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Vladimir Volenec 1,† , Marija Šimić Horvath 2,*,† and Ema Jurkin 3,†

1 Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia; volenec@math.hr
2 Faculty of Architecture, University of Zagreb, 10 000 Zagreb, Croatia
3 Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, 10 000 Zagreb, Croatia;

ema.jurkin@rgn.unizg.hr
* Correspondence: marija.simic@arhitekt.unizg.hr
† These authors contributed equally to this work.

Abstract: In this paper, we study the properties of a complete quadrangle in the Euclidean plane. The
proofs are based on using rectangular coordinates symmetrically on four vertices and four parameters
a, b, c, d. Here, many properties of the complete quadrangle known from earlier research are proved
using the same method, and some new results are given.
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1. Introduction

If four points are joined in pairs by six distinct lines, they are called the vertices of a
complete quadrangle, and the lines are its six sides. Two sides are said to be opposite if they
have no common vertex. The study of the geometry of the complete quadrangle has a long
history and there are numerous articles in which the properties of quadrangles have been
studied. In this paper, we deal with the properties of quadrangles related to the center and
anticenter of the quadrangle, the diagonal triangle of the quadrangle, and isogonality with
respect to the four triangles formed by the vertices of the quadrangle. These properties
were studied in the literature using a number of various methods [1–12].

Our approach in this paper uses a novel method which is applicable to studying and
extending the known properties of a quadrangle. We put the complete quadrangle into such
a coordinate system that its circumscribed hyperbola is rectangular. We use this method to
prove the 12 theorems already published in aforementioned papers and to derive two new
original theorems, Theorems 8 and 14, which to our knowledge were not yet published in
the literature. Thus, our method allows one to study the properties of quadrangles in a
more unified way.

In our former work in [13], we analyzed a complete quadrilateral in a similar way.
A complete quadrilateral is a set of four lines (sides of the quadrilateral), where none of
two lines are parallel and none of the three are concurrent. Using the fact that a unique
parabola can be inscribed on each quadrilateral, the coordinate system was chosen so
that the parabola has the equation y2 = 4x. The sides of the quadrilateral are given by
ay = x + a2, by = x + b2, cy = x + c2, dy = x + d2 where a, b, c, d are real numbers.
The coordinate system chosen in this way is suitable for studying quadrilaterals, but not
for studying quadrangles.

As in [14], we proved:

Lemma 1. For each quadrangle for which the opposite sides are not perpendicular, the rectangular
hyperbola can be circumscribed.

Therefore, we choose the coordinate system for studying complete quadrangles such
that circumscribed hyperbola of the complete quadrangle is given by xy = 1. In the same
paper, we studied the quadruples of orthopoles.
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2. Methods

Let ABCD be a complete quadrangle and H be a rectangular hyperbola circumscribed
to it. With the suitable choice of the coordinate system, it can be achieved that H has the
equation xy = 1 and the vertices of the quadrangle are of the form

A =

(
a,

1
a

)
, B =

(
b,

1
b

)
, C =

(
c,

1
c

)
, D =

(
d,

1
d

)
, (1)

where a, b, c, d ̸= 0.
Let s, q, r, p be elementary symmetric functions in four variables a, b, c, d:

s = a + b + c + d, q = ab + ac + ad + bc + bd + cd,

r = abc + abd + acd + bcd, p = abcd.

The centroid of the quadrangle ABCD is of the form

G =

(
s
4

,
r

4p

)
. (2)

The sides of ABCD have the equations:

AB . . . x + aby = a + b, AC . . . x + acy = a + c, AD . . . x + ady = a + d

BC . . . x + bcy = b + c, BD . . . x + bdy = b + d, CD . . . x + cdy = c + d. (3)

The choice of the equation of the hyperbola H, i.e., the coordinates of the vertices, enables
us to prove the claims in a simple way using an analytical method. The calculations are
elementary and mostly very short.

The paper is organized in such a way that we first prove a property, and then state it
in a theorem. After the theorem, we point out whether the claim is previously known from
the literature or is our original contribution.

