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Abstract: Hepatitis B is a liver disease caused by the human hepatitis B virus (HBV). Mathematical
models help further the understanding of the processes involved and help make predictions. The
basic reproduction number, R0, is an index that predicts whether the disease will be chronic or not.
This is the single most-important information that a mathematical model can give. Within-host virus
processes involve delays. We study two within-host hepatitis B virus infection models without and
with delay. One is a standard one, and the other considering additional processes and with two
delays is new. We analyze the basic reproduction number and alternative threshold indices. The
values of R0 and the alternative indices change depending on the model. All these indices predict
whether the infection will persist or not, but they do not give the same rate of growth of the infection
when it is starting. Therefore, the choice of the model is very important in establishing whether the
infection is chronic or not and how fast it initially grows. We analyze these indices to see how to
decrease their value. We study the effect of adding delays and how the threshold indices depend on
how the delays are included. We do this by studying the local asymptotic stability of the disease-free
equilibrium or by using an equivalent method. We show that, for some models, the indices do not
change by introducing delays, but they change when the delays are introduced differently. Numerical
simulations are presented to confirm the results. Finally, some conclusions are presented.

Keywords: hepatitis B; virus propagation; delay differential equation; basic reproduction number;
mathematical model
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1. Introduction

Hepatitis B is a liver disease caused by the human hepatitis B virus (HBV). It is spread
through contact with infected body fluids by sexual transmission, the use of infected
needles, and even during pregnancy and delivery [1,2]. It can be acute and short-lived
or chronic. In adults, about 5% of the infections turn chronic, but in children infected
before the age of five, the chronic rate is about 95%. It is estimated by the World Health
Organization that, in 2019, there were more than 296 million people with chronic hepatitis
B with 1.5 million new infections every year [2]. Even though the liver has a great capacity
to regenerate, hepatitis B can lead to cirrhosis and liver cancer.

There is a vast literature on mathematical models on virus infections both from the epi-
demic side, as well as from the within-host side. From the epidemic side at the population
level, some references are [3–6]. A basic within-host virus reproduction model consisting
of a system of three ordinary differential equations (ODEs) for susceptible and infected
cells and virus particles (virions) can be found in [7–10] and in many other references. The
immune system is also introduced, either explicitly or implicitly, by considering its effects,
for example in [11–14]. There are papers dealing specifically with hepatitis B like [12,13,15].
More references are included in the next section.

The virus infection processes involve several delays. There is the time needed for
the virus to replicate once it is inside a cell and the time it takes the immune system to
react to the presence of infected cells and virions. The dynamics of models given in terms
of delay differential equations (DDEs) are different than those given by ODEs, as shown,
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for example, in [16–18]. Delayed models may have oscillations, different equilibrium
points, and different stability regions. Some papers dealing with delayed models for virus
propagation within the individual are [19–23]. There is also a wide literature of papers
dealing with other mathematical aspects of virus propagation models. In [24–26], the
authors deal with the uncertainties present by introducing stochasticity. Global stability
is studied, for example, in [27,28] and for models with delay in [29,30]. The bifurcation
of solutions is analyzed in [31,32], and many papers also perform bifurcation numerical
calculations using DDE-BIFTOOL [33]. Of course, these methods and results can also be
used in many other applications. Two examples are [34,35]. The mathematical models
for virus propagation for hepatitis B have a large variation in their complexity, and in the
cells, cytokines and other factors are considered. Even parameters’ values have variations.
The actual processes involved and possible treatments are still an area of active research.
There is a review of treatments in [36]. Note that most models that include treatment do
so indirectly by changing the values of some parameters, like in [37]. Two processes that
maybe should be considered, since their relevance is currently being investigated, are the
effect of subviral particles [38] and the replication of viral DNA [39].

One of the most-important uses of mathematical models of virus propagation is their
ability to predict if there will be a persistent infection or not. The basic reproduction number
R0 is an index that can do this. For models given in terms of ODEs, it is usually calculated
using the next-generation matrix method [40,41]. Even though it can, in principle, be
used for DDEs, there is no theorem that guarantees that the index calculated is R0. The
index given by the next-generation matrix method and other threshold indices given
in the literature may not actually be the basic reproduction number, but they may give
similar information.

