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Abstract: One inevitable consequence of aging is the gradual deterioration of physical function and
exercise capacity, driven in part by the adverse effect of age on muscle tissue. We hypothesized that
relationships exist between age-related differentially expressed genes (DEGs) in skeletal muscle and
age-associated declines in physical function and exercise capacity. Previously, male C57BL/6mice
(6m, months old, 24m, and 28m) were tested for physical function using a composite scoring system
(comprehensive functional assessment battery, CFAB) comprised of five well-validated tests of
physical function. In this study, total RNA was isolated from tibialis anterior samples (n = 8)
randomly selected from each age group in the parent study. Using Next Generation Sequencing
RNAseq to determine DEGs during aging (6m vs. 28m, and 6m vs. 24m), we found a greater than
five-fold increase in DEGs in 28m compared to the 24m. Furthermore, regression of the normalized
expression of each DEG with the CFAB score of the corresponding mouse revealed many more
DEGs strongly associated (R ≥ |0.70|) with functional status in the older mice. Gene ontology
results indicate highly enriched axon guidance and acetyl choline receptor gene sets, suggesting
that denervation/reinnervation flux might potentially play a critical role in functional decline. We
conclude that specific age-related DEG patterns are associated with declines in physical function, and
the data suggest accelerated aging occurring between 24 and 28 months.
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1. Introduction

Aging-related decline of physical function is accompanied with, or predicated by, loss
of skeletal muscle mass and strength (sarcopenia). Declining physical function and muscle
health leads to reduced ability to perform activities of daily living, lower quality of life,
development of disability, loss of independence, and increased mortality [1–3]. Sarcopenia
is likely multifactorial with a varied etiology including disuse atrophy, neuromotor deficits,
denervation, muscle quality reduction, and alterations to key proteins and cell signaling
pathways [4–8]. There is a wide range of individual variability in the rate of declining
physical and contractile function [9–12]. For this study, we hypothesized that changes in
gene expression during aging would be highly correlated with functional loss. The primary
goal was to determine which age-related changes to skeletal muscle gene expression are
related to physical function and exercise capacity. The long-term goal is to identify potential
mechanisms that might identify novel therapeutic targets.

Previously, we measured physical function and exercise capacity in 6-month-old (6m),
24-month-old (24m), and 28-month-old (28m) male C57BL/6mice, using our Comprehen-
sive Functional Assessment Battery (CFAB), a composite scoring system comprised of five
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different well-validated determinants [rotarod (overall motor function), grip meter (fore-
limb strength), inverted cling (full-body strength/endurance), voluntary wheel running
(volitional exercise and activity rates), and treadmill running (aerobic exercise capacity and
endurance)] [9,10,12–14]. To further this work, we used Next Generation Sequencing (NGS)
RNAseq to determine gene expression in total RNA extracted from the tibialis anterior (TA)
muscles from a random subset of each age group from the original study [9]. Using linear
regression, we determined strong associations of genes that changed expression with aging
versus physical function (measured with CFAB), and identified numerous genes in muscle
that may play a critical role in declining physical ability.

Studies of age-related changes in skeletal muscle gene expression have been well-
covered in the literature [15–19]. In our current study, however, we combined our com-
prehensive physical function assessment with age-related gene expression data, revealing
pertinent and novel information about the relationship between numerous genes and their
potential role in functional aging.

We found thousands of genes changing expression (padj < 0.05, multiple comparisons
adjusted p value, pval,) between 6m and 28m of age (6m–28m), but only a couple hun-
dred between 6m and 24m (6m–24m). Likewise, we found hundreds of genes changing
expression with age that also had strong (R ≥ 0.7) associations with CFAB in 6m–28m, but
far fewer in 6m–24m. This discrepancy highlights the potential acceleration of biological
aging over these four months, which is also expressed in many indicators of physical
function and muscle health [9–14]. We used GOrilla (Gene Ontology enRIchment anaLysis
and visuaLizAtion tool) and GSEA (Gene Set Enrichment Analysis) to determine highly
enriched molecular function gene ontologies, which included cation transporters, and cal-
cium transporters [20,21]. Overall, these findings establish a framework for understanding
how aging alters skeletal muscle gene expression and how these gene expression changes
are potentially linked to the gradual, inevitable, and progressive loss of physical function
associated with aging, sarcopenia, and frailty.

2. Methodology
2.1. Mice

Three ages of C57BL/6male mice were obtained from the National Institutes of Health
National Institute on Aging Charles River Aging Rodent Colony (a subset of mice from a
previous publication [9] were randomly selected for this study: n = 8 for all at 6m, 24m, and
28m). Random selection was accomplished using a random number generator and samples
were coded to ensure blinding until after RNAseq data were analyzed. The biostatistician
was blinded to the groups. Mice were group-housed at 22 ◦C with a 12-h:12-h light/dark
cycle, and food and water provided ad libitum. The characteristics of the mice are presented
in Table 1.

Table 1. Mouse Characteristics. Body mass is the weight at tissue collection; Total Muscle is the
combined mass of the mean extensor digitorum longus, tibialis anterior (TA), gastrocnemius, plantaris,
and soleus muscle. Statistics are from a simple one-way ANOVA; different letters equal statistical
significance at p < 0.05 using a Least Significant Differences post hoc test: a different from 6m,
and b different from 6m and 24m.

Age n Body Mass Total Muscle TA

months g mg mg
6 8 33.04 ± 0.42 286.75 ± 6.97 58.39 ± 1.30
24 8 33.71 ± 0.67 254.52 ± 7.27 a 50.14 ± 1.96 a

28 8 31.01 ± 1.05 206.13 ± 5.75 b 43.48 ± 0.96 b

Euthanasia was conducted under American Veterinary Medical Association (AVMA)
Guidelines for the Euthanasia of Animals (2020). Mice were treated humanely using pro-
tocols approved by the East Carolina University and University of Texas Medical Branch
IACUC committees, and conducted under appropriate and relevant guidelines and regula-
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tions. Methods were reported following ARRIVE guidelines (https://arriveguidelines.org,
accessed on 5 May 2022) for the reporting of animal experiments.

2.2. Functional Testing

As previously published [9], CFAB is a composite scoring system that is composed
of the following highly validated non-colinear determinants of physical function and
exercise capacity: treadmill running (max speed test for endurance and aerobic exercise
capacity), voluntary wheel running (VWR, for volitional exercise and activity rate), grip
meter (forelimb strength), inverted cling (four-limb, total body strength and endurance),
and rotarod (overall motor function, including balance, coordination, gait speed, endurance,
and power production) [9,10,12–14]. Each mouse was rated for function by standardizing
the results from each determinant to the mean and standard deviation (SD) of the reference
group (6m) to create a score. Then we summed the individual determinant scores to create
the CFAB score. For example, if the rotarod time for an individual mouse was 160 s, and the
reference mean = 123.9 s and SD = 28.9, then the rotarod score for the mouse = 1.249 (the
standardized value of the number of SD away from the reference mean). This same process
was then performed for each determinant, and the resulting scores were added to produce
the CFAB score of the mouse. Because the reference group were 6m mice, most older
mice will have negative CFAB scores, indicating that those mice performed worse than
the average adult mouse. A more negative CFAB is indicative of worse overall physical
function. See the Supplemental Methods Section for more details on the specific tests.

