomes larger.

We discovered that, in the Lipkin model at a finite temperature T, the growth of N
increases the degree of mixture. If one augments N, information, as measured by the KL
divergence, is lost. The larger the mixture degree, the greater the accompanying information
loss. In the case of pure states (at zero temperature), the loss becomes vanishingly small.
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