In this paper, we introduce a within-host virus propagation model without and with
two delays that includes cell-to-cell infection and the immune system. We will calculate R0
for these models and, also, for a basic virus propagation model with no immune system.
For the delayed models, a different method is used to find an equivalent index to R0. We
will show how to obtain alternative threshold indices, and we will compare them. We
will also mention what parameters to change so that the value of these indices decreases.
The rest of the paper is organized as follows. In Section 2, we present both the basic virus
propagation model and a new model with two delays that also includes effector cells and
cell-to-cell transmission. We analyze the models and, also, calculate indices that establish
the existence of a chronic state. In Section 3, we present the numerical simulations and
results. Section 4 is a discussion of the results and gives future directions.

2. Materials and Methods
2.1. Basic Model

A basic model of within-host virus propagation considers that there are three popu-
lations, susceptible cells, infectedcells, and virus particles. Susceptible cells are recruited
and die naturally and can be infected by contact with a virion. Infectedcells can burst and
liberate a given number of virions. These free virions can infect healthy cells or die.

Such a basic model for the processes for hepatitis B was presented in [15]:

dx
dt

= λ− µxx− βvx

dy
dt

= βvx− µyy

dv
dt

= Bµyy− µvv.

(1)

Here, x, y, and v are the concentration of susceptible liver cells, infected liver cells, and
virions, respectively. λ is the recruitment rate of new susceptible cells, µx their death rate, β
the infection rate, µy the killing rate of infected cells by the virus, B the number of virions
produced per infected cell, and uv the death rate, or elimination rate by the immune system,
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of virions. All the parameters are positive. While we will consider all the parameters to
be constant in time for this model and for all the models presented later, in reality, they
may vary due, for example, to changes in the immune system, viral reservoir, etc. The total
number of cells may also change.

The following theorem shows that the solutions of the system (1) are well behaved
from the biological point of view.

Theorem 1. Consider the system (1), and let R3
+ = {(x, y, v) ∈ R3 : x ≥ 0, y ≥ 0, v ≥ 0} so if

(x(0), y(0), v(0)) ∈ R3
+, then (x(t), y(t), v(t)) ∈ R3

+ for t > 0. Also, if x(0), y(0), and v(0) are
bounded, so are x(t), y(t), and v(t) for t > 0.

Proof. First, to show that the solutions of the system (1) are non-negative for x(0) ≥ 0,
y(0) ≥ 0, and v(0) ≥ 0, consider the first equation of the system evaluated at x = 0:

dx
dt
|x=0 = λ > 0,

so x(t) cannot be negative for all t. Let t1 and t2 be the smallest times such that y(t1) = 0
and v(t2) = 0. If t1 < t2, then from the y equation at y = 0:

dy
dt
|y=0 = βxv ≥ 0,

since v > 0, and so, y(t) is increasing. At v = 0, the v equation is

dv
dt
|v=0 = Bµyy ≥ 0,

so v(t) ≥ 0. Similarly, for t2 < t1, start with the v equation at t2 to show that v(t) is non-
negative, and then, use the y equation at t1 to show that y(t) ≥ 0. If t1 = t2, the right-hand
sides of both the y and the v equations are zero, and again, y and v are non-negative.

To prove the boundedness of the solutions, the differential equation for x(t) + y(t) is

d(x + y)
dt

= λ− µxx− µyy ≤ λ− µ(x + y),

with µ = min(µx, µy). Therefore, evaluating this equation at x + y = λ/µ, we obtain

d(x + y)
dt

≤ 0.

So, x(t) + t(t) ≤ λ/µ. Similarly, the third equation implies

dv
dt
≤ Bµyymax − µvv,

with ymax = max y(t), 0 ≤ t, and evaluating the equation at v = Bµyymax/µv, we obtain

dv
dt
≤ 0,

while v(t) is bounded.

System (1) has two equilibrium points, the disease-free equilibrium (DFE):

x∗ = λ/µx, y∗ = 0, v∗ = 0,

and a chronic or endemic equilibrium (CE):

x∗ = µv/(Bβ), y∗ = (Bβλ− µvµx)/(Bβµy), v∗ = Bλ/µv − µx/β.
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The basic reproduction number (also called the basic reproductive number) R0 is
the average number of newly infected cells generated by a single virus particle at the
beginning of the infection process. For the model (1), it can be calculated as the product of
the probability of a new infected cell per susceptible cell, β, times the number of susceptible
cells at the beginning of the infective process, λ/µ, times the number of virus particles
produced from that infected cell, B, times the average lifetime of a virus particle, 1/µv.
Therefore, R0 = β(λ/µx)B/µv. If R0 > 1, the number of virus particles increases away
from the DFE, and the CE makes biological sense since all the states are non-negative.
If R0 < 1, the infection disappears and the DFE equilibrium is the only one that makes
biological sense. R0 > 1 implies that the DFE is locally asymptotically unstable, so at
least one of the eigenvalues of the linearized system about the DFE has a positive real
part. To determine if the infection is growing, it is only necessary to look at the infected
compartments, y(t) and v(t). The next-generation matrix method [40–42] is widely used
to calculate the basic reproduction number in more-complex models in epidemiology.
Applying this method to the model (1) gives R0NG =

