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Abstract: In this review, we consider the impact of magnetic field on the properties of strongly corre-
lated heavy-fermion compounds such as heavy-fermion metals and frustrated insulators with quan-
tum spin liquid. Magnetic field B can be considered a universal tool, allowing the exploration of the
physics controlling the remarkable properties of heavy-fermion compounds. These vivid properties
are T/B scaling, exhibited under the application of magnetic field B and at fixed temperature T, and
the emergence of Landau Fermi liquid behavior under the application of magnetic field. We analyze
the influence of quasiparticle–hole asymmetry on the properties of heavy-fermion (HF) compounds
such as the universal scaling behavior of the thermopower S/T exhibited under the application of
magnetic field B. We show that universal scaling is demonstrated by different HF compounds such as
β-YbAlB4, YbRh2Si2, and strongly correlated layered cobalt oxide [BiBa0.66K0.36O2]CoO2. Analyzing
YbRh2Si2, we show that the T/B scaling behavior of S/T is violated at the antiferromagnetic phase
(AF) transition. The residual resistivity ρ0 and the density of states N0 experience jumps at the AF
transition, causing two jumps in the thermopower and its sign reversal. Our consideration is based on
the flattening of the single-particle spectrum that strongly affects ρ0 and N0 and leads to the violation
of particle–hole symmetry. The particle–hole asymmetry generates the asymmetrical part ∆σd(V) of
tunneling differential conductivity σd(V), ∆σd(V) = σd(V)− σd(−V), where V is the voltage bias.
We demonstrate that in the presence of magnetic field, the quasiparticle–hole asymmetry vanishes,
the LFL behavior is restored, and the asymmetry disappears. Our calculations of the mentioned
properties of HF compounds, based on the fermion condensation theory, are in good agreement
with the experiment and support our conclusion that the fermion condensation theory is capable
of describing the properties of HF compounds, including those exhibited under the application of
magnetic field.

Keywords: quantum phase transition; flat bands; non-Fermi-liquid states; strongly correlated electron
systems; heavy fermions; thermoelectric; thermomagnetic effects

1. Introduction

The Landau Fermi liquid (LFL) theory describes Fermi liquids such as 3He and elec-
tron liquids in ordinary metals. It is founded on the Landau paradigm where, at low
temperatures, the properties of Fermi liquid are determined by Fermi quasiparticles. The
number density x of quasiparticles coincides with that of particles in the Fermi liquid in
question. Quasiparticles represent the elementary excitations of Fermi liquid, with the
effective mass M∗ being a parameter of the theory, weakly dependent on temperature T,
magnetic field B, etc. [1–3].

The discovery of strongly correlated Fermi systems represented by heavy-fermion (HF)
compounds, such as heavy-fermion (HF) metals, high-Tc superconductors, frustrated insu-
lators with quantum spin liquid, and 2D 3He exhibiting non-Fermi liquid (NFL) behavior,
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has opened a new perspective in the area of modern condensed-matter physics [4–12]. Data
collected on HF compounds demonstrate that the effective mass M∗ strongly depends on
pressure P, T, x, B, etc., while M∗ itself can extend to very high values or even diverge [7,8].
This behavior is very unusual and cannot be described within the framework of the tra-
ditional Landau quasiparticles paradigm. The common opinion suggests that quantum
criticality is induced by collective fluctuations, either magnetic or superconductive. Thus,
HF compounds undergo a second-order phase transition at their quantum critical point
(QCP). As a result of these superconducting or magnetic fluctuations, quasiparticles are
suppressed, and the NFL behavior emerges, depending on the initial ground state, either
magnetic or superconductive [4,5,7,8,10]. One expects that the NFL behavior is explained
within the frameworks of the spin-density-wave scenario and the unconventional Kondo-
breakdown scenario (see, e.g., [7–9]). Experimental facts reveal that these scenarios are not
universal since HF compounds have very different microscopic and physical structures.
Moreover, some HF compounds are not located at a quantum phase transition (QPT) with
possible magnetic fluctuations, while others are represented by 2D 3He or by frustrated
insulators with quantum spin liquid, which have nothing to do with fluctuations, the
spin-density-wave scenario, or the Kondo effect.