3. Results
3.1. The Center and Anticenter of the Quadrangle ABCD

In this section, we study the Euler circles of four triangles of the quadrangle ABCD,
and define its center and anticenter. The circle with the equation

2abc
(

x2 + y2
)
+ [1 − abc(a + b + c)]x −

(
a2b2c2 − ab − ac − bc

)
y = 0

passes through the midpoint ( 1
2 (a + b), 1

2ab (a + b)) of points A and B. Similarly, it passes
through the midpoints of A, C, i.e., B, C, so it is Euler’s circle Nd of the triangle ABC. It
obviously passes through the origin O. Analogously, the same is valid for Euler’s circles
Nc, Nb, and Na of the triangles ABD, ACD, and BCD. Hence, we have just proved the
following statement:

Theorem 1. Euler’s circles of the triangles BCD, ACD, ABD, and ABC of the complete quadran-
gle with the circumscribed rectangular hyperbola passes through the center of the hyperbola.

The theorem is coming from [3].
There are several names for the point O in the literature. In this paper, we call it the

center of the quadrangle ABCD. The point O′ = ( s
2 , r

2p ), symmetric to the point O with
respect to the centroid G, we call the anticenter of the quadrangle ABCD. The asymptotes
X and Y of the hyperbola H are the axes of the quadrangle ABCD.
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The center Nd of the circle Nd, i.e., Euler’s center of the triangle ABC, is the point

Nd =

(
1
4

(
a + b + c − 1

abc

)
,

1
4

(
1
a
+

1
b
+

1
c
− abc

))
. (4)

The Euler’s centers Na, Nb, Nc of the triangles BCD, ACD, ABD are of similar forms.
The distance from Nd to the origin O fulfills

ONd
2 =

(
1

4abc

)2

[abc(a + b + c)− 1]2 + (ab + ac + bc − a2b2c2)2

=

(
1

4abc

)2
(a2b2 + 1)(a2c2 + 1)(b2c2 + 1).

Hence, Euler’s circle of the triangle ABC has the radius 1
4 |

d
p |
√
(a2b2 + 1)(a2c2 + 1)(b2c2 + 1).

The other three radii of the Euler’s circles of the other three triangles look quite similar, as
can be seen in [11]. Because of that, the radius ρd of the circumscribed circle of the triangle
ABC is given within following analogous formulae

ρa =
1
2

∣∣∣∣ a
p

∣∣∣∣√λ′µ′ν′, ρb =
1
2

∣∣∣∣ b
p

∣∣∣∣√λ′µν, ρc =
1
2

∣∣∣∣ c
p

∣∣∣∣√λµ′ν, ρd =
1
2

∣∣∣∣ d
p

∣∣∣∣√λµν′,

where ρa, ρb, ρc are the radii of the circumscribed circles of the triangles BCD, ACD, ABD
using the following notations

λ = a2b2 + 1, µ = a2c2 + 1, ν = a2d2 + 1,

λ′ = c2d2 + 1, µ′ = b2d2 + 1, ν′ = b2c2 + 1, (5)

where λ, µ, ν, λ′, µ′, ν′ > 0. The parameters (5) appear in formulae for the lengths of the
sides of the quadrangle ABCD. Indeed, for the points A and B, we obtain

AB2 = (a − b)2 +

(
1
a
− 1

b

)2
=

(
a − b

ab

)2
(a2b2 + 1) =

(
a − b

ab

)2
λ,

i.e., AB =
∣∣∣ a−b

ab

∣∣∣√λ. The other five analogous statements are also valid

AC =

∣∣∣∣ a − c
ac

∣∣∣∣√µ, AD =

∣∣∣∣ a − d
ad

∣∣∣∣√ν, BC =

∣∣∣∣ b − c
bc

∣∣∣∣√ν′, BD =

∣∣∣∣ b − d
bd

∣∣∣∣√µ′, CD =

∣∣∣∣ c − d
cd

∣∣∣∣√λ′.

From these equalities, the next equalities follow

AB · CD =

∣∣∣∣ (a − b)(c − d)
p

∣∣∣∣√λλ′, AC · BD =

∣∣∣∣ (a − c)(b − d)
p

∣∣∣∣√µµ′,

AD · BC =

∣∣∣∣ (a − d)(b − c)
p

∣∣∣∣√νν′.

