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Abstract: Localization methods of unknown emitters are used for the monitoring of illegal radio
waves. The localization methods using ground-based sensors suffer from a degradation of localization
accuracy in environments where the distance between the emitter and the sensor is non-line-of-
sight (NLoS). Therefore, research is being conducted to improve localization accuracy by utilizing
Unmanned Aerial Vehicles (UAVs) as sensors to ensure a line-of-sight (LoS) condition. However,
UAVs can fly freely over the sky, making it difficult to optimize flight paths based on particle swarm
optimization (PSO) for efficient and accurate localization. This paper examines the optimization of
UAV flight paths to achieve highly efficient and accurate outdoor localization of unknown emitters
via two approaches, a circular orbit and free-path trajectory, respectively. Our numerical results reveal
the improved localization estimation error performance of our proposed approach. Particularly, when
evaluating at the 90th percentile of the error’s cumulative distribution function (CDF), the proposed
approach can reach an error of 28.59 m with a circular orbit and 12.91 m with a free-path orbit, as
compared to the conventional fixed sensor case whose localization estimation error is 55.02 m.

Keywords: RF fingerprint; localization; UAV; route optimization; PSO

1. Introduction

In today’s age of diversified use of radio waves [1], illegal radio waves that cause
interference in wireless communication systems have become a social issue. Illegal radios
(or private radios) consist of radio emitters operating without a proper license issued by
authorities. The term may also refer to radios that have obtained a license but operate using
frequencies outside the ranges specified by their license or transmit using powers much
larger than regulations. Statistics of illegal radios in Japan from 2014 until 2021 are available
on the MIC website [2], as shown in Figure 1. From the figure, the number of appearances
of illegal radios has been gradually increasing in recent years. A large percentage of illegal
radios consists of unlicensed citizen band radios, followed by unlicensed amateur radios.

Cases have been reported in which the use of radio waves violating the power strength
and frequencies regulated by national laws caused interferences to important lifelines such
as police, fire, disaster prevention, and aviation radios, as well as television and cellular
systems. Also, the occurrence of fires had been reported due to malfunctions of electronic
equipment. For example, in June 2015, there were reports of interference to a broadcasting
service in Tokyo. The interference source was found to be a wireless transceiver imported
from overseas to communicate between shops in a shopping street, and the transceiver
was not licensed for use in Japan. In March 2015 in the Tochigi prefecture, an amateur
radio station was set up on a dump truck without an amateur radio license. The Japanese
Ministry of Internal Affairs and Communications (MIC) has developed and utilized a radio
wave monitoring system called DEtect Unlicensed RAdio Stations (DEURAS) to crack
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down on illegal base stations, but in recent years, with the diversification of radio wave
usage, there have been many different types of illegal base stations [2] that prevent the
effectiveness of DEURAS.

Figure 1. Statistics of illegal radios in Japan [2].

One of the methods used to estimate the location of radio wave sources for radio
wave monitoring is the geometric localization method using the angle of arrival (AOA)
of the received signal. However, since the geometric localization method assumes an
LoS condition between the sensor and the target, the localization accuracy deteriorates
significantly in general environments of urban areas with the existence of many scattering
objects, where sensors and the radio sources are normally in an NLoS condition [3–6]. In a
geometric localization or triangulation approach, the location of the emitters is predicted as
the intersection point of different estimated AOAs from the illegal source toward different
received sensors. Due to the existence of multipath components in NLoS environments,
AOA estimation errors finally result in a large localization error.