√
β(λ/µx)B/µv. While R0NG = 1

if and only if R0 = 1, they are not equal. Ref. [43] called R0NG the one-generation basic
reproduction number. But, both predict a chronic state. The local instability of the DFE
can also be established by finding an index that states when the spectral radius of the
linearized system consisting of the disease compartments has a positive real part. Using
the eigenvalues of the corresponding Jacobian matrix is a possibility, but the formulas
are usually complicated or cannot be determined analytically. Using the characteristic
polynomial and the Routh–Hurwitz criterion is a possibility [44,45]. Applying it to the
basic model (1), the characteristic polynomial is

p(r) = r2 + r(µv + muy) + µvµy − Bβµyλ/µx = r2 + a1r + a0.

All the eigenvalues r are negative if and only if a1 > 0 and a0 > 0. a1 is always positive,
and a0 > 0 if and only if 1 > Bµyβλ/µx = R0. Another way is to follow the ideas of [46,47]
and consider the characteristic equation written as

F(r) = r2 + r(µv + µy) = −µvµy + Bβµyλ/µx = G(r).

F(0) = 0, and F(r) is an increasing function of r; therefore, for the characteristic equation
to have a positive solution r > 0, G(0) needs to be positive. So, R0CE = Bβλ/(µxµyµv) > 1
and R0CE = R0. We have proven the following theorem:

Theorem 2. For the model (1), there always exists the virus-free DFE, which is locally asymptoti-
cally stable only for R ≤ 1, and a chronic equilibrium CE, which only makes biological sense for
R0 > 1.

2.2. Model 2

A second simple model with inhibition by the effector cells of the immune system and
cell-to-cell transmission is

dx
dt

= λ−muxx− βxv− βxyxy

dy
dt

= βxv + βxyxy− βeyye− µyy

dv
dt

= Bµyy− βxv− βevve− µvv

de
dt

= s + αy− βyeye− βveve− µee.

(2)

The extensions to the basic model (1) are: the effector cells e are considered
explicitly [8,19,20,48]; susceptible cells can be infected by direct contact with an infected
cell with a rate βxy [27,49]; effector cells eliminate infected cells with a rate βey; free virus
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particles are introduced into susceptible cells at a rate β; effector cells are recruited at
a constant rate s and are also recruited at a rate βye; as effector cells eliminate infected
cells and virus particles, they are also eliminated from the system with rates βye and βve,
respectively; finally, effector cells die naturally at a rate µe. All parameters are non-negative.
Several variations of this model are: s = 0 since the number of effector cells in the absence
of the virus is small [19]; recruitment of effector cells proportional to ey [11,12] (can be
achieved by taking α = 0 and βye > 0); after eliminating an infected cell or a virus, the
effector cell is removed, βve = βev or βye = βey, and many others. The immune system
reaction to hepatitis B is very complicated (see, for example, [50]), and all the models are
very simplified.

Theorem 3. Consider the system (2). Let R4
+ = {(x, y, v, e) ∈ R4 : x ≥ 0, y ≥ 0, v ≥ 0, e ≥ 0}

and (x(0), y(0), v(0), e(0)) ∈ R4
+. Then, (x(t), y(t), v(t), e(t)) ∈ R4

+ for t > 0. Also, if
x(0), y(0), v(0) and e(0) are bounded, so are x(t), y(t), v(t) and e(t) for t > 0.

Proof. The x solution of the system (2) is non-negative using the same argument as in
Theorem 1. Let t1, t2, and t3 be the first times for which y, v, and e are zero, respectively.
Then, since the initial conditions are all positive, the y equation evaluated at y = 0 is

dy
dt

= βxv > 0,

so y(t) is increasing. The v equation at v = 0 is

dv
dt

= Bµy > 0,

so v is increasing. Finally, the e equation at e = 0 is

de
dt

= s > 0,

so e cannot be negative for t > 0. Similar arguments can be used for the other orders of
t1, t2, and t3 starting with the equation of the variable that goes to zero first.