2.3. Tissue Collection and Handling

As described previously [9], the mice were deeply anesthetized with ketamine/xylazine
mix and euthanized via exsanguination and removal of the heart after non-survival surgery
to collect the hindlimb muscles at the completion of the testing protocols. The muscles were
blotted dry, weighed, and then immediately flash frozen in liquid nitrogen. Subsequently,
the muscles were stored at −80 ◦C until total RNA extraction.

Total RNA extraction has been previously described [14,22]. In brief, we used Tri-
Reagent (Molecular Research, #TR118) following the manufacturer’s instructions to extract
total RNA from TA muscle, using the entire TA muscle. We quantified the extraction
using a Nanodrop2000 (ThermoScientific, Waltham, MA, USA), with mean concentration
330.8 ± 24.3 ng/µL, 260/280 ratio 1.69 ± 0.020, 260/230 ratio 1.98 ± 0.09. We determined
RNA integrity using an Agilent Bioanalyzer 2100; mean RIN was 9.23 ± 0.139. Two of
the 24 total isolated RNA samples (n = 1 each from 6m and 24m groups) did not meet the
standard lower limits for purity and integrity, and were not used for RNAseq.

2.4. NGS RNAseq

RNA samples (n = 22 total; n = 7 6m, n = 7 24m, and n = 8 28m) were quantified
using a Qubit fluorometer and qualities were assessed with an Agilent Bioanalyzer. Poly-
A + RNA was enriched from ~0.5 ug of total RNA and used as a template to generate
sequencing libraries using the New England Biolab NEBNext Ultra II RNA Library Prep
Kit following the supplier’s protocol. Libraries were pooled and sequenced on an Illumina
NextSeq 550 High-output flow cell with the 75 base pair single-end protocol with two runs:
6m vs. 24m and 6m vs. 28m. The 6m samples were the same in both runs to serve as
a control to facilitate comparison of the 24m and 28m groups. Libraries for the 6-month
samples were prepared twice, once each in parallel with the 24m and 28m samples to help
control for batch effects. Read counts from these technical replicates were kept separate in
the analyses. The average number of reads per sample was 39,366,241 in the first run of
6m versus 24m and 35,287,066 for the second run of the 6m versus 28m. Greater than 93%
of base calls had Illumina Q-scores above 30, and average Q-scores were above 34 for all
samples. Raw NGS data is stored at the GEO record GSE152133.

https://arriveguidelines.org
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3. Data Analysis
3.1. General

We used SPSS v24, v27, and v28 (IBM) to analyze the statistics. Data were reported
as means ± standard error, unless otherwise designated. Significance was designated
as p < 0.05, with trends reported if 0.05 < p < 0.10. CFAB, TA muscle mass, and the
CFAB determinants used one-way ANOVA to detect differences in means. The individual
test used is described in the text of the results. Post hoc analysis for ANOVA used least
significant differences (LSD). The original data for CFAB and other measurements met
assumptions of normality other than the inverted cling test which was transformed by
log10 (see original study [9] for kurtosis and skew reporting). The log10 transformation
version of the inverted cling is thus used to calculate CFAB [9].

RNAseq: The reads were demultiplexed and aligned to the mouse mm10 genome
using the splicing aware software STAR, version 2.5.4b, with the ENCODE recommended
parameters [23]. The genome index was built with the Illumina iGenomes UCSC mm10
genomic sequence and annotation file, and reads mapping to genes were quantified with
the STAR–quantMode GeneCounts option [23].

The read counts per gene for each sample were input into the DESeq2 differential
expression program, version 1.22.2. [24]. Following the DESeq2 vignette, differentially
expressed genes were called with an adjusted p-value cut-off of less than 0.05 and a log2
fold-change (log2fc) of ≥1.0 or ≤−1.0. We used the rlog function in DESeq2 to generate
a table of log2 normalized counts, which we then used to generate the PCA plots and
heatmaps. We used DESeq2 to create the PCA figures and the heatmap package in R to
create the heatmaps [25]. The principal components analysis determined the gene sets that
contributed most to the variability between the different age groups and identified which
genes contributed most to explaining CFAB variation.

3.2. Further Data Analysis of RNAseq Data and CFAB Data

The Bioinformatics and Analytics Research Collaborative (BARC) at the University of
North Carolina at Chapel Hill performed the following data analysis as consultants to the
project. The code and datasets associated with these analyses are available in GitHub at
https://github.com/MANZHAOHUI/Graber (established on 10 May 2023).

Linear regression between the log2 normalized gene counts of each differentially
expressed genes (DEGs, independent variable) from each sample with the CFAB value,
CFAB determinants, and TA mass (dependent variables) of the corresponding individ-
ual mouse/sample was used to evaluate the DEGs’ correlation coefficient (R) with the
physical function measurements (CFAB score) of the mice from various ages. Python
(v3.7.8, function: stats.linregress(x,y) from the python function ‘stats’ imported from
the python package ‘scipy’) was used to generate metrics including ‘slope, intercept,
r, p_value, std_err’. The ‘pvalue’ generated by ‘scipy.stats.linregress’, which uses Wald
Test with t-distribution of the test statistic for a hypothesis test whose null hypothesis
is that the slope is zero, was employed to indicate the correlation between the value
of a given gene from a particular sample and corresponding CFAB value (from: https:
//docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html, accessed on
23 July 2020).

GSEA (Gene Set Enrichment Analysis) was conducted using R, referring to the method
explained in https://stephenturner.github.io/deseq-to-fgsea/ (accessed on 23 July 2020)
against NGS datasets [21]. The reference database used was ‘MousePath_GO_gmt.gmt’
downloaded from http://ge-lab.org/gskb/ (accessed on 23 July 2020). Based on the re-
sults of GSEA, genes from the NGS datasets with the cut-off (|log2fc| ≥ 1, padj < 0.05)
were further filtered into enriched gene sets that were significant, as indicated by a
false discovery rate (FDR) of less than 25% (http://www.gsea-msigdb.org/gsea/doc/
GSEAUserGuideTEXT.htm#_GSEA_Statistics, accessed on 23 July 2020). After this filtering,
127 and 1049 genes were left from 6m vs. 24m comparison and 6m vs. 28m comparison,
respectively.

https://github.com/MANZHAOHUI/Graber
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
https://stephenturner.github.io/deseq-to-fgsea/
http://ge-lab.org/gskb/
http://www.gsea-msigdb.org/gsea/doc/GSEAUserGuideTEXT.htm#_GSEA_Statistics
http://www.gsea-msigdb.org/gsea/doc/GSEAUserGuideTEXT.htm#_GSEA_Statistics
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Next, Gene Ontology enRIchment analysis (GOrilla analysis) was rendered on http:
//cbl-gorilla.cs.technion.ac.il/ (accessed on 23 July 2020) against the selected DEGs from
the two runs with the DEGs cut-off [20]. Enrichment is the over or under representation of
differentially expressed genes in functional categories (the GOs/gene ontologies).

The final step was to intercept the results from both GSEA and GOrilla [20,21]. For the
same input, GSEA and GOrilla generated different sets of enriched genes. We intersected
the two gene sets and found the genes in common for both models. The intersection
provides high confidence between two approaches for ascribing functional categories to
the data. GSEA and GOrilla have similar purposes, but use different methods. GOrilla is
the older tool, more traditionally used, and focuses on significant genes, whereas GSEA
considers all of the genes in an experiment, not just those above an arbitrary cut-off in terms
of fold-change or significance. Moreover, GSEA assesses the significance by permuting the
class labels, which preserves gene-gene correlations and thus provides a more accurate null
model.

