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Abstract: The escalating demand for high-quality video streaming poses a major challenge for
communication networks today. Catering to these bandwidth-hungry video streaming services
places a huge burden on the limited spectral resources of communication networks, limiting the
resources available for other services as well. Large volumes of video traffic can lead to severe
network congestion, particularly during live streaming events, which require sending the same
content to a large number of users simultaneously. For such applications, multicast transmission
can effectively combat network congestion while meeting the demands of all the users by serving
groups of users requesting the same content over shared spectral resources. Streaming services can
further benefit from multi-connectivity, which allows users to receive content from multiple base
stations simultaneously. Integrating multi-connectivity within multicast streaming can improve the
system resource utilization while also providing seamless connectivity to multicast users. Toward
this end, this work studied the impact of using multi-connectivity (MC) alongside wireless multicast
for meeting the resource requirements of video streaming. Our findings show that MC substantially
enhances the performance of multicast streaming, particularly benefiting cell-edge users who often
experience poor channel conditions. We especially considered the number of users that can be
simultaneously served by multi-connected multicast systems. It was observed that about 60% of
the users that are left unserved under single-connectivity multicast are successfully served using
the same resources by employing multi-connectivity in multicast transmissions. We prove that the
optimal resource allocation problem for MC multicast is NP-hard. As a solution, we present a greedy
approximation algorithm with an approximation factor of (1− 1/e). Furthermore, we establish
that no other polynomial-time algorithm can offer a superior approximation. To generate realistic
video traffic patterns in our simulations, we made use of traces from actual videos. Our results
clearly demonstrate that multi-connectivity leads to significant enhancements in the performance of
multicast streaming.

Keywords: multicast; multi-connectivity; video streaming; MBMS; 5G

1. Introduction

The rapid growth of video streaming applications has been the primary driver of
innovation in cellular networks. As of 2023, video traffic constituted over 80% of all
mobile data traffic [1]. While revolutionizing the way media are consumed online, video
streaming has also created several challenges for telecommunication networks. Video
streams are resource-intensive services that require a significant amount of bandwidth. As
a result, the exponential increase in demands for video streaming can quickly overload
the network infrastructure leading to network congestion, which leads to slower speeds,
network outages, and degraded quality of service.
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A large portion of video traffic is made up of live streaming from social media and
streaming platforms with millions of users watching the same content simultaneously.
These live streams pose additional challenges for the network due to their high data rate,
low latency, and overall quality of service requirements [2]. Using traditional one-to-one or
unicast communications, such applications involves transmitting the same content sepa-
rately to each user, thus consuming a large portion of the available bandwidth. Multicast
transmissions are an efficient means of catering to such services by serving users that
need the same content simultaneously [3,4]. Multi-connectivity allows users to receive
content from multiple base stations simultaneously. Therefore, when a video is being
streamed by several base stations, allowing multi-connectivity within multicast transmis-
sions can further improve the performance of multicast streaming services. We use the term
Multi-Connectivity (MC) multicasting to refer to such a system where multi-connectivity is
used alongside multicast transmissions. In this MC multicast system, users are capable
of multi-connectivity and can, therefore, receive multicast content from multiple base
stations simultaneously.

This paper proposes the use of MC multicasting for catering to the simultaneous
demands of bandwidth-hungry video streams. Integrating MC with multicast transmis-
sion not only boosts cell capacity, but also diminishes the reliance of good multicasting
performances from the weakest users in the system. While MC has received considerable
attention for its impact on throughput and handover improvements [5–8], its unexplored
integration with multicast transmissions presents a promising avenue for further research.

MC multicasting allows users to potentially connect to and receive content from
multiple base stations and over various Radio Access Technologies (RATs) simultaneously.
It can address the demanding requirements of 5G, including high data rates, ultra-reliable
low latency, and high mobility [9]. By enabling users to receive content from multiple base
stations concurrently, it serves a larger user base and enhances the performance for cell-
edge users. The procedures for establishing multi-connectivity within the Third Generation
Partnership Project (3GPP) multicast architecture and the associated control-signaling
requirements were defined in [10].

1.1. Contributions

This work studied the integration of multi-connectivity in multicast transmissions for
meeting the bandwidth demands of video streaming services. We address the problem
of resource allocation in a multi-connected multicast system with the aim of maximizing
the number of users that can be simultaneously served using multicast transmissions.
The analyses, discussions, and simulations in this work provide conclusive evidence that
multi-connectivity significantly improves the performance of multicast streaming systems.
The main contributions of this paper are summarized as follows:

• We propose a multi-connected multicast system specifically designed for video stream-
ing. This system utilizes the existing 3GPP Multimedia Broadcast Multicast Services
(MBMS) framework, enabling multicast users to receive streaming content from multi-
ple base stations seamlessly and with minimal signaling overhead. The resulting MC
multicast system serves as a low-overhead alternative to the MBMS Single Frequency
Network (MBSFN) operations within 3GPP multicast systems.

• We formulate the resource allocation problem in the MC multicast system with the aim
of maximizing the number of multicast users served simultaneously. Since the MC
multicast system is tailored for handling concurrent demands for bandwidth-intensive
video streams with limited resources, we employed the metric of the number of users
simultaneously served to measure its performance.

• We prove that the resource allocation problem in MC multicast systems is NP-hard,
which means that there are no polynomial-time algorithms that can find the optimal
solution. Therefore, we propose a centralized greedy approximation algorithm with
an approximation factor of (1− 1/e). We establish that this algorithm offers the most
accurate approximation achievable for the problem.
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• The centralized algorithm necessitates a central server to dictate resource allocation
across all base stations within a region. Such a coordination may become imprac-
tical with an increasing number of base stations. Therefore, we also propose a dis-
tributed resource allocation algorithm for MC multicasting, allowing base stations to
autonomously make resource allocation decisions.

• Extensive simulations clearly demonstrate the performance enhancements attained by
incorporating MC in wireless multicasting, particularly for video streaming applica-
tions. We employed traces from actual video streams sourced from [11,12] to generate
realistic video traffic patterns in our simulations.

In the following section, we provide an overview of the current research across the
various facets of multi-connectivity and multicasting in cellular mobile networks.

1.2. Related Literature

Multicasting has been recognized as an effective means of catering to bandwidth-
hungry video transmissions [3] in cellular mobile networks. Resource allocation algorithms
designed for multicast streaming have been shown to serve significantly more users while
minimizing the impact of multicast streaming on other services [4,13]. Further improve-
ments in the performance of multicast video streaming have been achieved by exploiting
the inherent loss-tolerant nature of video streams [14].