For the coordinates of the point Nd from (4), it proves that(
x − s

4

)(
y − r

4p

)
=

1
16p

(p + 1)2.

The same is also valid for Na, Nb, Nc. Therefore, we have proved the result:

Theorem 2. The centroid G of the quadrangle ABCD is the center of the quadrangle NaNbNcNd,
where Na, Nb, Nc, Nd are the centers of Euler circles BCD, ACD, ABD, ABC, respectively, and the
quadrangles ABCD and NaNbNcNd have the parallel axes.
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This result is coming from [7,11]. Because the midpoints AD, BD, CD are symmetric to the
midpoints BC, AC, AB with respect to the centroid G, the circle incident to the midpoints
of AD, BD, CD is symmetric to the Euler circle Nd of the triangle ABC with respect to the
centroid G. Hence, that circle is incident to anticenter O′ because the circle Nd is incident to
O. We have proved the following:

Theorem 3. Circles incident to the midpoints of three sides AD, BD, CD; AC, BC, CD; AB, BC, BD;
AB, AC, AD are passing through the anticenter O′.

The result is also given in [1,10].
The line AB has the slope − 1

ab , and the connecting line of the origin and the midpoint
of AB has the slope 1

ab , so these lines are antiparallel with respect to the coordinate axes.
The same is valid for any side of the quadrangle ABCD. We showed the result:

Theorem 4. The angle of any two sides of the quadrangle is opposite to the angle of the connecting
lines of the midpoints of these sides and the center of ABCD.

This result was also given in [3,12]. Let us study the points

Ha =

(
− 1

bcd
,−bcd

)
, Hb =

(
− 1

acd
,−acd

)
, Hc =

(
− 1

abd
,−abd

)
, Hd =

(
− 1

abc
,−abc

)
. (6)

The line with the equation abx − y = abc − 1
c is perpendicular to the line AB from (3) and

it is incident to C and Hd, so the line CHd is height from C of the triangle ABC. Similarly,
the lines AHd and BHd are the heights from the vertices A and B of the triangle ABC.
Therefore, Hd is the orthocenter of that triangle. Hence, we showed that the following
is valid:

Theorem 5. The orthocenters Ha, Hb, Hc, Hd of the triangles BCD, ACD, ABD, ABC, respec-
tively, are incident to the rectangular hyperbola H.

This statement has been proven in [3], and it also proves the converse of Lemma 2 from [14].
As the orthocenters Ha, Hb, Hc, Hd are incident to hyperbola H, its center O is the

center of the quadrangle Ha HbHc Hd. Thus, we have proved:

Theorem 6. Quadrangles ABCD and Ha HbHc Hd have the same center.

This result also appears in [11].
If the point D coincides with Hd, then d = 1

abc , p = −1, and the quadrangle ABCD is
the orthocentric quadrangle (see [14]).

3.2. A Diagonal Triangle of the Quadrangle ABCD

Diagonal points U = AB ∩ CD, V = AC ∩ BD, W = AD ∩ BC of the quadrangle
ABCD are given by

U =

(
ab(c + d)− cd(a + b)

ab − cd
,

a + b − c − d
ab − cd

)
, V =

(
ac(b + d)− bd(a + c)

ac − bd
,

a + c − b − d
ac − bd

)
,

W =

(
ad(b + c)− bc(a + d)

ad − bc
,

a + d − b − c
ad − bc

)
.

These points can be written in the shorter form

U =

(
u′

u
,

u′′

u

)
, V =

(
v′

v
,

v′′

v

)
, W =

(
w′

w
,

w′′

w

)
,
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where

u = ab − cd, u′ = ab(c + d)− cd(a + b), u′′ = a + b − c − d,

v = ac − bd, v′ = ac(b + d)− bd(a + c), v′′ = a + c − b − d,

w = ad − bc, w′ = ad(b + c)− bc(a + d), w′′ = a + d − b − c.

The following equalities are valid

u′v′′ + u′′v′ = 2uv, u′w′′ + u′′w′ = 2uw, v′w′′ + v′′w′ = 2vw.