3.3. Transcription Factor Analyses

After inputting the DEGs from Table S10 (|R| ≥ 0.70) into https://maayanlab.cloud/
Enrichr/ (accessed on 20 April 2023), we report the ChEA 2022 results to analyze transcrip-
tion (all terms with padj < 0.05) as a table in the Online Supplemental Section [26–29]. In
addition, we also input the same dataset to Enrichr, and report results from Reactome and
GO molecular function in the Supplement.

4. Results
4.1. CFAB

The mice in this study demonstrated overall declining physical function with age,
as measured with the CFAB component tests of rotarod, grip strength meter, inverted
cling, treadmill, and voluntary wheel running. The CFAB score was significantly different
between groups (p < 0.05) (see Figure 1). Since these mice were randomly selected from a
larger cohort (e.g., n = 7 6m in the current work versus n = 30 6m in the parent study), the
statistical results presented herein do not exactly match the results from the parent study,
though trends are comparable. For a more complete discussion of the functional testing
methods and results, consult our previously published work [9]. Standardized scores of
the individual determinants are presented in the Online Supplemental Data Table S1.
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4.1.1. NGS RNAseq: (See the Full Raw Dataset on GEO at GSE152133)
Age-Related DEGs: 28m Compared to 6m

Overall, in the 6m–28m data, there were 6707 genes with padj ≤ 0.05, and of these,
3153 were downregulated and 3554 were upregulated. After applying the a priori cut-off for
DEGs (|log2fc| > 1, padj≤ 0.05), there were 612 downregulated genes and 605 upregulated
genes (total genes = 1217). Figure 2 is a heatmap showing the top 50 gene expression
changes (by z-score) between 6m and 28m. Figure 3 is a volcano plot showing separation of
the gene sets. Table 2 lists the top 20 genes upregulated with age (by log2fc), and Table 3 lists
the top 20 downregulated genes (see Table S2 for all DEGs). In Figure 4A, the 2D principal
component analysis (PCA) scores plot indicates a separation between 28m and 6m clusters,
with no overlap. This result was confirmed by using the supervised multivariate analysis
based on a partial least squares-discriminate analysis (PLS-DA) (component 1 [6m] was
14% and component 2 [28m] was 56%). Interestingly, the 28m gene expression is widespread
in Figure 4A, indicating heterogeneity. There are groupings both closer to and farther away
from the 6m, with a potential outlier as well.

Table 2. Top 30 Upregulated Aging Genes: 6m vs. 28m: The 30 upregulated genes with the greatest
|log2fc|. AKA = also known as, NCIB Gene is from https://www.ncbi.nlm.nih.gov/gene (accessed
3 January 2021), MGI = Mouse Genome Informatics from http://www.informatics.jax.org/marker
(accessed 3 January 2021), log2fc = log base 2 fold change, adj. p = multiple comparison adjusted
p-value.

Gene_Id AKA NCIB
Gene # MGI # log2fc padj Type

Bpifb1 LPLUNC1 228801 2137431 4.53 2.26 × 10−3 pc
Krt18 CK18, Endo B 16668 96692 4.49 1.43 × 10−5 pc

Ubd Diubiquitin,
FAT10 24108 1344410 4.46 1.38 × 10−4 pc

Sln 2310045A07Rik 66402 1913652 4.33 1.08 × 10−6 pc
Tac4 HK-1 93670 193,130 4.28 2.42 × 10−3 pc

Sprr1a SPR1a 20753 106660 3.89 3.38 × 10−3 pc
Syt4 SytIV 20983 101759 3.85 2.65 × 10−3 pc
Dntt Tdt 21673 98659 3.74 8.49 × 10−4 pc

Atp13a4 4631413J11Rik 224079 1924456 3.71 3.68 × 10−3 pc
Hamp2 HEPC2 66438 2153530 3.68 6.02 × 10−2 pc

1300002K09Rik Stra6l, Rbpr2 74152 1921402 3.67 1.97 × 10−2 pc
4930558C23Rik Ctxnd2 67654 1914904 3.66 7.45 × 10−3 pc

Ccl17 Scya17, TARC 20295 1329039 3.65 7.98 × 10−3 pc
1110059M19Rik Prr32 68800 1916050 3.61 1.52 × 10−5 pc

Chrng Achr-3, Acrg 11449 87895 3.60 1.78 × 10−4 pc
AA467197 NMES1 433470 3034182 3.59 2.21 × 10−6 pc

Neil3 C85903 234258 2384588 3.56 3.90 × 10−3 pc
Nppb BNP, BNF 18158 97368 3.55 2.93 × 10−3 pc
Erc2 CAST, ELKS 238988 1098749 3.54 4.92 × 10−20 pc

Orm2 Orm-2, Agp1 18406 97444 3.53 9.31 × 10−3 pc
C130026I21Rik 4930565N07Rik 620078 3612702 3.51 8.89 × 10−3 pc

Olig1 Bhlhb6 50914 1355334 3.41 5.99 × 10−3 pc
F10 Cf10, Al1947 14058 103107 3.38 7.35 × 10−4 pc

Igfbp2 IBP-2 16008 96437 3.30 1.30 × 10−2 pc
Gbp1 Gbp2b, Mpa1 14468 95666 3.28 2.69 × 10−2 pc

Gm7609 EG665378 665378 3644536 3.27 2.67 × 10−3 pc
Gdf5 brp, CDMP-1 14563 95688 3.26 3.01 × 10−11 pc
Cd5l AIM, Api6 11801 1334419 3.16 1.33 × 10−1 pc
Krt8 Card2, EndoA 16691 96705 3.13 1.17 × 10−2 pc

Cdca5 Sororin p35 67849 1915099 3.08 2.52 × 10−2 pc

https://www.ncbi.nlm.nih.gov/gene
http://www.informatics.jax.org/marker
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Table 3. Top 30 Downregulated Aging Genes: 6m vs. 28m: The 30 downregulated genes with the
greatest |log2fc|. AKA = also known as, NCIB Gene is from https://www.ncbi.nlm.nih.gov/gene
(accessed on 3 January 2021), MGI = Mouse Genome Informatics from http://www.informatics.
jax.org/marker (accessed on 3 January 2021), log2fc = log base 2 fold change, adj. p = multiple
comparison adjusted p-value.