The use of MC has been studied for mitigating radio link failures in ultra-dense
intra-frequency 5G network deployments [15], demonstrating substantial reductions in
failures and throughput improvements for cell-edge users. Additionally, proportional
fair allocation policies have been designed [16], tailored for multi-connected ultra-dense
networks, prioritizing users based on load balancing and signal characteristics. MC has also
been shown to enhance network availability for ultra-reliable low latency communication
(URLLC) applications in 5G [17], where network availability is crucial. MC also optimizes
the system resource utilization in URLLC through load-aware cell selection [18].

Numerous architectures have been proposed for implementing MC in 5G [19]. The
comparative evaluations in [20] assessed throughput performance in distributed and cloud-
based heterogeneous network architectures, favoring cloud-based networks for superior
throughput. In [21], a 5G architecture integrating multiple RATs was proposed, facilitating
seamless inter-RAT MC with LTE and Wireless Local Area Networks (WLANs). A control-
and-user-plane split architecture for MC in 5G NR was introduced in [22], bypassing
macro-cells for the user plane transmissions of multi-connected users. It wasn shown
in [23] that MC exhibits significant reductions in transmit power compared to single-
connected systems, resulting in improved outage probability and spectral efficiency. MC
has also been examined as a means of optimizing power consumption, particularly for 5G
heterogeneous cloud radio access networks [24]. Furthermore, beyond cellular networks,
MC has also found applications in vehicle-to-anything (V2X) services, playing a pivotal
role in meeting Quality of Service (QoS) requirements [25].

MC, combined with guard bands, has also been shown to provide substantial improve-
ment in millimeter-wave (mmWave) session continuity [26]. The methodologies in [27]
were used to evaluate MC’s impact on ultra-dense urban mmWave networks, showcasing
enhancements in denial-of-service and session drop probabilities. The trade-offs between
system complexity and performance enhancement in multi-connected mmWave systems
were explored in [28]. In [29], a network throughput-optimizing algorithm approaching
the global optimum solution was proposed for addressing the link scheduling problem in
multi-connected mmWave networks. The uplink MC frameworks presented in [30] effi-
ciently monitor channel dynamics and link directions in mmWave transmissions, leading
to efficient scheduling and session management. By mitigating radio link failures due to
mobility, MC also ensures seamless connectivity for mobile users [15]. The combination
of MC and network coding was studied in [31] to enable the transmission of high-quality
video streaming services over mmWave networks.
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Despite the wide-ranging applications of MC, its use in multicast streaming has not
yet been explored in the existing literature. This work is the first to leverage MC for this
crucial application and establish improvements in system performance that are achieved
using MC multicasting for video streaming. We also address the problem of resource
allocation in the proposed system. The rest of this paper is organized as follows. An
overview of the existing 3GPP standards for multicasting and MC is provided in Section 2.
This is followed by a discussion on how these two techniques can be used together within
the current and future generations of wireless mobile networks in Section 2.1. The MC
multicast system model and the associated resource allocation problem are discussed in
Section 3. In Section 4, we prove the NP-hardness of the resource allocation problem and
then provide an approximation algorithm for it in Section 5. We then examine the use of
distributed resource allocation for MC multicasting in Section 6. Finally, we present the
simulation results in Section 7 and conclude this paper in Section 8.

1.3. Notation

The set of natural numbers is denoted by N. The cardinality of a set A is denoted by
|A|. The set of integers up to n is denoted as [n] = {1, 2, . . . , n}. An overview of the most
commonly used variable notations can be found in Table 1.

Table 1. Notation of the most commonly used variables.

Symbol Explanation

M Number of UEs in the system
C Number of cells/base stations in the system
N Number of PRBs available for allocation in each cell
R Rate of transmission of the multicast content
rc

jk[t] Maximum rate that UE k can decode on PRB j of cell c at time t
K⋆ MC multicast resource allocation problem

2. Multi-Connectivity in MBMS

Multicast services were first standardized as part of release 9 [32] of the 3GPP standards
as MBMS [33] and later as evolved-MBMS (eMBMS) [34], which is also a part of the Fifth
Generation (5G) New Radio (NR) [35] standards. Within MBMS, two modes of multicast
operation are defined, namely, Single-Cell Point-To-Multipoint (SC-PTM) and MBSFN. SC-
PTM, which refers to the multicast mode where content is multicast to users within a single
cell. In the MBSFNs mode of operation, all the base stations within a designated MBSFN
area [36] transmit the same content in strict synchronization [33]. MBSFN transmissions
necessitate precise synchronization between all base stations in the MBSFN area and
extended cyclic prefixes. This is crucial to enhancing service quality for cell-edge receivers,
as it enables the combination of signals from various base stations, resulting in improved
user experience. However, the extended cyclic prefix reduces system throughput, and
the requirement for tight synchronization results in significant control overheads. MC
multicast overcomes these limitations with a considerably simpler framework than MBSFN
and lower transmission overheads. We discuss this in greater detail in Section 2.2.

The supporting architecture for MBMS with 5G NR is shown in Figure 1. The net-
work elements that support MBMS services are the Broadcast Multicast Service Centre
(BM-SC), the MBMS GateWay (MBMS-GW), and the Multicell/Multicast Coordination
Entity (MCE) [33]. The BM-SC serves as an interface between the core network and the
multicast/broadcast content providers. It is responsible for transporting MBMS data into
the core network, managing group memberships and subscriptions, and charging for
MBMS sessions [32]. The MCE is responsible for allocating radio resources to the base
stations for MBSFN operations. The MBMS-GW uses IP multicasting to forward the MBMS
session data to the base stations. The base stations can then transmit the data to the User
Equipments (UEs) via wireless multicast/broadcast.
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Figure 1. MBMS architecture.

In the following section, we discuss the features of MBMS that enable the use of the
proposed MC multicast operations.