The condensed-matter physics of the current millennium are vividly represented by
the visiting card of the experimental discovery of flat bands (see, e.g., [11,12]) since HF com-
pounds with flat bands are numerous [13]. Thus, one can expect the existence of a general
physical mechanism facilitated by the presence of flat bands, exhibiting itself as the univer-
sal properties of HF compounds. As a result, HF compounds can demonstrate universal
scaling behavior (see, e.g., [14–17]). Within the framework of the fermion condensation (FC)
theory, such a mechanism is represented by the topological fermion condensation quantum
phase transition (FCQPT) recreating quasiparticles, intimately related to the unlimited
growth of M∗, producing NFL behavior, and generating flat bands. Further studies show
that it is capable of delivering an adequate theoretical explanation of a vast majority of ex-
perimental results in different HF metals [14–24]. In contrast to the Landau paradigm, based
on the assumption that M∗ is a constant, in the fermion condensation theory, the effective
mass M∗ strongly depends on P, T, x, B, etc. As a consequence, to account for the numerous
data, the extended quasiparticles paradigm should be employed. The main item here is that
the well-defined quasiparticles define the thermodynamic, relaxation, and transport prop-
erties of HF compounds, making M∗ become a function of T, x, B, and P, etc. [15,23,25]. We
note that the well-known Kadowaki–Woods relation [26] is conserved [15], and that obvious
experimental facts can hardly be explained within the framework of the spin-density-wave
scenario, the unconventional Kondo-breakdown scenario, etc. The FC theory has been
successfully applied to describe the thermodynamic properties of different HF compounds.
Thus, the outstanding puzzle of HF compounds originating from their universal behavior,
which drastically differs from the behavior of ordinary metals and superconductors, is
resolved [14–17,23,25], and the fundamental physics of HF compounds are controlled by
the topological FCQPT (see, e.g., [15–17,20,27]). It is plausible to probe the other proper-
ties of HF compounds, which are not directly determined by the effective mass M∗ and
cannot be explained within the framework of theories based on conventional quantum
phase transitions (see, e.g., [15,20,24,28–31]). An important feature explained within the
framework of the FC theory is the crossover from NFL behavior to LFL behavior under
the application of magnetic field B, pressure P, etc. When the system in question transits
under the application of magnetic field B from its NFL state to the LFL state, the impact
of FC on the thermodynamic and transport properties is strongly changed. For example,
the quasiparticle–hole asymmetry generating the asymmetrical part ∆σd(V) of tunneling
differential conductivity σd(V) vanishes, where ∆σd(V) = σd(V)− σd(−V), and where V
is the voltage bias [15]. Due to the same reason, the residual resistivity ρ0(B) under the
application of magnetic field B is strongly reduced, and the behavior of the resistivity ρ(T)
changes from ρ(T) ∝ T to ρ(T) ∝ T2 [17,32]. Moreover, the dependence of the magnetic
field on the Hall coefficient RH(B) provides information about the QCP, determining the
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properties of HF metals [31]. Experiments have shown that the Hall coefficient RH(B) in
the antiferromagnetic HF metal YbRh2Si2 in magnetic fields B undergoes a jump in the
zero-temperature limit under the application of magnetic field B, tuning the metal from
the antiferromagnetic to the paramagnetic state at B = Bc0 [33]. The jump occurs when
the magnetic field B reaches its critical value Bc0, at which the Néel temperature TN(B) of
the antiferromagnetic transition vanishes, TN(B→ Bc0)→ 0. The jump is interpreted as a
collapse of the large Fermi surface precisely at the QCP [33]. The FC theory successfully
explains this behavior as a universal one represented by the transition from the NFL state
with FC to the Landau Fermi liquid (LFL) state [17,31]. Moreover, the FC state is charac-
terized by broken T and C symmetries occurring at the topological FCQPT in CeCoIn5
that connects two Fermi surfaces of different topological charges [15–17,19,20,30,31] (for
detail, see Section 7.2). Recent measurements of the Hall coefficient on the prototypical
superconductor CeCoIn5 allow one to interpret the observed quantum phase transition as
a delocalization quantum phase transition without symmetry breaking in CeCoIn5. This
transition is characterized by the delocalization of f -electrons in the transition that connects
two Fermi surfaces of different volumes [28]. Measurements of ∆σd(V) and ρ0(B) in the
presence of the magnetic field B allow one to verify this observation.