Gene_Id AKA NCIB
Gene MGI log2fc padj Type

9130404H23Rik Themis3 74556 1921806 −4.51 3.35 × 10−5 pc
5330417C22Rik Elapor1 229722 1923930 −3.24 1.21 × 10−2 pc

Nlrp1c-ps Nalp1c 627984 3582962 −3.11 1.56 × 10−2 pseudo
Oxct2a Scot-t1 64059 1891061 −3.02 1.97 × 10−2 pc

1700001K23Rik 69319 1916569 −2.95 3.18 × 10−2 lncRNA
Kcng1 AW536275 241794 3616086 −2.78 1.21 × 10−2 pc
Gpr165 6530406P05Rik 76206 1923456 −2.59 4.81 × 10−2 pc
Fbxo48 A630050E13Rik 319701 2442569 −2.58 2.98 × 10−3 pc

1700071M16Rik 73504 1920754 −2.56 1.55 × 10−5 lncRNA
1700001O22Rik 1700113K14Rik 73598 1923631 −2.54 6.18 × 10−6 pc

Prap1 Upa 22264 893573 −2.51 4.80 × 10−4 pc
E130008D07Rik 545207 3584523 −2.51 3.02 × 10−3 lncRNA

Hrh4 H4R 225192 2429635 −2.51 5.20 × 10−2 pc
Trim9 mKIAA0282 94090 2137354 −2.51 4.82 × 10−2 pc

Zfp366 DC-SCRIPT 238803 2178429 −2.48 9.45 × 10−6 pc
Grem2 Prdc 23893 1344367 −2.45 1.06 × 10−9 pc
Rgag1 Rtl9, Mar9 209540 2685231 −2.44 4.84 × 10−3 pc
Duox2 LNOX2 214593 3036280 −2.44 3.50 × 10−2 pc
Nos1 bNOS, nNOS 18125 97360 −2.41 8.87 × 10−4 pc

4932411E22Rik Ankfn1, nmf9 382543 2686021 −2.41 5.31 × 10−2 pc
Epha3 Cek4, End3 13837 99612 −2.38 2.15 × 10−7 pc
Il1rl2 IL-1Rrp2 107527 1913107 −2.35 4.27 × 10−6 pc
Nptxr NPCD, NPR 73340 1920590 −2.34 2.83 × 10−3 pc

2700086A05Rik Hoxaas3 72628 1919878 −2.31 1.53 × 10−4 anti-
IncRNA

Gm16982 100036523 4439906 −2.28 6.93 × 10−3 IncRNA
Nrk Nesk 27206 1351326 −2.27 3.87 × 10−2 pc

Hist1h2af H2ac10, H2a-22 319173 2448309 −2.26 1.09 × 10−2 pc
Tll2 24087 1346044 −2.24 3.50 × 10−2 pc

Igsf9b AI414108 235086 2685354 −2.21 3.63 × 10−3 pc
Necab1 Efcbp1, STIP-1 69352 1916602 −2.20 1.95 × 10−3 pc

We used GSEA and GOrilla to examine gene ontology enrichment in the 6m–28m DEGs
(see Figure S1 and Tables S4 and S5 in the Supplement). After analyzing the RNAseq data
with GSEA, there were 1049 validated DEGs remaining. Using GOrilla to further determine
gene set enrichment in this comparison (using the same gene set as GSEA), there were
73 gene ontology terms enriched (minimum False Discovery Rate q-value, FDR q-val < 0.10;
72 terms FDR q-val < 0.05), ranging from a high enrichment of 26.29 to a low of 1.12. In
all, there were 8 gene sets highly enriched, E, (E > 10, averaging 17.6 ± 6.0 sd, stan-
dard deviation), including: GO:0016907 (G protein-coupled acetylcholine receptor activity,
enrichment, E = 26.3), GO:0098639 (collagen binding involved in cell-matrix adhesion,
E = 25.7), GO:0048407 (platelet-derived growth factor binding, E = 21.9), GO:0008046 (axon
guidance receptor activity, E = 14.3), GO:0035373 (chondroitin sulfate proteoglycan binding,
E = 14.2), GO:0015464 (acetylcholine receptor activity, E = 13.6), GO:0005021 (vascular
endothelial growth factor-activated receptor activity, E = 12.9), and GO:0030020 (extracellu-
lar matrix structural constituent conferring tensile strength, E = 12.0). The intersection of
GOrilla and GSEA (Table S8) identified 359 DEGs.

https://www.ncbi.nlm.nih.gov/gene
http://www.informatics.jax.org/marker
http://www.informatics.jax.org/marker
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Figure 3. Volcano Plot: 6m vs. 28m. Each dot (red indicates downregulated gene expression with age
and green indicates upregulated) represents one gene with the log2 fold change on the x-axis and the
adjusted p-value on the y-axis. Dashed lines indicate the cut-offs of adjusted p-value < 0.05 (horizontal
line) and log2 fold change >|1| as the two vertical lines. All colored circles were considered signifi-
cantly different gene expressions with age. 6m = 6-month-old mice and 28m = 28-month-old mice.
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Age-Related DEGs: 24m Compared to 6m Mice

There were fewer changes in gene expression in the 6m–24m than in the 6m–28m.
There were 234 genes with padj ≤ 0.05; of those, 50 were downregulated and 184 were
upregulated. There were 138 total DEGS with 130 upregulated and 8 downregulated (see
Table S3 for the listing of all DEGs). In Figure 4B, the 2D principal component analysis
(PCA) scores plot indicates an incomplete separation between 24m and 6m clusters, with
evident overlap. Greater variance was observed in the 24m vs. the more homogeneous
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6m clusters. This result was confirmed by using the supervised multivariate analysis based
on a partial least squares-discriminate analysis (PLS-DA) (component 1, 6m, was 23% and
component 2, 28m, was 48%).

We used GSEA and GOrilla to examine gene ontology enrichment in the 6m–24m DEGs
(see Figure S2, Tables S3, S6 and S7 in the Supplement for further details). Analyzing the
RNAseq data with GSEA, we found that 127 genes remained of those that fell under the
DEG cut-off. Using the same genes fed to GSEA, GOrilla determined there were 19 gene
ontology terms enriched (FDR q-value < 0.10; 18 terms FDR q-value < 0.05), ranging
from a high enrichment of 43.19 to a low of 1.39. In all, there were 3 gene sets highly
enriched (E > 10, averaging 32.5 ± 11.8 sd), including: GO:0001602 (pancreatic polypeptide
receptor activity, E = 43.2), GO:0001601 (peptide YY receptor activity, E = 34.55), and
GO:0004983 (neuropeptide Y receptor activity, E = 19.81). The intersection of GOrilla and
GSEA identified only three genes for this 6m–24m comparison (Table S9).

4.2. Regressions of DEGs with CFAB

We primarily focused our attention on the changes that occurred in the transcriptome
between the adults (6m) and the oldest group (28m). This was because the alterations in
gene expression were most extreme at the advanced age (many more DEGs and many more
DEGs strongly associated with CFAB), and we knew from previous work that the most
profound changes in function, muscle health, and contractile ability occur at the older ages
in mice [9,10,13]. See the datasets in the Online Supplemental Data Tables S10–S21 for more
details.

Regression analysis of the 6m–28m determined there were 704 DEGs with at least a
moderate (R ≥ |0.50|) correlation with physical ability (CFAB score); of these, 372 were
strongly associated with CFAB (R ≥ |0.70|). Of these strongly associated genes, 239 were
positively associated and 133 were negatively associated with CFAB. Of the genes that were
positively associated, all were downregulated. Of the genes that were negatively associated,
all were upregulated. Table 4 lists the top (by |R|) age-regulated genes associated with
physical function in the 28m group (see Table S10 for all R > |0.70|).

Table 4. Age-Regulated Genes Associated with Physical Function: 6m vs. 28m (R2 ≥ 0.70) log2fc =
log base 2 fold change, padj = multiple comparison adjusted p-value; R = correlation association, R2 =
coefficient of determination; pval, slope and intercept from simple linear regression of the normalized
log2fc of each gene from each mouse as the independent variable with the corresponding CFAB value
as the dependent variable.