2.1. Enabling Multi-Connectivity in Multicast Transmissions

The MBMS user plane protocol architecture defines a synchronization (SYNC) protocol
layer on the transport network layer for content synchronization [37]. This layer carries the
information needed for identifying transmission times and detecting packet loss. The SYNC
protocol is terminated in the BM-SC and the base stations. As a result, the MBMS content
sent to the base stations associated with the same BM-SC are synchronized. Consequently,
UEs can receive and combine multiple copies of the same content received from these base
stations without the need to exchange any additional control signaling. The proposed multi-
connectivity multicast scheme leverages this inherent synchronization in MBMS systems,
enabling UEs to obtain multicast content from multiple sources without requiring additional
synchronization. Furthermore, since MBMS operates as an idle-mode procedure, UEs can
use MC multicasting without establishing a Radio Resource Control (RRC) connection to a
base station. The signaling procedures for enabling MC in MBMS were proposed in [10].

For enabling multi-connectivity in MBMS, we redefine the dynamic between the pri-
mary and secondary base stations of a multi-connected UE compared to what is traditionally
defined for unicast transmissions [38]. Specifically, we propose the following:

• Connectivity: Firstly, depending on its capability, a UE can connect to any number of
base stations and receive multicast content from all of them. A UE can also remain in
the RRC idle mode if it is not connected to any base station and still receive content
from any number of base stations [10].

• Primary and Secondary Base Stations: For a UE using MC multicasting in RRC idle mode,
the primary base station refers to the base station that it is camped on. For a UE in
RRC connected mode, the primary base station refers to the one it is connected to.
All other base stations from which the UEs may receive content are called secondary
base stations. Furthermore, the primary and secondary base stations of a UE do not
operate in a traditional master–slave configuration in MC multicasting. Secondary
base stations are not dictated by the primary base station in their interaction with the
UE [10]. A multicast UE can receive relevant control information and multicast data
from multiple base stations independently. Thus, there is no real distinction between
primary and secondary base stations for a UE. Each base station that serves the UE under
MC multicasting is equivalent from the perspective of the MC multicast transmissions.
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2.2. MC Multicast versus MBSFN

5G NR uses MBSFN to enhance system efficiency by simultaneously transmitting
identical content over the same radio resources within neighboring cells grouped in an
MBSFN area. By leveraging the use of multi-connectivity, MC multicasting can provide
the same advantages as MBSFN transmissions while employing a significantly simpler
framework with reduced transmission overheads. Similar to MBSFNs, a UE can receive
multicast content from multiple base stations, leading to an enhanced Signal-to-Noise Ratio
(SNR), particularly for cell-edge users. However, unlike MBSFN operations, base stations
under MC multicasting are not obligated to use the same Physical Resource Blocks (PRBs)
for streaming multicast content. In MC multicasting, identical MBMS services are streamed
through multiple base stations, and each base station independently allocates PRBs to the
multicast streams. Consequently, each base station can optimize resource allocation for
various services within its cell, resulting in significant frequency diversity that improves
the probability of reliably receiving MBMS content. A multicast UE has the flexibility to
decode any of the multiple copies of the content it receives. As demonstrated in Section 7,
this diversity leads to substantial performance improvements in terms of the number of
UEs served and the number of packets successfully delivered.

In the following section, we discuss the resource allocation problem in the MC multi-
cast system.

3. Resource Allocation in MC Multicast

Consider a system of C cells, each with one base station serving it. There are M multi-
connected multicast UEs in the system that can receive multicast content from any subset
of the C base stations. The set [C] = {1, 2, . . . , C} denotes the set of all cells/base stations,
and the set of all users is denoted by [M] = {1, 2, . . . , M}. Resource allocation decisions
are made at every time slot t. In each time slot, there are N PRBs available for allocation
in each cell. The set of all PRBs is denoted by [N] = {1, 2, . . . , N}. We assume that there
is multicast content available in all the cells, which is being streamed by all the UEs. The
multicast content is streamed at a rate of R bits per second. The UEs can potentially receive
the multicast streaming content from any number of neighboring base stations in addition to
their respective primary base stations. The multicast stream is allocated to one PRB in each
cell, in each time slot. Resource allocation decisions are either made independently by each
base station or by a central entity such as the MCE that manages the base stations within
a region.

The channel states of UEs vary as a function of time t as well as the PRB j ∈ [N]. In the
PRB j of cell c at time t, UE k can decode a maximum rate of rc

jk[t] bits per second, which is a
function of the channel state of the UE. That is, the better the channel experienced by UE k, the
higher the rate rc

jk[t]. Since the multicast content is transmitted at a rate of R bits per second, a
UE may not successfully receive the multicast content from the base station that it is connected
to. For instance, consider that the PRB j is allocated to the multicast stream in cell c at time
t. UE k will be able to decode the content sent by c only if R ≤ rc

jk[t]. On the other hand, if
R > rc

jk[t], UE k will not be able to successfully decode the content sent from cell c. Thus, in
the absence of multi-connectivity, a UE can successfully receive data only if it can decode the
content from its primary cell, whereas a multi-connected UE successfully receives data if it can
decode the content from any one of the base stations that it receives content from.

Remark 1. Note that, even though we assume a constant bit rate R, video streaming traffic typically
uses a variable bit rate (VBR) encoding, which means that the amount of data to be transmitted for
the video varies over time. We employed a constant rate model for the sake of simplicity in defining
the resource allocation problem. However, our problem, as well as the proposed resource allocation
policies, can be easily adapted to the VBR model by considering the proposed setup as a snapshot
of a longer VBR video stream. More specifically, to adapt to the VBR model, the transmission rate
R can be made a function of time t (denoted by R(t)). Then, the system model discussed above
essentially represents a small enough block of time during which the rate R(t) is constant. Similarly,
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the resource allocation problem can be defined with the time dependent rate R(t). As we will see in
the following sections, the proposed policies make allocation decisions in every time slot. Thus, the
proposed policies can be used as is with the relevant rate R(t) in each time slot.

In the following, we define the resource allocation problem for this system.

Problem Definition

The resource allocation problem within the MC multicast system aims to maximize
the number of UEs served in each time slot. We chose the number of UEs served as the
optimization metric for this problem to capture the unique requirements of the MC multicast
problem. The primary objective of the MC multicast system is to ensure that the multicast
video stream is delivered to a large audience without causing network congestion. Note
that our system model construction ensures that only one resource is allocated to the
multicast stream in each time slot, which prevents overloading the system while serving
several video streams. Therefore, we used the number of users served to illustrate the
effectiveness of the resource allocation algorithms in meeting the video streaming demands
of users within the limited resources.

In the system under consideration, since a UE can receive the same content from
several base stations, its performance is impacted by the resource allocation decisions
across multiple cells. Therefore, the resource allocation needs to be optimized over all C
cells in the system. Throughout this study, we assumed that the users are static and do not
change positions for the entire duration of the multicast transmissions.