In our review, based on important experimental facts and their explanation, we
consider employing magnetic fields to reveal the physics of HF compounds. We focus on the
crossover from the NFL behavior to the LFL behavior that takes place under the application
of magnetic field B. This crossover is of crucial importance since at the LFL state, the
quasiparticle particle–hole asymmetry generated by the FC state is eliminated. As a result,
one can observe a change in the transport properties, such as the reduction of the residual
resistivity ρ0(B), the vanishing of the asymmetrical part ∆σd(V) of the differential tunneling
conductivity σd(V), and the reduction of the thermopower S. We also analyze the Hall
coefficient RH(B) and explain its behavior in HF metals under the application of magnetic
field. We demonstrate that this behavior is determined by the presence of flat bands formed
by the topological FCQPT. The flat band in archetypal HF metal CeCoIn5 [34] forms its
properties, while in the LFL state, the related violations of symmetries are eliminated. We
show that the measured transport properties yield direct evidence of the apparent broken
symmetries, such as the violation of the T and C symmetries occurring at the topological
FCQPT in CeCoIn5. Analyzing the data collected in measurements of the change in the
residual resistivity ρ0(B) on CeCoIn5, we demonstrate that the change in the Fermi surface
of CeCoIn5 is determined by the topological FCQPT, connecting two Fermi surfaces of
different topological charges. We show that it is the topological FCQPT that occurs in both
the archetypal HF metals CeCoIn5 and YbRh2Si2 [17,31].

2. The Effective Mass M*

We start by considering an HF liquid at T = 0 characterized by the effective mass M∗.
Upon applying the well-known Landau equation, we relate M∗ with the bare electron mass
M [2,35]

M∗

M
=

1
1− N0F1(x)/3

. (1)

Here, N0 is the density of states of a free-electron gas, x = p3
F/3π2 is the number

density, pF is the Fermi momentum, and F1(x) is the p-wave component of the Landau
interaction amplitude F. At the critical point x = xc, F1(x) reaches a certain value at
which the denominator in Equation (1) vanishes. As a result, at T = 0, the effective mass
M∗ diverges, and the system is at the topological FCQPT (see, e.g., [15]). It is seen from
Equation (1) that beyond the critical point xc, the effective mass becomes negative. To
prevent falling into the unstable and physically meaningless state with a negative effective
mass, the system is to undergo the topological FCQPT occurring at the quantum critical
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point x = xc [15,20]. The asymmetrical phase behind the quantum critical point possesses
the topological charge, forms a flat band, and is determined by [18–20]

δE[n(p)]
δn(p, T = 0)

= ε(p) = µ. (2)

The solution of Equation (2) is delivered by the occupation numbers n0(p) and takes
place in the interval

0 < n0(p) < 1; pi ≤ p ≤ p f . (3)

It is seen from Equation (2) that the flat band is located in the interval pi < p < p f .
Here, E is the Landau functional of the ground-state energy [2], µ is a chemical potential,
and n(p) is the occupation number of quasiparticles. The main result of such rearrangement
is that instead of a Fermi step, we have 0 < n0(p) < 1 in a certain range of momenta
pi ≤ p ≤ p f . Accordingly, the single-particle spectrum

δE
δn(p)

= ε(p) (4)

in the momenta interval (pi − p f ) becomes flat, ε(p) = µ, and this flat spectrum is known
as the FC state [18]. It is seen from Equation (3) that the occupation numbers in the interval
become 0 < n0(p) < 1, and the FC state is characterized by the superconducting order
parameter κ(p) =

√
n0(p)(1− n0(p)) [15].

To obtain the equation defining the effective mass M∗, we employ the density func-
tional theory of the superconducting state [36,37]. As a result, the ground-state energy E
becomes the exact functional of the occupation numbers n(p) and the function of the num-
ber density x, E = E[n(p), x], while Equation (4) gives the exact single-particle spectrum
ε(p) [37]. Upon differentiating both sides of Equation (4) with respect to p and after some
algebra and integration by parts, we obtain

∂ε(p)
∂p

=
p
M

+
∫

F(p, p1)
∂n(p1)

∂p1

dp1

(2π)3 . (5)

Here, F(p, p1) = δ2E/δn(p)δn(p1) is the Landau amplitude. To calculate the deriva-
tive ∂ε(p)/∂p, we utilize the functional representation

E[n] =
∫ p2

2M
n(p)

dp
(2π)3

+
1
2

∫
F(p, p1)n(p)n(p1)

dpdp1

(2π)6 + ... (6)