Gene_Id Slope R R2 Intercept pval log2fc padj

Dclk3 0.041 0.899 0.809 3.864 5.073 × 10−6 −1.025 6.75 × 10−4

Plekhg1 0.085 0.896 0.803 7.093 6.124 × 10−6 −1.141 6.29 × 10−11

Zfp750 0.078 0.895 0.801 4.812 6.525 × 10−6 −1.571 1.12 × 10−9

Gabrd −0.053 −0.886 0.784 3.839 1.125 × 10−5 1.201 4.12 × 10−5

Erc2 −0.172 −0.882 0.778 4.290 1.357 × 10−5 3.543 4.92 × 10−20

Ier3 −0.092 −0.881 0.777 7.172 1.405 × 10−5 1.227 3.14 × 10−13

P2ry1 0.086 0.881 0.776 8.163 1.456 × 10−5 −1.076 2.00 × 10−10

Kdr 0.114 0.880 0.775 10.616 1.506 × 10−5 −1.280 1.55 × 10−8

Pde4a 0.099 0.877 0.770 10.901 1.731 × 10−5 −1.211 3.34 × 10−14

Zyg11a 0.057 0.875 0.765 4.134 1.973 × 10−5 −1.329 1.51 × 10−5

Pcdh12 0.112 0.873 0.762 7.446 2.161 × 10−5 −1.273 2.35 × 10−5

Lynx1 0.096 0.873 0.762 12.112 2.162 × 10−5 −1.052 5.13 × 10−7

Lhfpl4 −0.047 −0.855 0.731 4.098 4.851 × 10−5 1.015 9.99 × 10−5

Tspan18 0.080 0.855 0.731 5.875 4.912 × 10−5 −1.120 4.08 × 10−5

Kcng4 0.104 0.853 0.728 10.729 5.212 × 10−5 −1.327 2.34 × 10−16

BC051142 −0.061 −0.850 0.723 2.516 5.983 × 10−5 2.462 2.77 × 10−5

Cacna2d4 0.118 0.849 0.721 8.663 6.176 × 10−5 −1.435 9.73 × 10−9

Spint2 −0.097 −0.844 0.712 6.437 7.667 × 10−5 1.436 3.42 × 10−14

Cyp1a1 −0.076 −0.842 0.709 4.882 8.145 × 10−5 1.211 1.04 × 10−5
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Table 4. Cont.

Gene_Id Slope R R2 Intercept pval log2fc padj

Mmp15 0.088 0.841 0.707 9.482 8.653 × 10−5 −1.069 1.31 × 10−8

Vwa3a 0.066 0.841 0.707 4.803 8.676 × 10−5 −1.184 1.32 × 10−4

Frem1 0.055 0.839 0.704 4.218 9.120 × 10−5 −1.214 1.40 × 10−4

Gm5105 0.153 0.839 0.704 7.955 9.232 × 10−5 −1.930 2.69 × 10−8

Mfap3l 0.078 0.838 0.703 7.795 9.483 × 10−5 −1.089 2.27 × 10−15

Dnmt3a 0.090 0.837 0.701 10.929 9.949 × 10−5 −1.163 2.66 × 10−15

Rbm3 −0.104 −0.837 0.700 9.704 1.000 × 10−4 1.355 1.18 × 10−12

Akap12 0.082 0.836 0.698 8.347 1.050 × 10−4 −1.048 5.10 × 10−9

Col4a3 0.072 0.835 0.697 5.853 1.075 × 10−4 −1.081 7.96 × 10−6

Psd3 0.094 0.833 0.695 9.824 1.134 × 10−4 −1.119 6.34 × 10−8

Atp2b4 0.085 0.833 0.695 8.714 1.137 × 10−4 −1.134 5.74 × 10−15

The different determinants of CFAB (VWR, Grip, Inverted Cling, Rotarod, and Tread-
mill) in the 6m–28m were regressed in the same way as CFAB (See Tables S11–S15). Notably,
out of the top 71 DEGs correlated with CFAB (|R| > 0.80), 35 of them are also in the top
30 DEGs (by |R|) of the determinants (see Table S16). However, 11 of the top 30 (by |R|)
DEGs in the CFAB list do not appear in the top lists of the determinants. For example, the
top DEG on the CFAB list, Dclk3 (Doublecortin like kinase 3, R = 0.899), was not in the
top 30 in any of the determinant lists. Interestingly, VWR, Grip Test, and Inverted Cling
contain the most top CFAB correlates. However, the VWR top DEG, Necab1 (N-terminal
EF-hand calcium-binding proteins 1, R = 0.791), and the only VWR DEG with |R| > 0.70,
was ranked at #237 on the CFAB list (R = 0.741).

In contrast, of the 6m–24m DEGs, regression analysis determined that there were only
55 genes with at least a moderate (R ≥ |0.50|) correlation with physical ability (CFAB
score); of these, only 35 were strongly associated (all R < −0.70) with CFAB. Of the strongly
associated genes, all 34 were negatively associated and downregulated (see Table S17
for details). The different determinants of CFAB (VWR, Grip, Inverted Cling, Rotarod,
and Treadmill) were regressed with the age-associated DEGs in the 6m–24m group (See
Tables S18–S22). Notably, only inverted cling and grip had any DEGs with |R| ≥ 0.70,
24 and 13, respectively (see Tables S19 and S20 for details).

In addition, we regressed the TA muscle mass (dependent variable) with the DEGS of
both sets (for details see 6m–28m in Table S23 and 6m–24m in Table S24) and found that
there were 595 DEGs with |R| ≥ 0.70 in the 6m–28m group, while there were only 3 in
the 6m–24m group: Ak4 (R = −0.76, log2fc 1.48), Erc2 (R = −0.72, log2fc 3.41), and Car3
(R = 0.697, log2fc 1.05). Notably, in the 6m–28m analysis, all three were also on the list: Ak4
(28m, ranked #164, R = −0.839, log2fc 1.08), Erc2 (28m, #212, R = −0.824, log2fc 3.54), and
Car3 (28m, #28, R = −0.900, log2fc 1.32).

There are far more DEGs at the older age (6m–28m) that might have a role in functional
loss or are potentially involved in the regulation of muscle mass. More than 10-fold DEGs
were identified to be strongly associated with function in the 6m–28m group (372) than
the 6m–24m (35). Furthermore, different DEGs were among the top |R| values in the
two groups, and there were different |R| values for the same DEGs in the two analyses,
potentially indicating that some genes could play a more significant role in the decline of
physical function depending upon the age of the mouse.

Furthermore, using the gene set from Table S10, we ran ChEA via Enrichr, and the
resulting transcription factors (48 significant terms were returned) that overlap (padj < 0.05)
with our DEGs (6m–28m, with |R| ≥ 0.70) are presented in Table S25. The transcription
factors with the highest combined scores included WT1, MTF2, CEBPD, SUZ12, SOX9,
TP53, YAP1, ZNF217, ESR1, and DROSHA (48.2, 26.5, 25.5, 24.5, 21.6, 21.2, 18.9, 18.9, 18.6,
and 18.2, respectively). Interestingly, CEBPD is a transcription factor DEG that we found
to have reduced expression with age (log2fc −1.025), and that is strongly associated with
CFAB (R = −0.792).
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5. Discussion
5.1. Physical Function Declines with Aging

It is well-established that both rodents and humans lose muscle mass and strength as
they get older. Alongside this decline comes a decline in physical function and exercise
capacity [8,9,11,12,29,30]. Reductions in power production and contractile velocity have
been shown to precede loss of strength and mass, indicating that deterioration other than
atrophy contributes to the onset of muscle dysfunction [1,11].