Therefore, a statistical localization method, i.e., fingerprint-based localization, has
been attracting attention [4]. In particular, statistical approaches, such as machine learning,
are expected to enable localization even in NLoS conditions. There are several approaches
to perform pattern matching or machine learning of the fingerprints. The reader can find
a good survey of pattern matching techniques in [3,7]. The most conventional approach
is calculating the distance between two fingerprints. The most commonly used distance
metric is the Euclidean distance, and it was used in [8] under the name Nearest Neighbour
in Signal Space (NNSS). One may also use the Manhattan distance as a distance metric [9].
Other deterministic methods include the k-Nearest Neighbour (KNN), which calculates the
weighted or unweighted average of k training locations, which are closest to the target’s
fingerprints under a certain distance metric. One may also obtain a large number of
snapshots of the training fingerprint and utilize its distribution as a location fingerprint.
This is categorized as a statistical approach. If the distribution of the measured fingerprint
is known, we can use the maximum likehood (ML) approach for localization. This is
the approach employed in this paper (since this paper focuses on the optimization of the
UAV sensor’s flight path to improve the localization estimation, the discussion of different
machine learning techniques to improve localization accuracy in an NLoS environment
is out of the scope of this paper. The interested reader may refer to [3,4,7] for further
discussion on different machine learning techniques).
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However, even with fingerprint-based localization, accuracy degradation in out-of-
sight communication cannot be completely avoided, and the reliability of the system
decreases in an NLoS condition when fixed sensors are deployed [10]. In this study, a
UAV is used as a sensor for fingerprint-based localization, which allows the sensor to
move freely in the air and ensures LoS communication to directly receive radio waves from
the target, thereby improving localization accuracy. Furthermore, employing a UAV as
a sensor enables the capability of determining an optimal flight path, on which optimal
UAV’s sensing points can be selected to improve localization accuracy. Compared to the
conventional system of fixed ground-based sensors, our approach is more cost-efficient
since only one UAV sensor is required instead of the requirement for the deployment and
installation of multiple fixed ground-based sensors.

For this purpose, we propose an outdoor localization system using fingerprint-based
localization and aim to realize a low-cost and high-efficiency localization system by opti-
mizing the flight path of UAVs in this paper. The improved accuracy might depend on the
selection of a suitable optimization algorithm, as explained in Appendix A of this paper.
Particularly, a free-path route optimization is further considered in this paper in constrast
to our previous work in [11], where only a restricted circular orbit was investigated. Nu-
merical results will reveal the superiority of the free-path route optimization compared to
the circular case, owing to the higher mobility freedom of the UAV sensor. Compared to
our previous work in [11], the main contributions of this work include:

• The investigation of a free-path trajectory that helps to further improve estimation
accuracy;

• Detailed explanations of each process of our proposed system;
• Comparison of different optimization solving techniques;
• Discussions about future directions/applications of the UAV-based localization system

proposed in this paper.

This paper is organized as follows. Section 2 describes conventional localization
methods and the proposed fingerprint-based mechanism using UAVs. The simulation
setup is explained in Section 3. Numerical results and discussions are given in Section 4.
Finally, Section 5 concludes this paper with our future works. Table 1 summarizes all the
abbreviations used in this work.

Table 1. Summary of abbreviations used in this manuscript.

Abbreviation Meanings

LoS Line-of-Sight

NLoS Non-Line-of-Sight

UAV Unmanned Aerial Vehicle

PSO Particle Swarm Optimization

GA Genetic Algorithm

RF Radio Frequency

MIC Ministry of Internal Affairs and Communications

DEURAS Detect Unlicensed Radio Stations

DEURAS-D DEURAS Direction Finder

GPS Global Positioning System

RSSI Received Signal Strength Indicator

TDOA Time Difference of Arrival

AOA Angle of Arrival

FDTD Finite-Difference Time-Domain
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Table 1. Cont.

Abbreviation Meanings

Tx Transmitter

Rx Receiver

CDF Cumulative Density Function

NNSS Nearest Neighbour in Signal Space

KNN k-Nearest Neighbour

ML Maximum Likelihood

2. Localization Methods
2.1. Localization Methods of Unknown Emitters

There are two main types of methods for estimating the location of a radio transmission
source: an active method in which the target terminal receives radio waves emitted by a
beacon whose absolute location is known and estimates its own location and a passive
method in which a sensor receives radio waves transmitted by the target terminal and
the system estimates the terminal’s location. A well-known example of the former is the
Global Positioning System (GPS), but it is not suitable for estimating the location of illegal
radio wave sources because of the hardware limitation of a GPS chip non-necessarily
equipped in the target terminal and the need for cooperation between the localization
system and the terminal to be estimated. For this reason, the monitoring of illegal radio
waves often employs the latter method in which the location is estimated by the system
using information on radio waves emitted by the target terminals.

The radio wave information used for location estimation includes the received signal
strength indicator (RSSI), time difference of arrival (TDOA), and angle of arrival (AOA).
Localization using the AOA is called triangulation, which is also used in DEURAS-D,
one of the above-mentioned DEURAS [2] programs. However, such a geometric method
assumes that the distance between the terminal and the sensor is in an LoS condition, but
in environments with many scattering objects, e.g., urban areas, it is easy to become NLoS
and the accuracy of localization is greatly degraded [7].