It follows from Equation (5) that M∗ is given by the well-known Landau equation

1
M∗

=
1
M

+
∫ pFp1

p3
F

F(pF, p1)
∂n(p1)

∂p1

dp1

(2π)3 . (7)

For simplicity, we have omitted the spin degrees of freedom. To calculate M∗ as a
function of T, we construct the free energy F = E− TSe, where the entropy Se is given by

Se = −2
∫
[n(p) ln(n(p)) + (1− n(p)) ln(1− n(p))]

dp
(2π)3, (8)

that follows from general combinatorial reasoning [2]. Minimizing F with respect to n(p),
we arrive at the Fermi–Dirac distribution

n(p, T) =
{

1 + exp
[
(ε(p, T)− µ)

T

]}−1

. (9)
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Due to the employed procedure [37], we conclude that Equations (5) and (7) are exact
and allow the calculation of the behavior of both ∂ε(p)/∂p and M∗ in the vicinity of the
topological FCQPT, where the well-defined quasiparticles determine the low-temperature
physics, while M∗ becomes a function of T, B, and x. Effective mass M∗ diverges at
T ∝ B → 0 and x → xc [15,23,25]. This feature of M∗ forms the NFL behavior, and the
crossover to the LFL behavior is observed in measurements on HF metals (see Figure 2a,b).

3. The Scaling of the Effective Mass

When analyzing HF compounds, we face the problem related to the anisotropy
of the crystal lattice of solids, impurities, etc. This problem can be simplified, for we
study the universal behavior of HF compounds based on the model of homogeneous HF
liquid [15–17]. The model has a corresponding ability since we consider the universal
scaling behavior exhibited by these materials at low temperatures a behavior related to
the power-law divergences of quantities such as the effective mass, heat capacity, magne-
tization, etc. These divergences and the universal scaling of the effective mass or critical
exponents that characterize them are set small compared to the Debye characteristic temper-
ature and momentum transferred in energy and momentum on the order of the reciprocal
lattice cell length a−1. Therefore, quasiparticles are affected by the crystal lattice averaged
over large distances compared to the length a. As a result, we can use the well-known jelly
model to build a model of a homogeneous HF fluid [15–17].

In the FC theory, the QPT is interpreted as the topological FCQPT at which the
quasiparticle effective mass M∗ diverges. In that case, quasiparticles with energy ε ∼ µ
are well-defined excitations [15–17], while the FC state itself is protected by topological
invariants [19,21,22]. In the vicinity of the FCQPT, in order to reveal the universal scaling
behavior of M∗ observed in HF compounds, it is helpful to use “internal” scales for
measuring quantities such as, e.g., C/T and M∗, temperature T, etc. [15,16]. Maximum
values (C/T)M ∝ M∗M in both C/T and M∗, respectively, at temperature TM appear under
the application of magnetic field B, and TM acquires higher values as magnetic field B is
elevated. To obtain (C/T)N , we use (C/T)M and TM as “internal” scales: (C/T)M is used
to normalize C/T, and T is normalized by TM [15,16]. In the same way, we normalize M∗

to obtain the normalized effective mass M∗N = M∗/M∗M as a function of the normalized
temperature TN = T/TM. To study the scaling beahvior of M∗(B, T), we use the model
of homogeneous HF liquid, which permits the avoidance of complications associated
with the crystalline anisotropy of solids [2,15,16]. We write the quasiparticle distribution
function as n1(p) = n(p, T)− n(p), where n(p) is the step function, and Equation (7) then
becomes [2,15,16]

1
M∗(T)

=
1

M∗
+
∫ pFp1

p3
F

F(pF, p1)
∂n1(p1, T)

∂p1

dp1

(2π)3 . (10)

At the FCQPT, the effective mass M∗ diverges, and Equation (10) becomes homoge-
neous, determining M∗ as a function of temperature

M∗(T) ∝ T−2/3, (11)

while the system exhibits NFL behavior [15,16,25]. If the system is located before the
topological FCQPT, M∗ is finite, and at low temperatures, the system demonstrates LFL
behavior such that M∗(T) ' M∗ + a1T2, where a1 is a constant. The LFL regime occurs
when the second term on the right-hand side of Equation (10) is small in comparison with
the first term. Then, with rising temperatures, the system enters the transition regime: M∗

grows, reaching its maximum M∗M at T = TM, and subsequently decreases. At T ≥ TM, the
last “traces” of the LFL regime disappear, and the second term starts to dominate. Again,
Equation (10) becomes homogeneous, and the NFL regime, manifesting itself in a decrease
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in M∗ as T−2/3, is recreated. The application of magnetic field reproduces the LFL regime
so that M∗M depends on B as