Various hypotheses have been proposed to explain mechanisms of both early onset
loss of power and the disconnect between mass retention and strength loss in the context
of declining physical performance. Loss of so-called “muscle quality” is one such theory.
During aging, the infiltration of fat, connective tissue, and scar tissue into a muscle can
reduce the overall cross-sectional area devoted to contractile units while altering struc-
tural parameters of the tissue, and combined with other macro level alterations such as
tendon stiffening, may reduce power and strength at the whole muscle level [5,8,11,31,32].
Additionally, at the cellular level, many deleterious changes with aging can affect muscle
contraction, such as post-translation modifications to key contractile proteins, fiber-type
shift, enhanced preferential denervation of type 2 motor units, cell signaling abnormalities,
autophagy dysregulation, and reduced mitophagy leading to enhanced reactive oxygen
species (ROS) production [6,8,33–35].

In this study, we set out to obtain a mouse skeletal muscle transcriptome profile to
directly compare to declining physical function. Our goal was then to develop mechanistic
hypotheses based on this relationship. There were numerous associations between vari-
ous DEGs and the overall state of functional health (measured by CFAB). Using GOrilla
and GSEA analysis of gene ontology, we examined potential cellular processes in flux.
Calcium handling, denervation, neuromuscular junction dysfunction, and motor neuron
alterations were some implicated processes. See the Supplemental Sections for more details
(Figures S1 and S2, Tables S2–S21). In the following sections, we distinguish our data with
italics when discussing similarities and differences with other studies from the literature.

5.2. Age-Related Gene Expression Relationship with CFAB

We determined relationships with the data from linear regression of the CFAB score
(generalized physical function as the dependent variable) versus differential gene expres-
sion (independent variable) at both the 6m–24m and 6m–28m ages. Our findings suggest
that gene expression may change and affect function differentially based on age. One exam-
ple is Erc2 (or Cast1), coding for ELKS-Rab6-interacting protein 2 (many roles, including
organization of the cytoskeleton structures involved in pre-synaptic vesicle release) [36,37].
Erc2 has a log2fc 3.41 at 6m–24m, and log2fc 3.54 at 6m–28m, a similar increase of expression
at both ages. However, Erc2 negatively correlates with CFAB at 6m–24m R = −0.71 and at
6m–28m R =−0.88, potentially indicating a more robust relationship with physical function
as the mice get older. While correlation does not equal causation, it is clear the association
of Erc2 with CFAB increased in the older age group. Therefore, Erc2 may be more critically
related to neuromuscular performance at advanced age (28m) than at 24m, when function
is also better preserved.

5.3. Potential Mechanisms of Functional Age

We observed some common themes related to the protein function of some of the top
gene changes (See Tables 1–3) such as calcium handling dysregulation (Sln, sarcolipin with
log2fc 4.33), denervation (Achg, acetyl choline receptor gamma, log2fc 3.599) and neuromuscular
junction degeneration, and proteolytic process regulation (Ubd, ubiquidin log2fc 4.46). See
also the results of the gene ontology in Figures S1 and S2. In the next sections we discuss
our findings related to transcription factors and denervation (results from our current study
are shown in parentheses), followed by further comparisons of our findings to the existing
literature. The Supplemental Discussion details gene expression changes we uncovered
that are potentially related to disuse atrophy and calcium handling.
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5.4. Transcription Factor Gene Expression with Aging

A recent study narrowly focused on multi-tissue conserved epigenetic regulation
and the transcriptome (genes within 5000 base-pairs of transcription start sites) used the
quadriceps of 6 and 24-month-old mice as part of their gene array analysis [38]. It is
interesting to note that while they only reported and investigated a very narrow scope of
genes, many of their top genes did not change significantly in our TA transcriptome within
our cut-offs (adj. p < 0.05 and log2fc ≥ 1) at 6m and 24m—perhaps partly indicating a
potential difference between the highly glycolytic fast twitch TA and the more oxidative
quadriceps. Another likely explanation for the differences is that our DEG cut-off was
much more stringent than the Sleiman et al. study where they included all genes with a
false discovery rate of <10%, regardless of fold change.

However, if we instead compare 6m TA to 28m TA, we do see some evidence of
transcriptional regulation alterations similar to Sleiman and colleagues [38]. By widening
our scope of significance to include genes with padj < 0.05 and any log2fc, we see similar
results in our data to what Sleiman and colleagues discovered: for transcription factors
related to aging such as the SREBF family motifs (SREB1 log2fc −0.61, and SREB2 log2fc
−0.67, both padj < 0.001) that are known to regulate lipid homeostasis, and Mecp2 (log2fc
−0.30, padj = 0.006) that represses expression of genes and is a regulator of normal neuron
function. We also see significant age-associated expression changes of members of the Zbt
family (log2fc: Zbtb37 −1.06, Zbtb7c −0.63, Zbtb46 −0.73, Zbtb22 0.25, Zbtb48 0.31, Zbtb33
−0.29, Zbtb10 −0.33, Zbtb5 −0.30, Zbtb11 −0.22, and Zbt20 0.34) that code for the zinc finger
and BTB domain-containing proteins which are known as transcriptional repressors. For
example, ZBTB20 promotes production of pro-inflammatory cytokines by downstream
activation of Toll-like receptors. In support, we uncovered that Nfkbia (Nuclear factor of
kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) increased expression by
log2fc 0.96, and thus could be involved in reducing NF-κB transcription factor (confirmed
significant reduced expression of Nfkb1 is log2fc −0.45). Therefore, upregulation of ZBTB20
in our older mice would support increased inflammation—one hallmark of aging and one
of the likely mechanisms contributing to muscle atrophy.

Furthermore, we inputted our list of DEGs from Table S10 (|R| ≥ 0.70) into https:
//maayanlab.cloud/Enrichr/ (accessed on 18 March 2023) to analyze transcription [33–35].
Interestingly, the transcription factor CEBPD (CCAAT Enhancer Binding Protein Delta)
with the third highest combined score (25.543) was also on the list of DEGs, being down-
regulated and negatively associated with CFAB (log2fc −1.025, and R = −0.792). CEBPD
had 20/413 curated genes present in our dataset (Usp244, Cdk19, Mbd5, Bmpr2, Nhlrc3,
Mme, Crybg3, Lamc3, Heg1, Nbeal1, Sorcs1, Lamc1, Bicc1, Btaf1, Palld, Psd3, Rel, Fat1, Wdfy3,
and Trpm3). CEBPD is a tumor suppressor and an important regulator of immune and
inflammatory response [39]. CEBPD may also be involved in cell motility by altering
cytoskeletal dynamics [40]. The data suggests that CEBPD could potentially be a master
transcription factor regulator of age-related gene expression related to physical function
that is itself regulated with age. Further investigation is warranted.