For the mathematical formulation of the resource allocation problem, we first define
the following sets. Assuming that every UE is trying to receive the multicast content
from the base station of cell c, let us use Ujc ⊆ [M] to denote the set of users that would
successfully receive the multicast content if PRB j is allocated to the multicast service in cell
c, i.e., for all c ∈ [C] and all j ∈ [N], the set Ujc is given by

Ujc = {k ∈ [M] : R ≤ rc
jk[t]}. (1)

The collection of all such sets corresponding to cell c is given by

Uc = {U1c, U2c, . . . , UNc}. (2)

Let U be the collection of sets U = {U1, . . . ,UC}. In using these definitions, the
resource allocation problem for the MC multicast system can now be stated as follows.

Definition 1 (Resource allocation problem K⋆). Given the universal set of all users [M] and
the collection of sets U = {U1, . . . ,UC}, determine U ′ ⊆ U such that |⋃Ujc∈U ′ Ujc| is maximized
subject to the following:

|U ′| = C, and (3)

|U ′ ∩ Uc| = 1, for all c ∈ [C]. (4)

Then, in each cell c ∈ [C], the PRB assigned to the multicast stream is given by j ∈ [N] such
that Ujc ∈ U ′.

The objective of the of the resource allocation problem K⋆ in Definition 1 is to maximize
the cardinality of the union of sets

⋃
Ujc∈U ′ Ujc, which is the set of users successfully served.

The solution U ′ of K⋆ is subject to the following constraints:

1. For all c ∈ [C], |U ′ ∩ Uc| = 1: This constraint ensures that there is precisely one set
Ujc in U ′ corresponding to each cell c ∈ [C]. That is, only one PRB is assigned to the
multicast stream in each cell, as required by the problem formulation.

2. |U ′| = C: This constraint ensures that there are precisely C of the Ujc sets in the
solution set U ′. Together with the constraint in Constraint 1, this guarantees that a



Network 2024, 4 182

set Ujc is chosen for every cell c, i.e., a PRB is allocated for multicast streaming in
every cell.

The resource allocation decisions are a function of (a) the channel states of UEs in each
of the N PRBs, (b) the number of UEs streaming the multicast content, and (c) the location
of the UEs with respect to each base station.

4. Computational Complexity

We show that the resource allocation problem K⋆ is NP-hard, and therefore, no polynomial-
time algorithms exist for solving it. We prove this through a reduction from the Maximum
Coverage Problem (MCP) [39], which is a known NP-hard problem defined as follows.

Definition 2 (Maximum Coverage Problem (MCP)). Consider a universal set S , a number
k ∈ N, and a collection of sets T = {T1, T2, . . . , Tm}, where for all j ∈ [m], Tj ⊆ S . The objective
of the MCP is to determine a sub-collection T ′ ⊆ T such that T ′ ∈ arg max|T ′ |≤k |

⋃
Tj∈T ′ Tj|.

That is, given a collection T of m subsets of a universal set S , the objective of the MCP
is to find the sub-collection of at most k subsets from T that cover the maximum number of
elements from the universal set S .

Theorem 1. The MC multicast resource allocation problem K⋆ is NP-hard.

Proof. The proof of the NP-hardness of K⋆ can be accomplished in the following steps:

1. First, we show that an instance of a known NP-hard problem (MCP in this case) can
be reduced to an instance of K⋆ in polynomial time. This means that we can design a
polynomial-time algorithm that takes the MCP as input and results in an instance of K⋆.

2. Next, we show that a solution of K⋆ can be mapped to a corresponding solution for
the MCP in polynomial time.

3. Finally, using the results from steps 1 and 2, we prove that no polynomial-time
algorithm exists for solving K⋆ because such an algorithm would also provide a
polynomial-time solution for the MCP, which is known to be NP-hard.

We begin by defining an algorithm to reduce an instance of MCP to an instance of K⋆

in polynomial time. An instance of MCP can be reduced to an instance of K⋆ as follows:

• Given an instance of the MCP in Definition 2 with the universal set S , the collection of
m sets T = {T1, T2, . . . , Tm} with Tj ⊆ S and some k ∈ N.

• Define a MC multicast system with the set of UEs [M] = S , number of cells C = k,
and the number of PRBs in each cell N = m, and for all c ∈ [C], the set Ujc = Tj.

• This defines a resource allocation problem of the form of K⋆ in Definition 1. This
reduction can be accomplished in constant time (O(C)).
The pseudo-code of the algorithm for accomplishing this reduction is given in Algorithm 1.

Algorithm 1: Pseudo-code for reducing the MCP to K⋆

Input: MCP with collection of sets T = {T1, T2, . . . , Tm} with Tj ⊆ S and a
number k ∈ N

Output: An instance of K⋆ with
1 [M]← S
2 C ← k
3 N ← m
4 for j← 1 to m do
5 for c← 1 to C do
6 Ujc ← Tj

7 end
8 end
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This yields a one-to-one correspondence between an instance of MCP and an instance
of K⋆, which completes the first step of the proof. We now proceed to show that a solution
of the resulting instance of K⋆ can be mapped to a solution of MCP in polynomial time.

Let us assume that there exists a polynomial-time algorithm for solving the instance
of K⋆ resulting from Algorithm 1 that provides a solution U ′. Then, the following hold true
by the definition of K⋆:

• |U ′| = k;
• For all c ∈ [k], |U ′ ∩ Uc| = 1;
• U ′ maximizes |⋃Ujc∈U ′ Ujc|.

This solution can be mapped to a solution of MCP as follows. Given the MCP in
Definition 2, construct the solution set T ′ = {T1, T2, . . . , Tm} such that if Ujc ∈ U ′, then
Tj ∈ T ′. Since |U ′| = k, it holds that |T ′| ≤ k. Therefore, by Definition 2, the constructed
set T ′ is a feasible solution of the MCP. The pseudo-code for this mapping is given in
Algorithm 2.

Algorithm 2: Pseudo-code for mapping a solution of K⋆ to a solution of the MCP

Input: Solution of K⋆ U ′ ⊆ U such that |U ′| = C and |U ′ ∩ Uc| = 1, ∀ c
Output: Solution of MCP T ′

1 for j← 1 to m do
2 if Ujc ∈ U ′ for some c then
3 Tj ∈ T ′
4 end
5 end

To complete the proof, what is left to prove is that the constructed solution T ′ is indeed
the optimal solution of the MCP. We prove this by contradiction as follows.