M∗M ∝ (B− Bc0)
−2/3, (12)

while
TM ∝ µB(B− Bc0), (13)

where µB is the Bohr magneton [15,25]. Now, we consider the applied magnetic field
B as a variable, while the temperature is fixed T = Tf . In that case, as seen from
Equations (11) and (12), it is convenient to introduce variable y = (B− Bc0)/T and rewrite
Equation (13) as [15]

y = TN =
T

TM
∝

T
µB(B− Bc0)

. (14)

Near the topological FCQPT, the normalized solution of Equation (10) M∗N(TN) can be
well approximated by a simple universal interpolating function [15,16]. The interpolation
occurs between the LFL (M∗ ' M∗ + a1T2) and NFL (M∗ ∝ T−2/3) regimes, describing the
above crossover and representing the universal scaling of M∗N [15,16,25]

M∗N(y) ≈ c0
1 + c1y2

1 + c2y8/3 . (15)

Here, y is given by Equation (14), and c0 = (1 + c2)/(1 + c1), c1, and c2 are fitting
parameters. Magnetic field B enters Equation (10) only in the combination B/T, resulting
in Equation (14). Thus, in the presence of a fixed magnetic field, the variable y becomes
y = T/TM = (T/(B− Bc0))N ∼ T/(B− Bc0). Here, (T/(B− Bc0))N is the normalized
value of T/(B− Bc0); it is calculated in the same way as it is in the case of TN .

Thus, Equation (15) describes the universal scaling of M∗N as a function of T versus B.
The curves M∗N at different magnetic fields B merge into a single curve in terms of the
normalized variable y = T/TM. The universal scaling of (C/T)N = M∗N extracted
from measurements of C/T under the application of magnetic field of the archetypal
HF metal YbRh2Si2 [38] is shown in Figure 1. The solid theoretical curve coincides with
that shown in Figure 2b. Equation (15) describes the scaling of M∗N(B, T) as a function of
B versus T [2,15,16]. It is seen in Figure 1 that there are deviations between the theoretical
curve and the normalized experimental data at TN ≥ 7, which can possibly come from
our normalization of the experimental data. The deviation can also emerge due to the
subtraction procedure of the contribution of the phonon to the electronic specific heat of
YbRh2Si2 [38] at relatively high temperatures.