5.5. Denervation and Neuromuscular Junction Degradation

The skeletal muscle acetylcholine receptor (AChR) accepts the acetylcholine ligand
diffusing across the synaptic cleft after being exported via exocytosis from the motor end
plate of the innervating motor neuron when an action potential is propagated. AChR has
5 different subunits: α, β, δ, ε, and γ. The complex consists of 2α, 2β, 1δ, and 1ε (in mature
muscle cells) or γ (in embryonic or denervated myofibers). Chrng (acetylcholine receptor
subunit gamma) is only expressed in mature skeletal muscle after denervation [41]—with
the ε subunit returning long after denervation [42]. We found a log2fc of 3.599, equivalent to
a 1211% increase, in Chrng in 6m–28m (R = 0.46 with CFAB); but Chrne (epsilon subunit)
was increased by only log2fc 0.50, indicating an 860% relative increase of Chrng versus
Chrne, suggesting increased denervation flux in older mice. This provides further evidence
that denervated muscle fibers in older animals tend to be less robustly reinnervated than in

https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
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younger animals [43]. Eventually, myofiber death and muscle atrophy occurs in fibers that
are not reinnervated [43]. Additionally, older animals may exhibit a fiber type shift to a
more type 1 slow twitch fiber composition. This occurs as the denervated type 2 muscle
fibers (generally larger and producing more force at a greater contractile velocity than
type 1 myofibers) are more often reinnervated with type 1 motor neurons in older animals,
which then drives a phenotypic shift towards the type 1 myofiber [44]. This combination of
switching to less powerful myofiber type (power equaling force times velocity), coupled
with an overall loss in the total number of fibers (not to mention atrophy, and thus loss
of force, from other causes) may lead to a reduction in peak power generation in older
muscle [11].

The formation of the motor endplate, in particular, the clustering of ACHRs is propa-
gated by the release of agrin by a motor neuron, which binds to the MuSK receptor (and
dystroclycan and laminin to form a stabile scaffold), causing MuSK to phosphorylate and
to downstream activate and recruit casein kinase 2 (Csnk2), rapsyn (Rapsn), and Dok-7 to
form the ACHR clusters. Motor neuron outgrowth and attachment to myofibers requires
the expression of MuSK and Agrin at the motor end plate [45]. Agrin acts to stabilize
the MuSK receptor to the extracellular matrix and the cytoskeleton, forming a focal point
for ACHR clustering [46]. However, Musk and Agrin genes did not significantly alter
in our samples (log2fc −0.627 and −0.390, respectively). On the other hand, DOK4 is a
peptide involved in neuronal outgrowth that was significantly declined (gene log2fc−0.64),
and is upstream of both Rap1 (a g-coupled protein) and the ERK pathway. Interestingly,
Trim9 declined 5.69-fold in our 28m TA (log2fc −2.51). Trim9 is a negative regulator of
synaptic vesicle transmission that acts as a ubiquitin ligase to regulate the SNARE complex
formation, and is important for axon guidance [47,48]. These findings of our current study
suggest that if the gene expression changes are truly linked to protein expression alter-
ations and resulting mechanisms, then reinnervation may be failing due to failures in axon
guidance and outgrowth, per se, not from failure to attach to the motor endplate. Note that
the top gene ontology enrichments from GOrilla include G protein-coupled acetylcholine
receptor activity (enrichment 26.29), axon guidance receptor activity (enrichment 14.32), and
acetylcholine receptor activity (enrichment 13.63), all of which hint at alterations in gene
expression related to the motor endplate (see Table S5). Obviously, more work is needed to
confirm this hypothesis.

A recent RNAseq study of the TA muscle using a mouse stroke model in 5 m mice
found altered transcriptomes compared to age-matched non-stroke mice including: an
upregulation in stroke mice >log2fc1 of Gadd45a, Shroom3, Chrna2, and MuSK, along with
downregulation (log2fc < −1) of P2ry1 [49]. Corresponding to the Ferrandi and colleagues
findings, our study found some similar changes in 6m to 28m TA: Chrna9 (log2fc1.05,
padj = 6.01 × 10−6, R = 0.44 with CFAB); Gadd45a (log2fc 2.11, padj = 4.2 × 10−11, R = 0.57
with CFAB); and Gadd45g (log2fc 1.18, padj = 1.1 × 10−5, R = 0.73 with CFAB); Shroom3 was
not significantly different, but Shroom4 decreased (−1.94 log2fc, padj = 0.016); as did P2ry1
(log2fc −1.08, padj = 0.048, R = 0.765 with CFAB). This suggests that some age-associated
denervation related transcriptomic changes in normal aging may resemble stroke-induced
effects found in younger mice.

5.6. DEGs Analysis

Barns and colleagues used gene arrays on quadriceps and gastrocnemius muscles from
n = 4 female mice at various age groups (3m, 15, 24, 29m) to compare 24m to 29m mice and
found changes in neuromuscular junction genes, similar to our own observations in male
TA [50]. In that study, the baseline group were juvenile 3-month (long bone growth does
not cease until around 4.5m) female mice, which makes direct comparison to our study
complicated, particularly since the groups compared were 3m–15m, 15m–24m, 15m–29m,
and 24m–29m [50]. Schaum and colleagues in 2020 published a comprehensive NGS
RNAseq study of the TA muscle across the lifespan [15]. This study had both female (n = 2)
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and male mice (n = 4), but did not examine any functional data, though they did compare
gene expression to protein expression.

Shavlakadze and colleagues [16] completed a robust multiple tissue rat gene expres-
sion map (including gastrocnemius muscle) in 7 different age groups and noted 13 genes
that changed with age in common in 4 tissues examined, including Psmb8 (in our study:
log2fc 1.47, R = 0.56 with CFAB), Tspo (our study: log2fc1.6, R = 0.73 with CFAB), Irf7 (in our
study: log2fc 1.18, R = 0.56 with CFAB), Ms4aga (aka: Cda01, in our study: Cda log2fc 1.04,
R = 0.44 with CFAB), Isg15 (in our study: log2fc 1.50, R = 0.57 with CFAB). The Shavlakadze
study promotes the hypothesis that there are common age-related gene expression changes
across multiple tissues and potentially species. Therefore, a similar experiment using
mice would be instructive to note any differences between rat and mouse age-related gene
expression common over multiple tissues [16].

With the ubiquitous use of the mouse model in aging, mechanistic, and pharmaceutical
research, understanding both parallels and differences in age-associated gene expression
with humans as related to functional decline is a necessary future undertaking. A recent
comparative study of gene array data of skeletal muscle in mice and humans by Zhuang and
colleagues revealed 249 homologous overlapping age-related genes, but noted 6333 differ-
entially expressed skeletal muscle genes between under 30-year-olds and over 65-year-old
humans—very similar to our finding of 6587 in 6m–28m; however, the ages of the mice
were not given in this study, so comparisons to our work are limited [17]. It is important
to note that the age of the older mice plays a key role in differential gene expression, as
we have uncovered in our study. More research is needed to establish age-associated gene
expression changes related to functional decline in humans, and which of these overlap
with mice.

5.7. Temporal Signatures in Gene Expression

According to our findings, mice experience a rapid transcriptomic change between
24m and 28m, suggesting that mice at the older age are experiencing far more age-related
changes than relatively younger mice—in effect, an acceleration of age-related changes
occurred in the 28m compared to the 24m. Kang and colleagues demonstrated a similar
gene expression pattern to our observation, finding a greater change in 28m versus 24m
mouse muscle [51]. They observed gene expression changes to be accelerating as mice age
from 24m to 28m. They proposed that distinct aging profiles exist at early/gradual aging
(24m) and late/accelerated aging (28m). However, their study used a juvenile reference
group (aged 2m), making direct data comparisons to our current study difficult, because
their control group were adolescent mice still experiencing long bone growth [51].