To prove the boundedness of the solutions, the differential equations for x(t) + y(t)
and v(t) are bounded by the same expressions as in Theorem 1, so x(t), y(t), and v(t)
are bounded.
Similarly, the fourth equation implies

de
dt
≤ s + αymax − µee,

with ymax = max y(t), 0 ≥ t, and evaluating it at e(t) = (s + αymax)/µe, the equation is

de
dt
≤ 0;

therefore, e is bounded.

Model (2) has two steady states, the disease or virus DFE:

x∗ = λ/µx, y∗ = 0, v∗ = 0, e∗ = s/µe,

and a chronic or endemic equilibrium. R0 or an equivalent index can be used to see if there
is a chronic infection. The new-generation matrix method gives

R0NG =
βxyx∗

2µy + 2βeye∗
+

√
4Bx∗βµy(βeye∗ + µy) + β2

xyx∗(βeve∗ + µv + βx∗)
(2βey + µy)(βeve∗ + µv + βx∗)

.
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An equivalent index can be found by looking at the characteristic polynomial of the infected
compartments linearized about the DFE and using the Routh–Hurwitz criterion:

r2 + r(βeye∗ + βeve∗ + µv + µy + βx∗ − βxyx∗)

+ (βevβey(e∗)2 + βeyµve∗ + βevµye∗ + µyµv + ββeye∗x∗ − βevβxyx∗e∗ + βµyx∗ − βxyµvx∗

− Bβµyx∗ − ββxy(x∗)2) = r2 + a1r + a0.

So, for the infection to persist, a1 > 0, which is true in practice since β and betaxy are of the
same order, and for a0 < 0, we need

Bβµyx∗ + βevβxyx∗e∗ + βxyµvx∗ + ββxy(x∗)2

βevβey(e∗)2 + βevµye∗ + µyµv + ββeve∗x∗ + βµyx∗
= R0RH > 1.

Writing the characteristic equation as F(r) = r2 + a1r = −a0 = G(r) and requiring that
G(0) > 0, we obtain the same index. We have proven the following theorem:

Theorem 4. For the model (2), there always exists the virus-free DFE, which is locally asymptoti-
cally stable only for R0 ≤ 1, and the infection persists for R0 > 1. Here, R0 is any of the two indices
found above.

2.3. Basic Model with Delay

Since it takes time for the virus to enter the susceptible cell and replicate, we consider
the following modification to the basic model (1):

dx
dt

= λ− µxx(t)− βv(t− τ)x(t− τ)

dy
dt

= βv(t− τ)x(t− τ)− µyy(t)

dv
dt

= Bµyy(t)− µvv(t).

(3)

The notation is the same as in (1) with τ the time delay.

Theorem 5. Consider the system (3). Let R3
+ = {(x, y, v) ∈ R3 : x ≥ 0, y ≥ 0, v ≥ 0}, and

let x(t) = φ1(t), y(t) = φ2(t), v(t) = φ3(t), t ∈ [−τ, 0]. If (φ1(t), φ2(t), φ3(t)) ∈ R3
+ for

t ∈ [−τ, 0], then (x(t), y(t), v(t)) ∈ R3
+ for t > 0.

Proof. The solutions of the system (3) are non-negative by using Theorem 3.4 of [51]. To
prove the boundedness of the solutions, the differential equation for x(t) + y(t) is

d(x + y)
dt

= λ− µxx− µyy ≤ λ− µ(x + y),

with µ = min(µx, µy). Therefore, x(t) + y(t) is bounded by the argument used for the
model (1) Similarly the third equation implies

dv
dt
≤ Bµyymax − µvv,

which is the same as for the model (1).

Model (3) has two equilibrium points, which are the same as those for the model (1),
the disease-free equilibrium (DFE): x∗ = λ/µx, y∗ = 0, v∗ = 0, and a chronic or endemic
equilibrium (CE): x∗ = µv/(Bβ), y∗ = (Bβλ− µvµx)/(Bβµy), v∗ = Bλ/µv − µx/β.