Let us assume that T ′ is not the optimal solution of the MCP. This implies that there
exists a set T ′′ ⊆ T such that |T ′′| ≤ k and∣∣∣∣∣∣ ⋃

Tj∈T ′′
Tj

∣∣∣∣∣∣ >
∣∣∣∣∣∣ ⋃
Tj∈T ′

Tj

∣∣∣∣∣∣. (5)

If (5) is true, then we can construct another solution to K⋆, U ′′ using T ′′ as follows. Let
T ′′ = {Tj1 , . . . , Tjℓ}with ℓ ≤ k and let j1 < j2 < . . . < jℓ. We construct the set U ′′ as follows

U ′′ = {Uj11, Uj22, . . . , Ujℓℓ, U1(ℓ+1), . . . , U1C}. (6)

Then, by Definition 1, the following hold true:

• |U ′′| = C;
• For all c ∈ [C], |U ′′ ∩ Uc| = 1;
• |⋃Ujc∈U ′′ Ujc| > |

⋃
Ujc∈U ′ Ujc|,

This contradicts our assumption that U ′ is the optimal solution of K⋆. This implies
that there does not exist any set T ′′ such that |T ′′| ≤ k and |⋃Tj∈T ′′ Tj| > |

⋃
Tj∈T ′ Tj|.

Therefore, T ′ is indeed the optimal solution of the MCP.
Algorithm 2 maps a solution of K⋆ to a solution of the MCP in constant time (O(C)

assignments). Thus, a polynomial-time solution for K⋆ also provides a polynomial-time
solution for the MCP. This is not possible unless P = NP. This implies that no polynomial-
time algorithm exists for solving K⋆, and therefore, K⋆ is an NP-hard problem.

Since the MC multicast resource allocation problem is NP-hard, we cannot construct a
polynomial-time algorithm to determine its optimal solution. Therefore, in the following
section, we construct approximation algorithms that provide some performance guarantees.
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5. Centralized Greedy Approximation Algorithm

We propose a greedy approximation algorithm for solving the resource allocation
problem K⋆. Centralized greedy approximation (CGA) works iteratively by maximizing
the number of additional users served in each iteration. In the first iteration, the CGA
chooses the set Ujc of the form in (1) from U that has the largest number of elements. In the
subsequent steps, it picks a Ujc that serves the maximum number of yet unserved users. In
each step, the set chosen is from a different sub-collection Uc, i.e., c in the subscript of the
chosen sets is different for each set picked by the algorithm. The collection of sets chosen
after C iterations UG is the output of the algorithm.

The steps involved in the decision making of the CGA policy are explained below. To
begin, we have an empty solution set UG.

1. In the first step of CGA, the algorithm finds the largest set Uj⋆c⋆ ∈ U , i.e., (j⋆, c⋆) ∈
arg maxj∈[N],c∈[C]{Ujc}.

2. The solution set UG is updated to UG
⋃{Uj⋆c⋆}. This implies that PRB j⋆ is allocated

to the multicast stream in cell c⋆.
3. Next, for all j ∈ [N], the sets Ujc⋆ are removed from the set U . This step ensures that

the algorithm finds a feasible solution that satisfies the constraint (4) in Definition 1.
4. In the next step, CGA picks the set Uj⋆c⋆ ∈ U that contains the maximum number of

UEs that were not present in any set Ujc picked in the previous iterations and assigns
PRB j⋆ to the multicast stream in cell c⋆. Following this, steps 2, 3, and 4 are repeated
(C− 1) times to determine the solution.

At the end of C iterations of CGA, the output set UG contains exactly C sets of the
form Ujc. The PRB assigned to the multicast stream in cell c is given by j ∈ [N] such that
Ujc ∈ UG.

The pseudo-code for this algorithm is given in Algorithm 3.

Algorithm 3: Centralized Greedy Approximation Algorithm for K⋆

Input: Universe [M], U = {U1, . . . ,UC}, C
1 Initialize: UG = ϕ
2 for n = 1 : C do
3 Pick Uj⋆c⋆ ∈ U that covers the maximum number of elements from

[M] \⋃Ujc∈UG
Ujc

4 UG ← UG
⋃{Uj⋆c⋆}

5 U ← U \ Uc⋆

6 end

In the following theorem, we prove that the solution to K⋆ given by CGA has an approx-
imation factor of

(
1− 1

e

)
. This means that the solution provided by this approximation algorithm

serves at least
(

1− 1
e

)
of the number of users that would be served by the optimal algorithm.

To state this result, we first define the following notation. Let OPT denote the optimal
solution to the resource allocation problem K⋆, i.e., the optimal algorithm would serve
OPT UEs in the system. Let mn denote the number of UEs served up to the nth iteration by
the CGA algorithm. The gap between the optimal solution and the intermediate solution of
the CGA algorithm after the nth iteration is given by

bn = OPT −mn. (7)

Therefore, m0 = 0, b0 = OPT, and the total number of UEs served by the CGA algorithm
at the end of C iterations is given by mC. Using these notations, the following theorem
presents the approximation factor for the CGA algorithm.
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Theorem 2. The CGA algorithm (Algorithm 3) is a
(

1− 1
e

)
approximation for the resource

allocation problem K⋆. That is,

mC ≥
(

1− 1
e

)
OPT. (8)

In fact, no other algorithm can achieve a better approximation unless P = NP.

To prove Theorem 2, we first prove the following two results. First, in Lemma 1, we
determine the lower bound on the incremental improvements in the solution achieved in the
intermediate steps of the CGA algorithm. This result will quantify the rate at which the CGA
algorithm approaches the optimal solution. Then, in Lemma 2, we provide an upper bound
on bn that quantifies the gap between the optimal solution OPT and the intermediate solution
of the CGA algorithm at the nth iteration, mn. Finally, using these two results, we can prove
that the solution of the CGA algorithm is at least within

(
1− 1

e

)
of the optimal solution.

Lemma 1. Under the CGA algorithm, the number of additional UEs served from iteration n to
n + 1 is lower bounded by bn

C . That is, for all n ≥ 0, it holds that

mn+1 −mn ≥
bn

C
, (9)

where C is the total number of cells in the system, and bn is in (7).