Therefore, the lines U , V , W with equations

u′′x + u′y = 2u, v′′x + v′y = 2v, w′′x + w′y = 2w

are incident to the pairs of points V, W; U, W; U, V, respectively. So, they are the diagonals
of the quadrangle ABCD. Hence, their equations are

U . . . (a + b − c − d)x + [ab(c + d)− cd(a + b)]y = 2(ab − cd),

V . . . (a + c − b − d)x + [ac(b + d)− bd(a + c)]y = 2(ac − bd),

W . . . (a + d − b − c)x + [ad(b + c)− bc(a + d)]y = 2(ad − bc).

The centroid GUVW of the triangle UVW is the point

GUVW =

(
u′vw + uv′w + uvw′

3uvw
,

u′′vw + uv′′w + uvw′′

3uvw

)
.

The heights from vertices U and V of the diagonal triangle UVW have the equations

uu′x − uu′′y = u′2 − u′′2, vv′x − vv′′y = v′2 − v′′2.

For their intersection point (x, y), the equalities

uv(u′v′′ − u′′v′)x = u′2vv′′ − uu′′v′2 + u′′v′′(uv′′ − u′′v),

uv(u′v′′ − u′′v′)y = u′v′(u′v − uv′) + uu′v′′2 − u′′2vv′

are valid. However, it can be checked that

u′v′′ − u′′v′ = 2(a − d)(b − c)w,

u′2vv′′ − uu′′v′2 = (a − d)(b − c)(u′vw + uv′w + uvw′), (7)

uv′′ − u′′v = (a − d)(b − c)w′′, (8)

u′v − uv′ = (a − d)(b − c)w′, (9)

uu′v′′2 − u′′2vv′ = (a − d)(b − c)(u′′vw + uv′′w + uvw′′)

are valid. Hence, the orthocenter of the triangle UVW is the point

HUVW =

(
u′vw + uv′w + uvw′ + u′′v′′w′′

2uvw
,

u′′vw + uv′′w + uvw′′ + u′v′w′

2uw

)
.

The centroid, orthocenter, and circumcenter OUVW of the triangle UVW fulfill the equality
2OUVW + HUVW = 3GUVW , out of which we obtain

OUVW =

(
u′vw + uv′w + uvw′ − u′′v′′w′′

4uvw
,

u′′vw + uv′′w + uvw′′ − u′v′w′

4uvw

)
.

Now let us study the circle KUVW with the center OUVW and the equation
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2uvw(x2 + y2)− (u′vw + uv′w + uvw′ − u′′v′′w′′)x − (u′′vw + uv′′w + uvw′′ − u′v′w′)y = 0. (10)

We will show the circumscribed circle of the triangle UVW. We will also show that U is
incident to this circle, and it is proved by the equality

2vw(u′2 + u′′2)− (u′vw + uv′w + uvw′ − u′′v′′w′′)u′ − (u′′vw + uv′′w + uvw′′ − u′v′w′)u′′ = 0

that can be written in the form

u′w(u′v − uv′) + u′w′(u′′v′ − uv)− u′′w(uv′′ − u′′v) + u′′w′′(u′v′′ − uv) = 0

and it is valid because of (7) and (8) and the equalities

u′′v′ − uv = −(a − d)(b − c)w, (11)

u′v′′ − uv = (a − d)(b − c)w. (12)

Theorem 7. The circumscribed circle of the diagonal triangle UVW of the quadrangle ABCD is
incident to its center O.

The same result can be found in [2,3,6,8,10].
The line U has the equation u′′x + u′y = 2u and the normal from O to this line is given

by u′x − u′′y = 0. The intersection point of these two lines is the point(
2uu′′

u′2 + u′′2
,

2uu′

u′2 + u′′2

)
. (13)

Out of the equalities (8) and (12), and (9) and (11), the next equalities follow

(uv′′ − u′′v)w = (u′v′′ − uv)w′′, (uv′ − u′v)w = (u′′v′ − uv)w′

that can be written in the form

uv′′w + uvw′′ − u′v′′w′′ = u′′vw, uv′w + uvw′ − u′′v′w′ = u′vw. (14)