For the model (3), R0 can also be calculated as the product of the probability of a newly
infected cell per susceptible cell, β, times the number of susceptible cells at the beginning,
λ/µ, times the number of virus particles produced from that infected cell, B, times the
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average lifetime of a virus particle 1/µv. Therefore, we also have R0 = β(λ/µx)B/µv. The
next-generation matrix method as described by [40–42] is for models based on ODEs, so it
cannot be used for this model. The characteristic equation is now trascendental, and the
Routh–Hurwitz criterion does not apply. But, the last method used for the model (1) can be
used: linearize the system for the two infective compartments, y and v, about the DFE, and
look for solutions of the form exp(rt). The characteristic equation is

F(r) = r2 + r(µv + µy) = −µvµy + Bβµy exp(−λτ)λ/µx = G(r).

F(0) = 0, and F(r) is an increasing function of r; therefore, for the characteristic equation
to have a positive solution r > 0, G(0) needs to be positive. So, R0CE = Bβλ/(µxµyµv) > 1
and R0CE = R0. We have proven the following theorem:

Theorem 6. For the model (3), there always exists the virus-free DFE, which is locally asymptoti-
cally stable only for R ≤ 1, and a chronic equilibrium CE, which only makes biological sense for
R0 > 1.

There are other ways of introducing the delay in the model (1). For example,

dx
dt

= λ− µxx(t)− βv(t)x(t)

dy
dt

= β exp(−µyτ)v(t− τ)x(t− τ)− µyy(t)

dv
dt

= Bµyy(t)− µvv(t).

(4)

It takes a time τ for a susceptible cell to become infected after the virus gets into the cell.
exp(−µyτ) is the fraction of cells that die between the time the virus particle penetrates
into the cell and the time the cell is actually infected.

The index using the characteristic equation is now

R0CE = Bβ exp(−µyτ)λ/(µxµyµv) > 1

and R0CE now includes the term exp(−µyτ). So, it is not the same as for the non-delayed
model.

2.4. Model 2 with Delay

We add two delays to the model (2), τ1, which is the time it takes the virus to replicate
after invading a cell, and τ2, which is the time it takes the immune system to recruit an
effector cell after detecting an infected cell. The delay model is

dx
dt

= λ−muxx(t)− βx(t− τ1)v(t− τ1)− βxyx(t− τ1)y(t− τ1)

dy
dt

= βx(t− τ1)v(t− τ1) + βxyx(t− τ1)y(t− τ1)− βeyy(t)e(t)− µyy(t)

dv
dt

= Bµyy(t)− βxv− βevv(t)e(t)− µvv(t)

de
dt

= s + αy(t− τ2)− βyey(t)e(t)− βvev(t)e(t)− µee(t).

(5)

We first show that the solutions of the model (5) are bounded and non-negative.

Theorem 7. Consider the system (5). Let R4
+ = {(x, y, v) ∈ R4 : x ≥ 0, y ≥ 0, v ≥ 0,

e ≥ 0}, and let x(t) = φ1(t), y(t) = φ2(t), v(t) = φ3(t), e(t) = φ4(t), t ∈ [−τ, 0]. Then, if
(φ1(t), φ2(t), φ3(t), φ4(t)) ∈ R4

+ for t ∈ [−τ, 0], we have (x(t), y(t), v(t), e(t)) ∈ R4
+ for t > 0.
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Proof. The solutions of the system (5) are non-negative by applying Theorem 3.4 of [51].
To prove the boundedness of the solutions, the differential equations for x(t) + y(t) and for
v(t) are the same as for the model (2). In the equation for e(t), the term y(t− τ2) can also be
replaced with ymax as was performed for the model (2), so the same argument applies.

Model (5) has two equilibrium points, which are the same as those for the model (2)
without delays, the disease-free equilibrium (DFE), and a chronic or endemic equilibrium (CE).

For the model (5), the calculation of the basic reproduction number R0 from its def-
inition is not straightforward. The next-generation matrix method [40–42] is for models
based on ODEs, so it cannot be used for this model. The characteristic equation is now
trascendental and the Routh–Hurwitz criterion does not apply. But, the last method used
for the model (2) can be used. The characteristic equation can be written as

F(r) =r2 + r(βeye∗ + βeve∗ + µv + µy + βx∗ − βxyx∗ exp(−rτ))

= −(βevβey(e∗)2 + βeyµve∗ + βevµye∗ + µyµv + ββeye∗x∗ + βµyx∗ − βxyµvx∗)

+ (Bβµyx∗ + βevβxyx∗e∗ + βxyµvx∗ + ββxy(x∗)2) exp(−rτ) = G(r).