0.1 1 10

0.4

0.6

0.8

1.0 YbRh2Si2

(C
/T
) N
=M

* N

 B=0.1 T
 B=0.15 T
 B=0.25 T
 B=0.5 T
 B=1.0 T
 B=1.5 T
 Theory

TN~ T/B

LFL

NFL

Crossover
region

Figure 1. Universal scaling behavior of the normalized specific heat (C/T)N as a function of the
normalized temperature TN . (C/T)N is obtained from measurements of the heat capacity C/T at
YbRh2Si2 in magnetic fields B [38] depicted in the legend. The LFL region, crossover region, and NFL
region are displayed by the arrows. The solid curve represents our calculations of (C/T)N = M∗N
based on Equations (10) and (15) (see Figure 2b) [15].
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A schematic phase diagram of HF metal is shown in Figure 2a. Magnetic field B
is taken as the control parameter. In fact, the control parameter can be pressure P or
doping (the number density) x, etc., as well. At B = Bc0, FC occurs, leading to a strongly
degenerated state, where Bc0 is a critical magnetic field such that, at B > Bc0, the system
is driven towards its Landau Fermi liquid (LFL) regime. In our simple model, Bc0 is a
parameter. The FC state is captured by the superconducting (SC), ferromagnetic (FM),
antiferromagnetic (AFM), etc., states lifting the degeneracy [15,23]. Below, we consider the
archetypal HF metal YbRh2Si2 (see also Section 5). In this case, Bc0 ' 0.06 T (B⊥c), and at
T = 0 and B < Bc0, the AFM state takes place at T < TNL(B) [39]. At elevated temperatures
and a fixed magnetic field, the NFL regime occurs, while rising B again drives the system
from the NFL region to the LFL region, as shown by the dashed-dotted horizontal arrow in
Figure 2. Figure 2b demonstrates the universal scaling of the normalized effective mass
M∗N = M∗/M∗M versus normalized temperature TN = T/TM = (T/B)N , where M∗M is the
maximum value that M∗ reaches at T = TM. The T−2/3 regime is marked as an NFL regime
since the effective mass depends strongly on temperature. The temperature region T ' TM
signifies the crossover between the LFL regime with almost constant effective mass and
NFL behavior, given by T−2/3 dependence. Thus, the region T ∼ TM can be considered
the crossover region taking place between the LFL and NFL regimes. From Equation (15),
it follows that, in contrast to the Landau paradigm of quasiparticles, the effective mass
M∗(T, B) strongly depends on both temperature T and magnetic field B. We note that such
a dependence M∗(T, B) forms both the crossover region and the NFL region. It is also
seen from Equation (15) that the scaling behavior of M∗N(T/B) near the topological FCQPT
is formed by the absence of appropriate external physical scales to measure the effective
mass and temperature. At fixed magnetic fields, the characteristic scales of the temperature
and of the function M∗(T, B) are defined by both TM and M∗M, respectively. At fixed
temperatures, the characteristic scales are (BM − Bc0) and M∗M. Here, BM is the magnetic
field at which occurs the maximum M∗M of the effective mass. From Equations (12) and (13),
it follows that at T ' 0 TM → 0, M∗M → ∞, and the width of the transition region shrinks
to zero as B→ Bc0. In the same way, it is seen from Equations (11) and (14) that at a fixed
magnetic field (B− Bc0) ' 0, the maximum value M∗M → ∞ and the width of the transition
region shrinks to zero as T → 0.

AF
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 LFL

NFL

NFL
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(T/B)-0.66
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TN ~ (T/B)N
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Figure 2. Panel (a): Schematic phase diagram of HF metals. Bc0 is magnetic field at which the
effective mass diverges. SCAF denote the superconducting (SC) and antiferromagnetic (AFM) states,
respectively. At B . Bc0, the system can be captured by AFM or SC states. The vertical arrow depicts
the transition from the LFL regime to the NFL regime at fixed B. The horizontal arrow illustrates
the HF metals in question transiting from the NFL to the LFL regime along B at fixed T. Panel
(b) displays the schematic plot of the universal scaling behavior of the normalized effective mass
M∗N versus the normalized temperature TN ∝ (T/B)N . The crossover region, where M∗N reaches its
maximum value M∗M at T = TM, is shown by the hatched area. The system transits from the NFL to
the LFL behavior at rising B at fixed T, which is at T/B < 1. The arrows mark the LFL and the NFL
regions and the transition region in the behavior of M∗N as a function of TN = (T/B)N . The NFL
behavior is characterized by M∗ ∝ (T/B)−2/3 ' (T/B)−0.66 (see Equation (12)).
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It is seen in Figure 3 that the universal scaling behavior of the thermodynamic prop-
erties stems from the fact that HF compounds are located near the topological FCQPT,
generating flat bands [15,16]. As an example, Figure 3a displays universal B/T scaling
for over more than three orders, demonstrated by T2/3χ of the HF metal CeCu6−xAux
and of the frustrated insulator herbertsmithite ZnCu3(OH)6Cl2. Here, χ is the magnetic
susceptibility. Since the effective mass M∗(T) diverges, M∗(T) ∝ T−2/3 (see Equation (11)),
T2/3χ ∝ const, as seen in Figure 3a. It is seen in Figure 3b that the normalized magnetic
specific heat (Cmag/T)N exhibits scaling in a wide range of the variable (T/B)N . The
observed universal scaling exhibited by HF compounds represents a convincing example
of the influence of magnetic field on the properties of the system, allowing the exploration
of its universal properties. Data are extracted from Refs. [40–42]. The existence of such
universal behavior, exhibited by various and very distinctive strongly correlated Fermi sys-
tems, supports the conclusion that HF compounds represent a new state of matter [15–17].
In contrast to the situation for an ordinary quantum phase transition, this scaling, induced
by the topological FCQPT, occurs up to relatively high temperatures T ∼ 100 K since the
NFL behavior is defined by quasiparticles with M∗N given by Equation (15), rather than by
fluctuations or Kondo lattice effects [15,16].