Therefore, this paper uses the location fingerprinting method, i.e., a statistical location
estimation method, to enable location estimation even in NLoS environments. The next
section provides an overview of the fingerprint-based localization.

2.2. Fingerprint-Based Localization

Fingerprint-based localization is a method that collects position-dependent informa-
tion as fingerprints and statistically estimates the position by pattern matching [5]. As
shown in Figure 2, fingerprint-based localization is largely divided into a learning phase
and an estimation phase. In the learning phase, a location fingerprint database is con-
structed from the propagation characteristics of a radio wave source whose location and
parameters are known in advance, which is observed by a sensor while moving. In the
estimation phase, radio waves from an unknown target are observed and their positions
are estimated by pattern matching with the positional fingerprint database constructed in
the learning phase. This method is expected to further improve the accuracy of localization
due to recent advances in statistics such as machine learning [12,13].

When actually constructing the system, it is impossible to obtain fingerprints for all
observation points. Therefore, propagation characteristics are modeled, and continuous
fingerprints are interpolated by regressively obtaining model parameters from propagation
characteristics obtained at discrete observation points [14].

In this study, RSSI is used as the fingerprint because it is easy to implement in hardware
and does not require time synchronization. When the position coordinate of the k-th emitter
is uk and the RSSI observed at the n-th sensor is Pn(uk) [dB], the fingerprint vector FDB

k is
expressed as follows where N denotes the total number of deployed sensors.
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FDB
k = [P1(uk), . . . , PN(uk)]. (1)

Next, let Ptarget
n [dB] be the RSSI observed by the n-th sensor from the target. The

estimated position of the target û is obtained by pattern matching using the maximum
likelihood estimation method with the following formula [11]:

û = arg max
uk

N

∑
n=1

log
(

p
(

Ptarget
n | uk

))
. (2)

Here, the likelihood function Ptarget
n is assumed to experience shadowing and its

probability distribution function p
(

Pn
target|uk

)
follows normal distribution as follows [11].

û = arg max
uk

N

∑
n=1

logN
(

Ptarget
n ; µn,k, σn,k

)
, (3)

where the distribution’s average and standard deviation, i.e., µn,k, σn,k, are assumed to be
obtained when calculating the ensemble average of the received signal. As described above,
the target location can be estimated statistically.

Figure 2. Two phases of fingerprint-based localization method.

2.3. Use of UAV Sensor

In the fingerprint-based localization introduced in the previous section, in general, the
greater the number of sensors, the greater the amount of information in the fingerprints
and the more accurate the localization. However, the use of fixed sensors increases the
installation cost. Therefore, as shown in Figure 3, following the approach of [15], this study
proposes the use of UAVs as sensors, which can move freely in the air, thereby substantially
extending the dimensions of the location fingerprint database at a low cost. Also, even
when a fixed sensor is out of sight of the target, the UAV can move to maintain an LoS
condition and collect more reliable location fingerprints. As a result, improved localization
accuracy can be expected, and highly efficient localization can be achieved at lower cost
with a small number of sensors. In summary, this paper employs a single UAV working
as a sensor node to collect RF fingerprints and estimate the location of illegal emitters at
different discrete positions on the UAV’s flying trajectory. Taking advantage of the UAV’s
mobility freedom, this is equivalent to the deployment of multiple fixed sensors with only
a single UAV. Also, since there is only a single UAV sensor in our proposed system, there is
no need for information sharing among sensors to estimate the location of a target illegal
emitter. This is another advantage of our proposed UAV-based localization sensor system.
It should be noted that, considering the limited power budget of a UAV, this paper restricts
the RF fingerprints to only the RSSI measured at the UAV sensor since obtaining other
types of RF fingerprints like the TDOA and AOA will increase the signal processing cost
and circuitry size and therefore increase the power consumption at the UAV [4].
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Figure 3. Outdoor localization using UAV.

However, when using UAV sensors, it is necessary to determine their flight paths.
Since flight paths that enable highly accurate localization depend on the propagation
environment, a system that can optimize flight paths in any environment is required. In
this paper, we propose such a system to optimize the flight path for the scenario of moving
a UAV sensor and compare the localization accuracy with that of the conventional case
where fixed sensors are used.