Since β and βxy are of the same order, F(0) > 0 and increasing, so for a positive r, the
condition is G(0) > 0. Therefore, for the infection to persist, we need

Bβµyx∗ + βevβxyx∗e∗ + βxyµvx∗ + ββxy(x∗)2 + βxyµvx∗

βevβey(e∗)2 + βeyµve∗ + βevµye∗ + µyµv + ββeye∗x∗ + βµyx∗
= R0CE = R0 > 1.

We have proven the following theorem:

Theorem 8. For the model (5), there always exists the virus-free DFE, which is locally asymptoti-
cally stable only for R0 ≤ 1, and the infection persists for R0 > 1.

3. Results

In this section, we show the results for the different threshold indices and possible
ways to decrease their value when they are greater than 1 since, then, the infections are
persistent. We also run different scenarios numerically.

3.1. Threshold Indices

For the basic virus propagation model with no delay (1), the basic reproduction
number is R0 = βB

µv
λ
µx

. λ
µx

is the number of healthy cells in the absence of infection, so it is
a constant for each individual. B, the number of copies of the virus, depends only on the
virus and is also a constant. Both of these assumptions are necessary simplifications since,
in fact, both numbers can depend on time. So, to reduce R0, the options are to decrease
β or increase µv. Treatments can be designed to do this. Since R0RH = R0CE = R0 and
R0NG =

√
R0, the same result is true for all these indices.

For the model (2) with no delays, the threshold index using the next-generation matrix is

R0NG =
βxyx∗

2µy + 2βeye∗
+

√
4Bx∗βµy(βeye∗ + µy) + β2

xyx∗(βeve∗ + µv + βx∗)
(2βey + µy)(βeve∗ + µv + βx∗)

.

Using the Routh–Hurwitz criterion or the characteristic equation, it is

Bβµyx∗ + βevβxyx∗e∗ + βxyµvx∗ + ββxy(x∗)2

βevβey(e∗)2 + βevµye∗ + µyµv + ββeve∗x∗ + βµyx∗
= R0RH .

For both indices, x∗ and e∗ are the number of healthy cells and immune cells, respectively, in
the absence of an infection. So, they are constant for a given individual. The value of R0RH
can be decreased in value by reducing the infection coefficients β and βxy or increasing the
death rates µy and µv.
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For the models with delays given by Equations (3)–(5), a threshold index can be
calculated from the characteristic equation. For the model (3), the threshold index is equal
to the basic reproduction number for the model (1). For the model (5), the threshold index
R0CE is the same as R0CE for the model (2). For these two models, introducing the delays
does not change the threshold index. But, this result depends on the particular way in
which the delays are introduced in the ODE model. A second way of introducing the delay
in the model (1) is given by (4), which also is used in the literature. For this model, the
threshold index is

R0CE = Bβ exp(−µyτ)λ/(µxµyµv).

The difference with the one for (1) is the factor exp(−µyτ), which gives the number of
newly infected cells that die before being counted as infected. For small τ, this number is
close to 1, so the indices have a similar value.

Numerical Simulations

We will run numerical simulations of the four models presented in the previous section.
Most studies of mathematical models of hepatitis B use generic values for the parameters.
We will use the values of the parameters for the propagation of HVB within-host presented
in [19,20]. The number of patients studied in these two papers is very small, and there
is a large variability in the values. Not all the parameters in the models (2) and (5) are
given. Also, two possible scenarios are that the effector cells stay active or are removed after
eliminating an infected cell or a virus particle. We will simulate both cases. The parameter
values used for the models (1) and (3) are given in Table 1.

Table 1. Parameter values for the models (1) and (3).

Parameter Value Description

λ 5 × 105 cells/mL 1/d recruitment rate of susceptible cells
µx 0.003/d death rate of susceptible cells
β 4 × 10−10 mL/(cells d) infection rate of susceptible cells by virus

µy 0.043/d death rate of infected cells
B 5.58 number of virions produce by 1 infected cell
µv 0.7 death rate of virus
τ 1 d delay in time of infection

Table 2 has the additional parameter values used in the models (2) and (5).

Table 2. Additional parameter values for the models (2) and (5).