Proof. Let UOPT = {U⋆
1 , . . . , U⋆

C} be the optimal solution of the resource allocation problem
K⋆, where for all c ∈ [C], the set U⋆

c is the set of UEs served by the base station of cell c. Let Mn
denote the set of users served at the end of the nth iteration of CGA, and MC

n = [M] \ {Mn}
is the set of users not yet covered at the end of the nth iteration. Then, it holds that

C

∑
c=1

∣∣∣U⋆
c
⋂

MC
n

∣∣∣ ≥ ∣∣∣∣∣ C⋃
c=1

(
U⋆

c
⋂

MC
n

)∣∣∣∣∣ (10)

≥ OPT −mn = bn. (11)

Due to multi-connectivity, the sets U⋆
1 , . . . , U⋆

C are not disjoint, which implies the

inequality in (10). The quantity
∣∣∣⋃C

c=1
(
U⋆

c
⋂

MC
n
)∣∣∣ on the right hand side of (10) gives the

number of unserved UEs after n iterations that would be served by the optimal solution
UOPT . To arrive at the inequality in (11), note that the UEs served by the CGA algorithm
may not be the same UEs that the optimal algorithm serves. Therefore,

∣∣∣⋃C
c=1

(
U⋆

c
⋂

MC
n
)∣∣∣

is at least equal to OPT −mn.
From (10) and (11), it follows that

max
c∈[C]

∣∣∣U⋆
c
⋂

MC
n

∣∣∣ ≥ (OPT −mn)

C
(12)

=
bn

C
. (13)

Since CGA picks the set that serves the maximum possible number of yet unserved
users in each iteration, we have

mn+1 −mn ≥ max
c∈[C]

∣∣∣U⋆
c
⋂

MC
n

∣∣∣. (14)

From (13) and (14), it follows that

mn+1 −mn ≥
bn

C
, (15)
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which completes the proof.

Lemma 2. The difference between the number of UEs served in the optimal solution and the number
of users served by the at the end of n+ 1 iterations of the CGA algorithm is upper bounded as follows:

bn+1 = OPT −mn+1 ≤
(

1− 1
C

)n+1
OPT, (16)

where mn+1 denotes the total number of UEs served by the CGA algorithm up to and including the
(n + 1)th iteration.

Proof. We prove this result by induction. For n = 0, if

b1 = OPT −m1 ≤
(

1− 1
C

)
OPT, (17)

it implies that

m1 ≥
OPT

C
=

b0

C
, (18)

which is true due to Lemma 1. Thus, the result holds for n = 0.
Now, we assume that

bn ≤
(

1− 1
C

)n
OPT, (19)

and prove the corresponding inequality for bn+1.
From the definition of bn, it follows that

bn+1 = OPT −mn+1 (20)

= (bn −mn)−mn+1 (21)

= bn − (mn+1 −mn), (22)

≤ bn −
bn

C
= bn

(
1− 1

C

)
, (23)

≤
(

1− 1
C

)n+1
OPT, (24)

where the inequality in (23) follows due to Lemma 1, and (24) follows from (23) due
to (19). Therefore, by mathematical induction, the result holds for all n. This completes
the proof.

Using these results, we can now prove Theorem 2 as follows.

Proof. From Lemma 2, it follows that

bC = OPT −mC ≤
(

1− 1
C

)C
OPT. (25)

In the limit as C → ∞, from (25), it follows that

OPT −mC ≤
OPT

e
, (26)

which implies that

mC ≥
(

1− 1
e

)
OPT. (27)
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That is, CGA provides a
(

1− 1
e

)
approximation for K⋆.

To complete the proof of Theorem 2, it only remains to show that this is the best
possible approximation for K⋆. This can be easily seen using the following arguments. Let
us assume that there is an algorithm that could provide a better approximation for K⋆.
Then, this algorithm would also provide a better approximation for the MCP because, as
we proved in Theorem 1, a solution for K⋆ can be mapped to a solution of the MCP in
polynomial time using Algorithm 2. This is a contradiction since the greedy algorithm is
known to be the best possible approximation for the MCP unless P = NP [40]. Therefore,
no other algorithm can provide a better approximation for K⋆ than the CGA algorithm.

This completes the proof.

Comparison with Optimal Solutions

In this section, we evaluate the performance guarantees of the proposed CGA algo-
rithm by comparing its solution with the optimal solution obtained for a smaller sized
problem of the form in Definition 1. For the purposes of this comparison, we use a 3-cell
MC multicast system with 5 PRBs in each cell. To obtain the optimal solution, we employ
a brute force algorithm that works as follows. The brute force algorithm first lists out
all the possible PRB allocations for the 3-cell system. For instance, for a system with 2
cells and 2 PRBs, denoted by p1 and p2 in each cell, the possible allocations would be
(p1, p1), (p1, p2), (p2, p1), and (p2, p2). Following this, the algorithm finds the total number
of UEs that would be served under each of these possible allocations. Finally, the output of
the algorithm is the allocation that serves the maximum number of UEs.

In Figure 2a,b, we plot the number of UEs left unserved under the CGA algorithm and
the corresponding optimal value obtained using the brute force algorithm. We refer to the
plot corresponding to the brute force algorithm as ‘Optimal’ in the figures. Figure 2a shows
the number of UEs left unserved under the two algorithms as a function of an increasing
number of UEs in the system. We observe that the solution of the CGA algorithm matches
the optimal solution for up to 30 UEs in the system. As the number of UEs increases, up to
3 additional UEs are left unserved while using the CGA algorithm compared to the optimal
solution. Figure 2b shows the number of UEs left unserved under the two algorithms as
a function of increasing cell sizes. We observe that CGA serves just as many UEs as the
optimal solution for smaller cell sizes. As the cell sizes increase, one additional UE is left
unserved under the CGA algorithm compared to the optimal solution.

These plots show that the CGA algorithm provides optimal solutions for smaller
systems. However, as the scale of the system increases, the solution provided by the CGA
algorithm becomes sub-optimal.
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Figure 2. Comparisons of the average number of users left unserved under CGA and the optimal
resource allocation as a function of (a) an increasing number of users and (b) increasing cell radii
(number of users = 10).
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Although the CGA algorithm provides provable approximation guarantees, it does so
while requiring the presence of a central controller that can make allocation decisions for
all base stations, based on the global view of the system. As the number of cells C increases,
such a centralized setup may lead to large communication overheads and increased delays.
In this case, a decentralized approach where base stations make allocation decisions in-
dependently might be more feasible, albeit at the cost of losing on the performance of the
MC multicast streaming. In the following, we discuss the performance trade-offs between
the centralized and distributed allocation for MC multicasting and propose a distributed
approximation algorithm for K⋆.