3. Simulation System

An overview of the UAV flight path optimization method proposed in this paper is
shown in Figure 4. As shown in the figure, our simulation starts with the deployment
of a selected outdoor environment to be evaluated by our numerical analysis. An initial
trajectory of our UAV sensor is set. Based on the position of the UAV sensor and the ground-
based training points, a ray-tracing simulation is conducted to emulate the propagation
channels between the discrete training points and the UAV sensor. Since the target illegal
transmitter’s locations might be different from those of the discrete training points, a
propagation modeling approach is applied to emulate the propagation channels between
arbitrary possible target locations and the UAV sensor. In the estimation phase, a machine-
learning-based pattern matching algorithm is applied to compare the RF fingerprint of
the target illegal emitter against the constructed RF fingerprint database. (Indeed, the
pattern matching process as shown in Figure 4 can be classified as “supervised learning”,
one of famous machine learning algorithms. In the first phase, a fingerprint database is
constructed via the regression process explained in Section 3.2. In the second phase, the
pattern matching process is conducted, i.e., the observed RF signals are compared with the
constructed database to estimate the location of the illegal emitter. This paper employed
the ML approach shown in Equation (3) for the estimation phase.) Based on this process,
the location estimation error of a specific target location is computed. This process is
repeated for all candidate locations of the target emitter to finally derive the estimation
error distribution. Based on the derived distribution, our optimization algorithm is run
to select another UAV flight path that helps to improve the estimation error distribution.
Details on the functionality of each block will be explained as follows.
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Figure 4. Simulation system overview.

3.1. Ray-Tracing Simulation

First, as a learning phase of the fingerprinting method, the radio propagation char-
acteristics in the simulated environment were analyzed. In this study, radio propagation
simulations were conducted using the ray-tracing method. The ray-tracing method has the
following characteristics [16]:

• It traces radio waves emitted from a transmitting point as rays of light and searches
for a path;

• It geometrically calculates paths with reflection, diffraction, and transmission;
• It can take into account multipath effects caused by obstacles;
• It requires much less memory and computation than the FDTD method, a well-known

theoretical approach.

A ray-tracing simulation was performed using the radio propagation simulation
software Wireless Insite. The simulation terrain model is shown in Figure 5 and the
arrangement of the transmitter and sensor candidate points is shown in Figure 6.

An urban environment was assumed in this study, and a terrain that reproduced the
Tokyo Institute of Technology Ookayama campus was used as the simulation terrain model.

Training units in the learning phase and targets in the estimation phase were placed at
a height of 2 m, assuming that illegal radio transmission sources are on the road. Candidate
points for UAV sensors were placed in a grid at heights of 50/75/100/125/150 m. The grid
was designed to be as close as possible to the road surface. In this paper, it is assumed
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that the transmitter parameters in the learning and estimation phases are ideally matched
(see [17] for bandwidth and frequency interpolation methods).

Figure 5. Simulation terrain model.

－50 －50 －50

Figure 6. Horizontal positions of the transmitter and UAV sensor candidate points.

The parameters are summarized in Table 2. Note that the antennas are assumed to be
omni-directional for both the transmitter and the receiver and that polarization matching is
ideally achieved where vertical polarization is assumed.

Table 2. Ray-tracing parameters.

Rx Antenna type Isotropic
Antenna height (m) 50/75/100/125/150

Tx

Frequency (GHz) 2.487
Bandwidth (MHz) 5.00

Transmit power (dBm) 27.0
Antenna type Isotropic

Antenna height (m) 2

Iteration
Reflection 6
Diffraction 1
Penetration 0

3.2. Propagation Modeling

The database obtained from the ray-tracing simulation is discrete, while the actual
target and UAV sensor location information is continuous. In this paper, continuous
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data were interpolated by applying a radio propagation model as explained below. The
parameters of the model are calculated in a regressive manner from the data obtained by
the ray-tracing simulation.

In this paper, we consider the following propagation loss model with the elevation
angle θe between Tx and Rx as a variable in LoS and NLoS environments [18].

PLLoS(θe) = PLFSPL(θe) + PLN(θe) (4)

PLNLoS(θe) = PLFSPL(θe) + PLshadow(θe), (5)

where PLFSPL(θe) is the free space loss [18].

PLFSPL(θe) = 20 log10

(
4π fe

c
∆h

sin θe

)
. (6)

Here, ∆h = |hrx − htx|, where hrx and htx are the heights from the ground of the
receiver and the transmitter, respectively.

PLN(θe) is the loss due to noise in the LoS environment, and PLshadow(θe) is the loss
due to shadowing and noise in the NLoS environment. PLN(θe) and PLshadow(θe) are
assumed to follow a normal distribution, respectively [18].