Parameter Value Description

βxy 4 × 10−10 mL/(cells d) infection rate of susceptible cells by virus
βey 0.6 × 10−3 mL/(cells d) elimination rate of infected cells by effector cells

βye 0.6 × 10−3 mL/(cells d)
removal rate of effector cells after elimination of

infected cells
βev 4 × 10−10 mL/(cells d) elimination rate of virus by effector cells

βve 4 × 10−10 mL/(cells d)
removal rate of effector cells after elimination

of virus
s 24 cells/mL 1/d recruitment rate of effector cells

α 2.2 × 10−7/d
recruitment rate of effector cells due to

infected cells
µe 0.5/d death rate of effector cells
τ1 1 d delay in time of infection

τ2 24 d delay in recruiting of effector cells due to
infected cells
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Figure 1 shows the simulation results for the basic virus propagation models (1) and (3),
for infected cells and virus particles using the data in Table 1. The basic reproduction rate is
R0 = 0.5314, so the infection disappears with time. Figure 2 shows the results for the basic
virus propagation models (1) and (3), for infected cells and virus particles with the data
in Table 1, but with β = 8× 10−10. Now, R0 = 1.0629, and the virus infection is chronic.
Since the threshold index is very close to 1, it takes a long time for the infection to reach the
chronic state, the time shown for the simulation is long, and the differences in the solution
for the models without and with delay appear smaller than they are.

(a) (b)

Figure 1. Basic virus propagation model without and with delay. Notice that the number of virus
particles is one order of magnitude larger than the number of infected cells, since each infected cell
produces many virus particles. (a) Infected cells. (b) Virus particles.

(a) (b)

Figure 2. Basic virus propagation model without and with delay, but β = 8 × 10−10. (a) Infected cells.
(b) Virus particles.

As expected for the basic models, (1) and (3), the simulated solutions look similar, with
the delayed model’s infected compartments approaching the DFE more slowly than the
model with no delay, for R0 < 1. For R0 > 1, the delayed model’s infected compartments
increase faster. Since the corresponding threshold indices for both models are equal, for
the given values of the parameters, both models make the same prediction about the
persistence of the infection.

Figure 3 shows the simulation results using the virus propagation model 2 both
without and with the two delays. The graphs are for infected cells and virus particles for
the data in Tables 1 and 2. For the model without delay, the threshold index using the
next-generation matrix method is R0NG = 1.0869. For both the non-delayed and delayed
models, the index using the characteristic equation is R0CE = 1.1537. So, both models
predict an established infection. Since the threshold index is very close to 1, it takes a long
time for the infection to reach the chronic state, the time of simulation shown is long, and
the differences in the solution for the models without and with the two delays appear
smaller than they are.
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(a) (b)

Figure 3. Virus propagation model 2 without and with delay. (a) Infected cells. (b) Virus particles.

Figure 4 shows the simulation results using the virus propagation model 2 both
without and with delay. The removal rate of infected cells by effector cells was changed
to βey = 1 × 10−3, and βve = βev was kept. The graphs are for infected cells and virus
particles for the data in Tables 1 and 2. For the model without delay, the threshold index
using the next-generation matrix method is R0NG = 0.8780. For both the non-delayed and
delayed models, the index using the characteristic equation is R0CE = 0.8952. So, both
models predict the disappearance of the infection.

(a) (b)

Figure 4. Virus propagation model 2 without and with delay, but with βey = βve = 1 × 10−3. Notice
that the number of virus particles is one order of magnitude larger than the number of infected cells,
since each infected cell produces many virus particles. (a) Infected cells. (b) Virus particles.

The comments made for the models (1) and (3) also apply to these two models, (2) and (5).
Simulations were also performed for the two scenarios using model 2 shown in

Figures 3 and 4, but assuming that the effector cells continue to be active after eliminating
either an infected cell or a virus particle (βye = βve = 0). There were no significant changes
in the plotted results.

In conclusion, there are several alternative threshold indices to the basic reproduction
number. For models based on ODEs, the next-generation matrix method is a fairly simple
way of obtaining one such index. For models based on DDEs, obtaining the index using
the trascendental characteristic equation based on the diseased compartments works. Also,
not all the parameters cause a significant change in the threshold indices.