The expression

(u′′vw + uv′′w + uvw′′ − u′v′w′)u′′ + (u′vw + uv′w + uvw′ − u′′v′′w′′)u′

can be written as

vw(u′2 + u′′2) + u′′(uv′′w + uvw′′ − u′v′′w′′) + u′(uv′w + uvw′ − u′′v′w′),

and because of (14), which is equal to vw(u′2 + u′′2) + vwu′′2 + vwu′2 = 2vw(u′2 + u′′2).
This means that line with the equation

Wo . . . (u′′vw + uv′′w + uvw′′ − u′v′w′)x + (u′vw + uv′w + uvw′ − u′′v′′w′′)y = 4uvw (15)

is incident to the point (13), the pedal of the normal to the line U from the point O. Because of
the symmetry, it is incident to the pedals of the normal to the line V and W from the point
O, respectively. Hence, the line Wo in (15) is the Wallace’s line of the point O with respect to
the triangle UVW. Therefore, we proved our original statement, as can be seen in Figure 1:

Theorem 8. The Wallace’s line of the center O with respect to the diagonal triangle UVW and the
connecting line of the points OUVW and O form equal angles with the asymptotes X and Y of the
hyperbola H.
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Figure 1. The Wallace’s line WO of the center O with respect to the triangle UVW and the line
OOUVW form equal angles with the asymptotes of H.

Namely, their slopes are opposite.
The line through the midpoint ( a+b

2 , a+b
2ab ) of the side AB and parallel to the line CD

has the equation x + cdy − a+b
2ab (ab + cd) = 0 and it is incident to the point

Uo =

(
(ab + cd)

u′′

2u
, (ab + cd)

u′

2pu

)
because

abu′′ + u′ − (a + b)u = 0. (16)

Because of the symmetry of the coordinates of this point on pairs a, b and c, d, it follows
that the line incident to the midpoint of CD and parallel to the side AB is also incident to
Uo. The midpoint of AB and the point Uo are lying on the circle given by

2pu(x2 + y2) + [p(u′ − su) + u′]x + [p2u′′ + c2d2(c + d)− a2b2(a + b)]y = 0.

This circle is incident to the midpoint of CD and obviously to the point O. There are
two more such circles obtained in an analogous way. As it is stated in [1,3], the following
is valid:

Theorem 9. The circles incident to the midpoints of AB, CD, and the point Uo; AC, BD, and V0;
AD, BC, and W0 are incident to O.

The triangles BCD and ACD have centroids Ga =
(

1
3 (b + c + d), 1

3 (
1
b +

1
c +

1
d )
)

,

Gb =
(

1
3 (a + c + d), 1

3 (
1
a +

1
c +

1
d )
)

and their connecting line GaGb has the equation
3cdx + 3py = cds + ab(c + d). Analogously, the line GcGd has the equation
3abx + 3py = abs + cd(a + b). The intersection point Ug = GaGb ∩ GcGd is of the form

Ug =

(
s
3
− u′

3u
,

c + d
3cd

+
u′

3abu

)
.
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The orthocenters Ha and Hb from (6) have a connecting line Ha Hb with the equation
cdpx + y = −cd(a + b), and analogously, the line Hc Hd has the equation
abpx + y = −ab(c + d). The intersection point Uh = HaHb ∩ Hc Hd is

Uh =

(
− u′

pu
,− pu′′

u

)
.

Let us remember from [14] that the circumcenter of the triangle ABC is the point

Od =

(
1
2

(
a + b + c +

1
abc

)
,

1
2

(
1
a
+

1
b
+

1
c
+ abc

))
. (17)

The circumcenters Oa and Ob with forms analogous to (17) have the connecting line OaOb
with the equation cdx − y = 1

2cd (c + d)(c2d2 + 1), and analogously, the line OcOd has the
equation abx − y = 1

2ab (a + b)(a2b2 + 1). For the intersection point Uo = OaOb ∩OcOd, we
obtain the form

Uo =

(
1

2pu
(psu − pu′ + u′),

1
2pu

[ab(c + d)u + cdu′ + p2u′′]

)
.