PLN(θe)[dB] = N (µn, σn) (7)

PLshadow(θe)[dB] = N (µs, σs), (8)

where µn, σn and µs, σs are determined regressionally from the results of ray-tracing
simulations. They are expressed by the following equations using experimental parameters
α, β, γ, and δ [14].

θ2
e + αθe + β

γθe + δ
. (9)

The results of the regression are shown in Figure 7.

Figure 7. Model parameter determination by regression (top row: µn, σn and bottom row: µs, σs).
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3.3. LoS Probability

In order to use the aforementioned propagation model, it is necessary to perform
LoS or NLoS classification on a continuous location fingerprint database. Therefore, a
probabilistic LoS/NLoS classification method is used based on the LoS/NLoS information
of the discrete data obtained in advance [14].

For a particle i at position ui, we are interested in eight discrete particle neighborhoods,
i.e., 4 neighborhoods relative to the two-dimensional plane and 2 neighborhood planes
relative to the elevation direction. At the k-th neighborhood, we define a variable ck that is
1 if the particle uk is in an LoS condition and 0 if it is in an NLoS condition, as follows [14]:

ck =

{
1 if LoS
0 if NLoS

.

When the distance between a particle i and each neighbor point k is di,k, the LoS
probability is calculated using the weight coefficient ωi,k = d−1

i,k and variable ck with the
following formula [14].

pLoS(ui) =
8

∑
k=1

ωi,kck. (10)

Based on the LoS probability calculated by the above equation, the LoS or NLoS classi-
fication is stochastically determined and applied for our propagation model mentioned in
Section 3.2.

3.4. Optimization of UAV Flight Path

Using the created fingerprint database, localization simulations are performed to
determine the flight paths of UAVs that can perform localization with higher accuracy.

The determination of UAV flight paths can be viewed as an optimization problem that
aims to minimize the 90th percentile of the cumulative distribution of localization errors
as our designed objective function. In order to study the effect of using UAVs, this paper
examines the case where UAV sensors are hovering in the air and the case where a single
UAV moves in a circular orbit. In the former case, the position coordinates of the sensors
are used as input variables, and in the latter case, the position coordinates of the center of
the circular orbit and the radius of the circular orbit are used as input variables.

The RSSI used to evaluate the localization error is generated according to a probability
distribution and is affected by the terrain, so the output of the objective function is a
nonlinear function. In addition, the position coordinates take continuous values in space,
and there are many different ways to take a path, making optimization by a full search
difficult. Therefore, as explained in Appendix A, the particle swarm optimization (PSO)
method is used as an approximate solution method that is compatible with nonlinear
systems [19,20]. Given an objective function to be searched for, multiple particles move
around in the search space in search of the optimal solution while sharing information with
each other. PSO has attracted attention because of its simple algorithm, flexible parallel
processing, and potential for various improvements [21]. It also works well with nonlinear
systems and is suitable for cases such as this study.

Based on the basic algorithm of PSO, we organize the optimization problem in this
study. The optimization problem is to find the UAV sensor position coordinates u that
minimize E(u) with the 90% cumulative distribution value of localization errors as the
objective function E(u). In this study, the CDF 90% value is used as an indicator of reliability
as a location estimation system, but the objective function in this algorithm can be flexibly
set according to the system designer’s policy [11].

min
u

E(u), u = (u1, . . . , uM) ∈ Γ (11)
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Here, Γ is the three-dimensional space that can be taken by the UAV sensor, and u is
normalized so that each element is 0 ≤ u ≤ 1. The position and velocity of the particles are
updated by the following equations, respectively [11].

ui(t + 1) = ui(t) + vi(t + 1) (12)

vi(t + 1) = wvi(t) + c1

(
upbest

i − ui(t)
)
+ c2

(
ugbest

i − ui(t)
)

, (13)

where t is the number of iterations to date, upbest
i (t) is the personal best, and ugbest

i (t) is
the value called the global best. The personal best is the particle position with the best
value to date for that particle, and the global best is the best value of the personal best
for all particles. The particle moves and searches for the optimal solution by iteratively
updating tMAX times, referring to the direction of the personal best and global best. The
PSO parameters used in this paper are listed in Table 3.