6. Distributed Resource Allocation

In the absence of a centralized controller, allocation decisions are made by each
base station independently based only on the knowledge of its own cell. This type of
allocation does not fully reap the benefits of multi-connectivity. We illustrate this with
the following example. Consider a 2-cell system containing cells c1 and c2. There are two
PRBs available for allocation in each cell. We denote these as P1 and P2. Cell c1 has four
users, {u1, u2, u3, u4} and cell c2 has two users {u5, u6}. All users are streaming the same
multicast content. Assume that user u1 has a good channel only in P1 and can successfully
receive content only on P1. Users u3, u4, u5, and u6 have a good channel only in P2 and can,
therefore, successfully receive content only on P2. User u2 has a good channel in both the
PRBs and would be served on either of them. Users u1, u3, and u4 are connected to both
the cells and can receive content from either of them.

Let us now look at the allocations that will be conducted by a distributed policy that
maximizes the number of users served in each cell independently. Cell c1 considers the
users connected to its base station and allocates PRB P2 to the stream because it serves the
maximum number of users, namely u2, u3, and u4. Cell c2 also optimizes independently
and allocates PRB P2 to the stream to serve users u3, u4, u5, and u6. Under this allocation,
user u1 remains unserved even though it was multi-connected, since it could only receive
the content over PRB P1. On the other hand, users u3 and u4 receive content from both
the cells. In contrast, a centralized policy would take the users of both the cells under
consideration and allocate PRB P2 to the multicast stream in c2 and PRB P1 to the stream in
c1 and successfully serve all the users in the system.

Any centralized allocation policy, even if it is sub-optimal, will always do better in
terms of the number of users successfully served than a policy that allocates resources in
a distributed manner. A centralized policy does not necessarily mean that the policy is
optimizing over the entire system. Any form of centralization that looks beyond just the
individual cell will reap better performances than a completely uncoordinated allocation.
In the following, we propose a distributed resource allocation algorithm for a MC multicast
system that can be used even in the absence of a central controller.

Distributed Greedy Allocation

In the Distributed Greedy Allocation (DGA) policy, each base station allocates re-
sources to the multicast streams by only optimizing over their individual cells. Although
allocating resources in a distributed manner will result in sub-optimal resource allocation
decisions as discussed above, a distributed policy allows base stations to make allocation
decisions independently. Therefore, such a policy can be used for enabling MC multicasting
even in the absence of a central entity that can control all the base stations in a region.
Furthermore, in case of content that is highly delay sensitive, the signaling delays due
to the communication between the base stations and the central controller might not be
tolerable. For such applications, the DGA policy can be used to sacrifice optimality in favor
of lower delays.

The DGA policy solves the resource allocation problem K⋆
D for each cell independently.

The distributed resource allocation problem K⋆
D is defined as follows. As in Section 3,

Ujc ⊆ [M] denotes the set of users that would successfully receive the multicast content
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if PRB j is allocated to the multicast service in cell c. Set Uc = {U1c, U2c, . . . , UNc} is the
collection of such sets for cell c. The distributed resource allocation problem within each
cell c can now be stated as follows.

Definition 3 (Distributed resource allocation problem K⋆
D). For all c ∈ [C], given the collection

of sets Uc = {U1c, U2c, . . . , UNc}, determine j⋆ ∈ [N] such that j⋆ ∈ arg maxj∈[N] |Ujc|.

To solve the distributed resource allocation problem K⋆
D, the DGA policy at each base

station allocates a PRB to the multicast stream to maximize the number of users served by
it. That is, PRB j⋆ is assigned to the multicast stream in cell c if j⋆ ∈ arg maxj |Ujc|.

The pseudo-code for this algorithm is given in Algorithm 4. The variable xjc in
Algorithm 4 is an indicator random variable that is equal to 1 only when PRB j is allocated
to the multicast stream in cell c.

Algorithm 4: Distributed Greedy Allocation algorithm
Input: Sets Uc = {U1c, . . . , UNc} for all c ∈ [C]

1 Initialize xjc = 0 for every j, c
2 for c = 1 : C do
3 Assign j⋆ = arg maxj |Ujc|
4 xj⋆c ← 1
5 end

7. Simulations

We studied the performance of the proposed MC multicast in an MBMS system con-
sisting of seven urban macro cells [41]. A base station was located at the center of each cell,
and UEs were distributed uniformly at random in the cells. To create 5G-specific physical
layer conditions, we created channels using the models recommended by 3GPP [42]. The
SNR used to rate mappings was also measured according to 3GPP specifications [42]. Other
relevant simulation parameters are given in Table 2. The cell-edge users in the system were
multi-connected to all the base stations in the system. In all the cells, one PRB was allocated
to the multicast stream in each time slot. Multi-connected users successfully received a
packet if they could decode the content from at least one of the base stations. Other users
only received the multicast content from their primary base stations.

Table 2. System simulation parameters [42].

Parameters Values

System bandwidth 20 MHz
Cell radius 250 m
Path loss model L = 128.1 + 37.6 log 10(d), with d in kilometers
Lognormal shadowing Log normal fading with 10 dB standard deviation
White noise power density −174 dBm/Hz
Noise figure 5 dB
Transmit power 46 dBm

The number of packets delivered successfully and the number of UEs successfully
served were used as the performance metrics in these simulations. In Figure 3, we plot
the average number of packets successfully received by UEs under the CGA and the DGA
resource allocation algorithms. One packet was transmitted in every sub-frame (1 ms), and
we plotted the average number of packets successfully received by all the UEs in the system
over a period of 10 s (10,000 packets). As expected from the discussions in Section 6, we
observe that the centralized policy performs better than the distributed policy. However,
despite its distributed nature, the packet loss under the DGA algorithm is at most 0.3%



Network 2024, 4 190

greater than that under the CGA algorithm. Therefore, in the absence of centralized control,
the DGA algorithm can provide a performance close to that of the centralized policy.
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Figure 3. Average number of packets successfully delivered using MC multicasting as a function
of an increasing number of users under centralized (Algorithm 3) and distributed (Algorithm 4)
resource allocation algorithms.