Out of the terms for Ug, Uh, and Uo, it is easy to check that the equality Uh + 2Uo = 3Ug is
valid, i.e., Uh − Ug = 2(Ug − Uo) or UgUh = 2UoUg, i.e., UoUg : UgUh = 1 : 2. The same is
valid for the analogous intersections. So, we have proved the result that can be found in [9],
where Myakishev addressed it to J. Ganin:

Theorem 10. If Ga, Gb, Gc, Gd are centroids, Ha, Hb, Hc, Hd are orthocenters and Oa, Ob, Oc, Od are
the circumcenters of the triangles BCD, ACD, ABD, ABC in the quadrangle ABCD, and if Ug, Vg, Wg;
Uh, Vh, Wh and Uo, Vo, Wo represent the diagonal points of the quadrangles GaGbGcGd, HaHbHcHd,
and OaObOcOd, respectively, then the triples of points Ug, Uh, Uo; Vg, Vh, Vo; Wg, Wh, Wo are collinear
and UoUg : UgUh = VoVg : VgVh = WoWg : WgWh = 1 : 2 is valid.

3.3. Isogonality with Respect to the Triangles BCD, ACD, ABD, ABC

If two lines L and L′ have slopes m
n and m′

n′ , then for the oriented angle ∠(L,L′), the
following formula is valid

tg∠(L,L′) =
m′n − mn′

mm′ + nn′ . (18)

The lines AB, AC, AD have slopes − 1
ab ,− 1

ac ,− 1
ad . Let D′ be the point that is isogonal

to the point D with respect to the triangle ABC and let k be the slope of AD′. Then,
∠(AB, AD) = ∠(AD′, AC) and due to (18), we obtain

tg∠(AB, AD) =
ad − ab
a2bd + 1

, tg∠(AD′, AC) =
ack + 1
ac − k

.

Out of the equality ad−ab
a2bd+1 = ack+1

ac−k , it follows that

k =
a2bc − a2bd − a2cd − 1
a3bcd + ab + ac − ad

. (19)

We will show that the point

D′ =

(
d − a − b − c

abcd − 1
,

abd + acd + bcd − abc
abcd − 1

)
is the isogonal point to the point D with respect to the triangle ABC. Because of the
symmetry on a, b, c, it is enough to show that the line AD′ is isogonal to the line AD with
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respect to the lines AB and AC, i.e., that the line AD′ have the slope k from (19). The points
A and D′ have the difference between the coordinates

a − d − a − b − c
abcd − 1

=
1

abcd − 1
(a2bcd + b + c − d),

1
a
− abd + acd + bcd − abc

abcd − 1
=

1
a(abcd − 1)(a2bc − a2bd − a2cd − 1)

,

so the line AD′ has the slope k in (19). The point D′ can be rewritten as

D′ =

(
2d − s
p − 1

,
r − 2abc

p − 1

)
. (20)

In the same way, we can obtain the points A′, B′, C′ isogonal to the points A, B, C with
respect to the triangles BCD, ACD, ABD, respectively. The centroid of these four points is
the point

G′ =

(
− s

2(p − 1)
,

r
2(p − 1)

)
. (21)

The point D′ from (20) and its analogous point C′ have the midpoint (− a+b
p−1 , a+b

p−1 cd) that
lies on the line AB from (3). The line C′D′ has the slope ab; hence, it is perpendicular to the
line AB. This means that AB is the bisector of the line segment C′D′. Similarly, the same
is valid for the analogous elements of the quadrangles ABCD and A′B′C′D′. Because
of this, the sides AB, AC, AD, BC, BD, CD of the quadrangle ABCD are bisectors of the
sides C′D′, B′D′, B′C′, A′D′, A′C′, A′B′, respectively. Out of the earlier facts, it follows that
the points A, B, C, D are the centers of the circles B′C′D′, A′C′D′, A′B′D′, A′B′C′ that can
be directly proved analytically, because for the distance of the point D′ from the point
A = (a, 1

a ), we obtain

a2(p − 1)2 AD′2 = a2(a2bcd + b + c − d)2 + [a2(nc − bd − cd)− 1]2 = (a2b2 + 1)(a2c2 + 1)(a2d2 + 1),

so by analogy, we conclude that AD′ = AC′ = AB′. We proved the statement found
in [2,12]:

Theorem 11. The points A, B, C, D are the centers of the circles B′C′D′, A′C′D′, A′B′D′, A′B′C′.