Table 3. Parameters of PSO.

ui(0), vi(0) w c1, c2 Number of Particles tMAX

U(0, 1) 0.5 U(0, 0.14) 100 10

4. Simulation Results

In this simulation, we compare the position estimation results from a ground-sensor-
mimicking fixed sensor, a non-optimized UAV sensor, and an optimized UAV sensor. First
we discuss an optimized route where the UAV is restricted to follow a circular orbit in
Section 4.1. Then, the restriction is removed and an optimized free-path orbit is investigated
in Section 4.2.

4.1. Circular Orbit Optimization

The fixed sensors were installed at four locations at appropriate heights of 50 m in
the east, west, south, and north area of the evaluation environment. The non-optimized
UAV sensor draws a circular orbit with a radius of 75 m and an altitude of 100 m near the
center of the target area. The optimized UAV sensor draws a circular orbit with the center
coordinates and radius optimized.

The placement of the fixed and non-optimized UAV and optimized UAV sensors and
the localization error distribution are shown in Figures 8 and 9, respectively. It can be seen
that when fixed sensors and non-optimized UAV are used a significant degradation of
localization accuracy can be observed in zones with dense buildings, while relatively good
accuracy is obtained overall when UAV sensors are used.

Next, the cumulative distribution function (CDF) of localization accuracy is shown in
Figure 10. Comparing the CDF 90% values, the value for the fixed sensor is 55.02 m and the
value for the non-optimized UAV sensor is 77.96 m, whereas the value for the optimized
UAV is 28.59 m, as shown in Table 4.

Table 4. Comparison of localization error (circular orbit).

Sensor Average (m) CDF 90% (m)

Fixed 19.69 55.02

Non-optimized 28.18 77.96

Optimized 13.09 28.59

In other words, our proposed system reduced 48% of localization error compared to
the conventional scheme at our designed target of 90th percentile CDF. This confirms that
a single optimized UAV sensor provides better localization accuracy than four fixed base
stations, which reveals the superiority of our proposed method.
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－50 －50 －50
－100 －100 －100

Figure 8. Optimized sensor placement (circular orbit).

－50
－100

－50
－100

－50
－100

Figure 9. Localization error distribution (circular orbit).

Figure 10. CDF of localization error (circular orbit).

4.2. Non-Circular Orbit Optimization

To further explore the mobility freedom of the UAV sensor, next, we discuss the results
of the optimization of the non-circular orbit optimization. Eight patrol points are selected,
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and the coordinates including the altitude of those points are optimized. Figures 11 and 12
show the optimized patrol points of receiver sensor route and the corresponding estimation
errors, respectively. Compared to the circular path on which the UAV’s patrol points are
restricted to a certain circle of optimized radius, the patrol points of the free-path case have
more freedom to visit the whole area to collect more reliable RF fingerprints, knowing that
the RSSI fingerprints in this paper might be contaminated by noise, especially when the
distance between the UAV sensor and the emitter is long, the path is obstructed by buildings,
etc. Since the patrol points of the circular path are restricted on a specific circle, even after
the optimization process, some patrol points need to fly over the rooftop of a big building in
the center area of the map. Since this building has a higher probability of obstructing most
of the propagation path between these patrol points and emitters (i.e., NLoS environments),
the localization estimation accuracy of the circular path is expected to be poorer than that
of the free path. Indeed, it can be seen from the result of the free-path optimization that one
patrol point is selected in the northern area where it is easy to secure an LoS, and some other
patrol points are concentrated in the southern area with a denser distribution of buildings
that made the environment more multipath vulnerable. As a result, it is easier to secure an
LoS condition compared to both scenarios of fixed sensors and circular orbits evaluated
in Section 4.1. Owing to this benefit, the position estimation error is not degraded even in
areas where buildings are densely populated.

－50 －50 －50
－100 －100 －100

Figure 11. Patrol points of UAV sensor (non-circular orbit).

－50
－100

－50
－100

－50
－100

Figure 12. Localization error map (non-circular orbit).

Next, the cumulative distribution function (CDF) of the position estimation error is
shown in Figure 13 and Table 5. Compared with the CDF value of 90%, which is the
objective function set in this study, the error is 55.02 m for the fixed sensor and 28.59 m
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for the circular orbit UAV sensor, while it is 12.91 m for the UAV sensor with optimized
patrol points. Thus, it can be seen that the position estimation accuracy is further improved
compared to the case of optimization with a circular orbit.

Figure 13. CDF of localization error (non-circular orbit).

Table 5. Comparison of localization error (non-circular orbit).