4. Discussion

One of the most-important uses of mathematical models for virus propagation is to
predict whether the infection is going to persist or not. For epidemic models, the basic
reproduction number R0, defined as the number of new infections due to one infected
individual at the beginning of the infection, is often used for this purpose. For virus
propagation within a host, it can be defined as the number of infected cells coming from one
infected cell at the start of the process. For simple models as for the basic virus propagation
model (1), it is easy to calculate from the definition, but not so for more-complicated models.
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For these models, an alternative index must be used. These indices are calculated from
the analysis of the local asymptotic stability of the DFE or by determining whether the
size of the infected compartments, that is infected cells and virus compartments, grows.
These indices are usually chosen so that, when their value is greater than 1, the number of
infected cells increases. The basic reproduction number also has this property. These other
threshold indices, in general, do not predict the number of new infections, only whether
the infections increase or not. But, whether the number of infected cells grows or not is
the most-important information that the model can give. Many papers find a formula
for the basic reproduction number or for an alternative index, but do not use it to predict
whether the infection will persist or not. These papers usually do not mention how to
reduce the value of the threshold index, so the infection dies or at least slows down. It may
be trivial to reduce the value of some indices. For other indices, the partial derivatives of
the index with respect to the parameters have to be taken and, even, a sensitivity analysis
performed to determine the most-influential parameters. These papers instead perform
numerical simulations. For some models, the threshold index calculated may be equal
to R0. But, this is not always the case. For models based on ODEs, the next-generation
matrix method [40–42] is commonly used to determine a threshold index (usually called the
basic reproduction number). It considers only the infected compartments at the beginning
of the infection, and it is easy to calculate. For models like the model (1), the threshold
index obtained by the next-generation matrix method is actually the square root of the
basic reproduction number. For models based on DDEs, there is no new-generation matrix
method. The methods used in this paper for the models (3) and (5) also consider only the
compartments for infected cells and virus. The characteristic equation for the eigenvalues
of the linearized about the DFE reduced system gives a condition for the DFE to be unstable,
and a threshold index is obtained. Note that, for our delayed examples (3) and (5), the
index obtained is the same as that for the corresponding non-delayed model. But, this is
not always true. For example, the model given by (3) has an index that is different from the
one from the model with no delay (1). Calculating a threshold index working only with the
infected state variables and the corresponding characteristic equation to determine whether
the DFE state is stable or not is usually a good strategy.

For most individuals, hepatitis B is not a chronic disease. When using the basic virus
propagation model, the parameter more likely to significantly change from individual to
individual is the cell infection rate β. So, based on this model, individuals with chronic
hepatitis B have a lower β. In these cases, β can be changed using antivirals. When
considering the effect of the immune system, its action should be fundamental in whether
the virus takes hold or not. The parameters βey and βev are fundamental in whether the
threshold index is greater than 1 or not. In this paper, we just changed the value of βey by
less than a factor of two and the behavior changed. But, changes in βev produce a similar
effect. Individuals with immune deficiency and related disorders are known to be more
likely to get chronic hepatitis B, and this probably causes a decrease in these rates. Also,
newborns infected have about a 95% chance of developing chronic hepatitis B. The risk
decreases with the age at the time of infection [2,52].

Another important use of mathematical models for hepatitis B is to determine the
speed at which the infection grows or decays. The threshold indices previously calculated
give an indication of this speed. The basic reproduction number tells the number of newly
infected cells caused by one infected cell at the beginning of the infection. The other indices
are not as accurate. For example, for the model given by (1), the index predicted by the
new-generation matrix method is the square root of the basic reproduction number, so
it predicts a slower growth when it is greater than 1. Numerical simulations predict the
infection curves, but their accuracy depends on the validity of their hypotheses and on the
data used to calibrate the model. The results found in this paper can also be used for other
within-individual virus infection models such as those for influenza, HIV, or COVID-19
and even for epidemic models. On another note, vaccination is a commonly used strategy
to reduce the spread of hepatitis B from individual to individual. A vaccinated individual



AppliedMath 2024, 4 194

will have a much stronger immune system. In a model that does not include the immune
system, this can be performed by reducing the value of the infection rate parameter. If the
immune system is taken into account, the parameters reflecting the effect of this system on
the infected cells and virus particles can be adjusted. The result should be a threshold index
very close to 0. The threshold indices are only useful for predicting the persistence or not of
an infection when the parameters of the model are constant. In reality, the parameters may
change with time since the immune system, replication of the virus, and other parameters
may change. These changes may happen, for example, due to an illness or modifications of
the life style of the individual.

Future work can include using more-complex mathematical models, for example
adding active and latent effector cells, or innate and adaptive effector cells, or different
types of effector cells. Treatment options, such as antiviral therapies, can also be included
explicitly. Also, the effect of using additional latent cell populations instead of delays can
be studied.
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