In Figures 4–6, we compare the performance of MC multicasting with that of the con-
ventional Single-Connectivity (SC) multicast transmission scheme. For resource allocation
in SC multicasting, we used the DGA algorithm from Section 6, and the CGA algorithm was
used in the resource allocation for MC multicasting. Note that since users are connected to
a single base station in SC multicasting, the DGA algorithm provides the optimal solution
for maximizing the number of users served. For the plots in Figures 4 and 5, data were
transmitted at a fixed rate in each sub-frame. The points in these plots were obtained by
averaging over 10,000 sub-frames.

Figure 4a illustrates the number of packets successfully delivered under MC and SC
multicasting as the number of users increased. We observe a decline in the number of
packets successfully delivered as the number of UEs increases. However, the number of
packets successfully delivered under MC multicasting is much larger than that under SC
multicasting. Figure 4b plots the same metric as a function of the cell radius. We observe
that the number of packets successfully delivered decreases as the cell sizes increase. This
is because the path loss of the cell edge users increases as the cells become larger. The key
observation here is that the performance gap between MC and SC follows an increasing
trend. The relative performances of MC and SC are similar to what we observe in Figure 4a.
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Figure 4. Comparisons of the average number of packets (out of 10,000) successfully delivered under
SC and MC multicasting. Resource allocation was performed using the proposed CGA algorithm
(Algorithm 3), and the results are plotted as a function of (a) an increasing number of users and
(b) increasing cell radii.
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Figure 5a,b plot the average number of users left unserved in a cell per sub-frame as a
function of an increasing number of users and the cell radius, respectively. The number
of users left unserved increases as the number of users and cell radius increase. The
performance gap between MC and SC multicasting also increases as the number of users
increases. We observe that in the absence of multi-connectivity, nearly thrice as many users
are left unserved.
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Figure 5. Comparisons of the average number of users left unserved under SC and MC multicasting.
Resource allocation was performed using the proposed CGA algorithm (Algorithm 3), and the results
are plotted as a function of (a) an increasing number of users and (b) increasing cell radii.

In Figure 6a,b, we compare the performances of MC and SC multicasting while
serving a real-time video stream. To generate realistic video traffic patterns, we used
traces of a video of the Tokyo Olympics that has 133,121 packets (obtained from http:
//trace.eas.asu.edu, (accessed on 20 March 2023)) [11]. For these simulations, the rate
of transmission varied every sub-frame according to the size of the video frame being
transmitted. We ran the simulations for the duration of the video stream (133,121 sub-
frames) and then averaged the results over the entire duration of the transmission. From
Figure 6a, we observe that MC multicasting delivers around 8000 more packets successfully
than SC multicasting. From Figure 6b, we observe that 10–20 more UEs are left unserved
under SC multicasting than under MC multicasting. The performance gap between the
two increases as the number of UEs in the system increases.
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Figure 6. Comparisons of (a) the average number of packets successfully delivered (out of 133,121)
and (b) the average number of users left unserved under SC and MC multicasting while transmitting
a real-time video stream. Realistic video traffic patterns were generated using traces of a video of the
Tokyo Olympics [11].

http://trace.eas.asu.edu
http://trace.eas.asu.edu
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In Figure 7a,b, we compare the performance of MC multicasting with that of MBSFN
transmissions. Since MBSFN requires transmitting the content over the same PRB in all
the cells, we chose the PRB that serves the maximum number of UEs in the entire system.
We used traces from a real video stream (Tokyo Olympics [11]) to generate realistic video
traffic patterns in these simulations as well. We observe that MC multicasting performs
remarkably better than MBSFN. It succeeds in delivering a significantly greater number
of packets successfully and is also able to serve many more UEs than MBSFN. These
results validate our claims that MC multicasting can provide the benefits of MBSFNs
while eliminating the need for strict synchronization. In fact, as observed in Figure 7, MC
multicasting outperforms MBSFN by large margins.
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Figure 7. Comparisons of (a) the average number of packets successfully delivered (out of 133,121)
and (b) the average number of users left unserved under MC multicasting and MBSFN while
transmitting a real-time video stream. Realistic video traffic patterns were generated using traces of a
video of the Tokyo Olympics [11].

These simulation results clearly indicate that using multi-connectivity results in sig-
nificant performance enhancements in multicast systems. The flexibility of potentially
receiving content from multiple base stations results in more users being served and in
reduced packet loss as well. Thus, MC multicasting has tremendous potential for use
in video streaming services. It can help alleviate the burden on network resources while
serving a larger number of users simultaneously.

8. Conclusions

In this paper, we propose leveraging multi-connectivity (MC) for multicast trans-
missions and prove that it results in significant performance enhancements for multicast
streaming services. We address the resource allocation problem in MC multicasting, aiming
to maximize the number of concurrently served users and prove its NP-hardness. Our
proposed centralized greedy approximation (CGA) algorithm for MC multicast resource
allocation achieves an approximation ratio of (1− 1/e). For delay-sensitive applications
where centralized resource allocation might become infeasible, we propose a distributed
greedy allocation (DGA) algorithm that enables MC multicasting without coordination
between base stations. We show that, despite its distributed nature, the DGA algorithm
results in just 0.3% more packet loss compared to the centralized policy. Using rigorous
simulations, we conclusively demonstrate that employing multi-connectivity in multicast
transmissions results in increased user coverage and reduced packet losses. Furthermore,
we evaluated the efficacy of our algorithms in real-time video streaming applications, uti-
lizing traces from authentic video streams to generate realistic traffic patterns. Performance
comparisons of the CGA algorithm’s solution with the optimal solution obtained for a
smaller problem size using brute force show that they match. We also demonstrated that
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MC multicasting outperforms MBSFN, eliminating the need for strict synchronization and
extended cyclic prefixes.

9. Future Research Directions

This work provides a proof of concept for integrating MC within multicast transmis-
sions, but several practical questions remain open for further research. For instance, we
assumed that the users are static for the entire duration of the multicast transmission. The
impact of user mobility on the proposed algorithms remains to be studied. Allowing for
mobility will imply that the sets of users served under a certain allocation keep changing
as a function of time. Therefore, new resource allocation algorithms need to be developed
that can take this into consideration. Since the problem of resource allocation in MC multi-
casting is shown to be NP-hard, machine learning-based algorithms can also be developed
for optimizing the allocation decisions. Another interesting research direction would be to
consider a system where a number of different multicast streams can be simultaneously
broadcast in a multicast region.
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