Sensor Average [m] CDF 90% [m]

Fixed 19.69 55.02

Circular orbit 13.09 28.59

Non-circular orbit 9.66 12.91

5. Conclusions

In this paper, we constructed a fingerprint database using ray-traced simulation and
model-based interpolation and conducted numerical analyses to optimize the flight path
of UAV sensors by evaluating the localization error via PSO for two scenarios, a circular
orbit and a free-path orbit. Comparison with fixed sensors installed on the ground showed
that UAV sensors can be used for low-cost and highly accurate outdoor localization. Our
numerical results revealed the superiority of the proposed optimized routes, especially
when the UAV can fly freely in the case of non-circular orbit. Specifically, our numerical
results reveal the improved localization estimation error performance of our proposed
approach. When evaluating at the 90th percentile of the error’s cumulative distribution
function (CDF), the proposed approach can reach an error of 28.59 m with a circular orbit
and 12.91 m with a free-path orbit, as compared to the conventional fixed sensor case whose
localization estimation error is 55.02 m.

Since the presented mechanism is general and not only for illegal emitters, the ex-
tension of the proposed localization method to authorized (non-illegal) radios is straight-
forward [4]. However, deploying a UAV sensor for localization purposes in practical
environments is expected to face a lot of challenges, including power constraints, energy-
efficient route planning, UAV self-localization issues, and security aspects [22,23]. Such
practical considerations will be investigated in our future works. Furthermore, our future
prospects also include the development of advanced optimization algorithms and the
location estimation of moving radio sources to realize a system capable of tracking and
policing illegal radio stations and experimental validations of the proposed technology in
realistic environments.
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Appendix A. Optimization Problem Solving

This section discusses methods for solving the UAV flight path optimization problem
of this paper. The objective function of this problem is difficult to optimize using a gradient
method since the objective function’s shape varies greatly depending on the environment’s
terrain and scattering objects. In addition, the huge computational complexity involved in
simulating radio propagation makes the use of heuristics methods suitable for obtaining
a good approximation of the solution, even if there is no guarantee of optimality. Meta-
heuristics is a strategy to further improve the approximate solution obtained by heuristics
by modifying the solution to get closer to the optimal one. In meta-heuristics approaches,
the solution space is explored by iteratively (1) generating new solutions using the previous
search history and (2) evaluating the generated solutions and feeding back the necessary
information for the next solution search. In this paper, we focus on particle swarm opti-
mization (PSO) and the genetic algorithm (GA) among these meta-heuristics. Since PSO
was explained in Section 3.4, the following paragraph briefly explains about GAs.

Genetic algorithms (GAs) are algorithms that search for solutions in a manner that
mimics the mechanism of biological evolution. A population of chromosomes with genetic
parameters is generated as candidate solutions, and genetic manipulations such as selec-
tion, crossover, and mutation are performed to search for solutions [24]. First, an initial
population of genes is generated. Next, the degree of adaptation is evaluated according
to the evaluation function. If the function meets the termination condition, the process is
terminated. Otherwise, genetic manipulations, such as selection, crossover, and mutation,
are performed, and the next generation is used to repeat the above process until the termi-
nation condition is satisfied and the optimal solution is obtained. The Parameters of GA in
this paper is summarized in Table A1.

Table A1. GA parameters.

Parameter Value or Property

Initial population U(0, 1)
Number of genes 50

Iteration 10
Generation model Discrete

Selection Roulette
Crossover One-point crossing

Mutation probability 0.01

We compare the accuracy of the aforementioned optimization methods, assuming
eight fixed hovering UAV sensors are employed (It is equivalent to a single UAV flying with
a free-path trajectory and visiting these locations consequently). Figures A1 and A2 show
the placement of the receiving sensors and the distribution of the position estimation error,
for three scenarios of random deployment and optimized deployments using PSO and a
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GA, respectively. The CDF of the position estimation error is shown in Figure A3. These
results reveal that the localization estimation errors of the optimized schemes are reduced
significantly compared to the random placement case. Particularly, the performance of PSO
is better than the GA, so we decided to use PSO as the optimization method in this paper.

－50
－100

－50
－100

－50
－100

Figure A1. Locations of hovering UAV sensors (optimization algorithm comparison).

－50
－100

－50
－100

－50
－100

Figure A2. Localization error map (optimization algorithm comparison).

Figure A3. CDF of localization error (optimization algorithm comparison).
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