Recent work by Schaum and colleagues also underscores the importance of temporal
relationships in RNAseq data [15]. Schaum and colleagues performed an elegant and
comprehensive analysis of multiple tissues (17 organs) over multiple timepoints (10 ages),
albeit with only n = 4 per group. They note that there are distinct patterns of aging
conserved between organ systems that differ in their age of onset and degree of change.
Of particular interest to us was their inclusion of tibialis anterior muscle as one of the
representative organs. They show a vast increase in differential expression between 27m
compared to 24m; similar to our findings of increased changes between 6m–24m and
6m–28m. However, direct comparisons of datasets between the studies are complicated by
their use of 3m controls for differential gene expression and use of different cut-off criteria
(see https://twc-stanford.shinyapps.io/maca/, accessed on 3 March 2022).

Interestingly, the PCA analysis of the DEGs (Figure 4) suggests distinct groupings
of the older mice. For example, one group in the 24m completely overlaps with the 6m.
In the 28m, there is one grouping closer to 6m and one further away. Speculatively, we
suggest that those with PCA signatures closer to that of the younger mice may reflect
mice undergoing so-called successful aging. However, more work is needed to determine
these relationships, which may indicate different levels of gene expression based upon
differential functional aging.

https://twc-stanford.shinyapps.io/maca/
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5.8. Bedrest, Disuse Atrophy, and Exercise

As reported by Mahmassani et al. 2019, after a 5-day period of bedrest, 61 genes were
differentially expressed (pre-post) in the vastus lateralis of younger adults compared to
older, with 51 of these genes changing only in young adults to levels equivalent to older
adults at baseline, suggesting in some ways that older muscle resembles adult muscle
suffering from disuse atrophy [52]. In our study we determined that of the top 10 genes
they touted as being differentially upregulated in younger mice during bedrest, in our
oldest mice Fasn, Pfkfb3, and Rps4x were significantly expressed differentially from adult
mice (with log2fc of −0.679, −1.09, and 0.93, respectively). However, in their top 10 down-
regulated genes in adult humans after bedrest, only Nov (−0.545 log2fc, trend padj = 0.067),
Apln (0.81 log2fc, trend padj = 0.067), and Myl12a (1.39 log2fc, padj = 4 × 10−10) were al-
tered in our 28-month-old group compared to the 6-month. Fisher and colleagues used
tetrodotoxin administration as a model of reversible denervation-induced disuse atrophy,
and demonstrated that there was a time course dependent relationship for various gene
expression changes [53]. With four of their top 7 differentially expressed atrophy-related
genes also showing changes in our 28-month-old mice, if protein expression changes are
similar to the gene expression changes, our data suggests that older muscle dysfunction
may partly be due to chronic disuse patterns [53]. This presents an intriguing concept
for future deliberation to determine which elements of acute detraining/disuse could be
contributing to long-term disuse atrophy in older adults and which of these might be
ablated by minimal increases in activity rates or other interventions to preserve function.

Exercise in its many forms has been shown to improve or preserve physical function
during aging [3,10,18,54–56]. In recent work, Pillon and colleagues sought to catalogue
gene expression changes resulting from exercise in human skeletal muscle using meta-
analysis techniques on 66 previously published datasets [57]. Interestingly, they found
25 genes that changed commonly in both aerobic and resistance training. However, they
included all genes with a false discovery rate (FDR) <0.1%, and had no cut-off standard
for log2fc—making comparisons to our more strictly controlled dataset challenging. That
being said, a number of the genes (or similar homologues in mice) identified as responsive
to exercise and inactivity (Table 3 in Pillon et al.) were also found in our study to both be
age-related and strongly associated with function (CFAB), including the following: Cyr61
(log2fc 1.2, R = −0.83), Gadd45g (log2fc 1.2, R = −0.78), Ankrnd1 (log2fc 2.7, R = −0.75),
Dyrk2 (log2fc −1.3, R = 0.73), Itga1 (log2fc −1.2, R = 0.84) but not ITGA6 (Pillon et al.), Atf7
(log2fc −1.6, R = 0.73) but not ATF3 (Pillon et al.), Lgals3 (log2fc 2.0, R = 0.78) but not
LGALSL (Pillon et al.,), Nr1d1 (log2fc −1.0, R = 0.83) and Nr5a2 (log2fc −1.728, R = 0.77) but
not NR4A3 (Pillon et al.), FHL5 (log2fc −1.4, R = 0.72) but not FHL3 (Pillon et al.), two of
the COL family (Col4a4 and Col6a6) but not COL3A1, COL4A4 or COL1A2 (Pillon et al.), and
Myh10 but not MYH1 or MYH9 (Pillon et al.). Using the authors’ elegant meta-analysis tool
(found at https://metamex.eu/, accessed on 12 May 2023), we examined our top 71 DEGs
(|R| > 0.80) with CFAB in human studies and found that, of those annotated by the authors,
Plekhg1, Kdr, Pde4a, Pcdh12, Lynx1, Tspan18, Akap12, Col4a3, Psd3, Atp2b4, Heatr5a,
Hspg2, Col4a2, Lama3, Slc25a36, Col4a1, Amy1, and Depdc7 were altered in expression
by exercise in humans, while Cebpb was affected by inactivity but did not change with
exercise. This data highlights the translatable importance of our gene set, while suggesting
that exercise might alter the expression of many of these genes to potentially result in
improved physical function.

5.9. Caveats

First of all, it is well-established that alterations in gene expression are often not
equivalent to alterations in protein expression; in effect, the transcriptome 6= proteome.
We also fully acknowledge that correlation 6= causation, and any potential links between
DEGs and function need further mechanistic (i.e., gain/loss of function) determination
to be validated. Thus, our upcoming work will investigate the protein abundance of

https://metamex.eu/
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physiologically relevant gene expression changes. Furthermore, we will begin to determine
cellular signaling mechanisms connecting the numerous potential sequences of events.

Secondly, this study included male mice at three age-groups, and a single muscle, so
any sexual dimorphisms or muscle-specific differences were not explored. We assumed that
the TA muscle was representative of any of the primarily fast twitch ambulatory muscles
throughout the mouse and, thus, that age-related gene expression changes would be similar
in those other muscles. We used the entire TA to isolate total RNA to ensure all tissues of
the muscle organ were represented. Future work examining single cell RNAseq and spatial
RNAseq is a natural follow-up to the current study.

6. Conclusions

Despite the limitations noted above, we believe this dataset demonstrates novel poten-
tial links between age-associated changes in skeletal gene expression and overall physical
function status. Importantly, we identified the differential gene expression of components
and biological processes connected to the motor end plate as being both highly altered with
aging and having strong associations with physical function. Additionally, we provided
evidence that age-related changes and association with physical function of DEGs was
accelerated in mice between 24m and 28m, hinting at a need for more investigation of mice
at older ages. While more work is needed to determine the physiological relevance of the
many changes uncovered, and to determine proteomic alterations and sexual dimorphisms,
the multiple datasets presented herein may provide leads to help begin to characterize cel-
lular mechanisms responsible for how age induces declines in muscle health and physical
function.
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