This is in addition to the statement found in [5]:

Theorem 12. The points A′, B′, C′, D′ are isogonal to the points A, B, C, D with respect to the
triangles BCD, ACD, ABD, ABC if and only if the points A, B, C, D are the centers of the circles
B′C′D′, A′C′D′, A′B′D′, A′B′C′.

This means that the role of the quadrangle ABCD for the quadrangle A′B′C′D′ is
the same as the role of the quadrangle OaObOcOd for the quadrangle ABCD. However,
the points A′, B′, C′, D′ are isogonal to the points A, B, C, D with respect to the triangles
BCD, ACD, ABD, ABC. Therefore, the following theorem is proved:

Theorem 13. The points A, B, C, D are isogonal to the points Oa, Ob, Oc, Od with respect to the
triangles ObOcOd, OaOcOd, OaObOd, OaObOc.

It is also stated in [2,4].
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For the point Od from (17), the following equalities are valid

x − s
2

=
1
2
(

1
abc

− d) = − p − 1
2abc

y − r
2p

= y − 1
2
(

1
a
+

1
b
+

1
c
+

1
d
) =

1
2
(abc − 1

d
) =

p − 1
2d

,

(x − s
2
)(y − r

2p
) = − 1

4p
(p − 1)2. (22)

Hence, this point, as well as points Ob, Oc, Od are incident to the rectangular hyperbola
H0 with the Equation (22) and the center O′ = ( s

2 , r
2p ). Due to that, O′ is the center of the

quadrangle OaObOcOd and the anticenter to ABCD. So, the following theorem is valid:

Theorem 14. The center O′ of the quadrangle OaObOcOd is the anticenter of the quadrangle
ABCD. The center O of this quadrangle is the anticenter of A′B′C′D′.

This theorem is our original result. Its visualization is given in Figure 2.

Figure 2. The visualization of Theorems 12 and 14.

The center of the quadrangle A′B′C′D′ is the point symmetric to the point O with re-
spect to the centroid G′ of this triangle, given by (21), so this center is the point (− s

p−1 , r
p−1 ).

It is easy to see that the point Od from (17) and analogous points Oa, Ob, Oc have the centroid
Go = ( s

8p (3p + 1), r
8p (p + 3)). As O′ = ( s

2 , r
2p ) is the center of the quadrangle OaObOcOd,

the anticenter is the point symmetric to the point O′ with respect to the point Go and that is
the point Oo = ( s

4p (p + 1), r
4p (p + 1)).

If we apply a translation for the vector [ s
p−1 ,− r

p−1 ] on the quadrangle A′B′C′D′, then,

e.g., the point D′ from (20) transfers to the point D′′ = ( 2d
p−1 ,− 2abc

p−1 ). In the same way,
we can obtain the points A′′, B′′, C′′. All the four points have the same product of the
coordinates, so they are all incident to the rectangular hyperbola H′′ with the center O and
with the same asymptotes as the rectangular hyperbola H. Hence, the point O is the center
of the quadrangle A′′B′′C′′D′′, so the point (− s

p−1 , r
p−1 ) is the center of the quadrangle

A′B′C′D′. The symmetric point to the latter point with respect to the centroid G′ from (21)
of the quadrangle A′B′C′D′ is the point O.
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4. Discussion

Putting the complete quadrangle into such a coordinate system that its circumscribed
hyperbola is rectangular and has the equation xy = 1 allows us to prove many known
properties use the same method. We use rectangular coordinates symmetrically on four
vertices and four parameters a, b, c, d which simplify the analytical computing. Thus, we
came across some more quadrangles related to the referent one which allowed us to analyze
published as well as original results.

That approach enabled us to extend our results in the rich geometry of a complete
quadrangle, such as related to an isoptic point, which are planned to be presented in a
future paper.
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