0.01 0.1 1 10
0.1

1

crossover
 

 

T2/
3

B/T

 CeCu6-xAux

 ZnCu3(OH)6Cl2
 Theory

(B/T)-0.66

NFL

LFL

(a)

0.1 1 10 100
0.01

0.1

1

(T/B)-0.66

(C
m
ag
/T
) N

(T/B)N

crossoverLFL

NFL
(b)

ZnCu3(OH)6Cl2
  Theory

Figure 3. Universal B/T scaling of thermodynamic properties of strongly correlated Fermi systems.
Panel (a): Scaling of magnetic susceptibility χT2/3 of the HF metal CeCu6−xAux. Data are extracted
from experimental measurements [40], and that of ZnCu3(OH)6Cl2 from data [41]. At B/T � 1 m
the systems exhibit NFL behavior with χ ∝ M∗, as given by Equation (11), i.e., T2/3χ ∝ const.
At B/T � 1, the systems demonstrate LFL behavior, with χ as given by Equation (12), being a
decreasing function of B/T (see Equation (15)). Panel (b): T/B scaling of the specific heat Cmag/T of
ZnCu3(OH)6Cl2 is extracted from data [42]. At T/B � 1, the systems demonstrate LFL behavior
with χ ∝ const. At T/B > 1, the systems exhibit NFL behavior with χ ∝ T2/3.

4. Flat Bands and Particle–Hole Asymmetry

Experimental facts show that the particle–hole asymmetry exists in HF compounds
and is accompanied by Fermi surface transformation [43–45]. Such behavior is illumi-
nated by the strong enhancement of the observed low-temperature value of the Seebeck
coefficient [43–45]. The measurements on twisted bilayer graphene also confirm the strong
particle–hole asymmetry that leads to the thermopower generation, so the Seebeck co-
efficient reaches high values of an order of magnitude larger than in common metals
exhibiting LFL behavior. Both the observed asymmetry and the strong Seebeck coefficient
enhancement were predicted about thirty years ago and determined by FC, forming flat
bands [20]. As soon as the electronic system of the HF compound approaches the thresh-
old of the topological FCQPT, the dispersion of an electronic quasiparticle disappears in
some part of its spectrum, forming flat bands [15,16]. This dispersionless part is usually
situated between momentum pi (standing for initial momentum) and p f (final momentum)
(see Equation (2)). Clearly, in this dispersionless part of the spectrum, the effective mass
M∗ diverges. Beyond the topological FCQPT, FC is formed so that the step quasiparticle
distribution function nF(p, T → 0) = θ(p− pF) does not minimize the Landau functional



Magnetism 2023, 3 188

E[n(p)], and the quasiparticle distribution is determined by Equation (2) for the minimum
of the functional. At T = 0, Equation (2) determines the quasiparticle distribution function
n0(p), minimizing the ground-state energy E ≡ E[n(p)]. Figure 4 reports a typical n0(p),
with EF being the Fermi energy. It is seen in Figure 4 that the particle–hole symmetry is
violated by FC since n0(p) does not evolve from the Fermi–Dirac distribution function, a
step at T = 0, shown by the blue line. In Figure 4, the arrow shows the hole states formed
by the FC. As we will see in Sections 5.2 and 7.2, as soon as the flat band is eliminated under
the application of magnetic field, the asymmetry vanishes, and the thermopower is strongly
diminished, while the residual resistivity ρ0 strongly diminishes (see Section 7.1), and the
asymmetrical part ∆σd(V) of the tunneling conductivity disappears (see Section 7.2). These
observations shed light on the role of the magnetic field B and strongly support the FC
theory, explaining the emergence of the particle–hole asymmetry and the corresponding
experimental facts collected on HF metals and graphene.
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Figure 4. The single-particle energy ε(p) and the distribution function n(p) at T = 0. The arrow
shows the Fermi energy EF = µ. The vertical lines denote the FC area pi < p < p f with 0 < n0(p) < 1
and ε(p) = EF. The Fermi momentum pF is in the interval pi < pF < p f and corresponds to the
Landau Fermi liquid, emerging when the FC state and the corresponding particle–hole asymmetry
are eliminated. The single-particle energy ε(p) and distribution function n(p) of the LFL state are
displayed by the blue lines. The arrow indicates the hole states generated by the flat band.

5. Thermopower under the Application of Magnetic Fields

The study of the thermopower S/T in HF metals and graphene reveals a strong interac-
tion driven particle–hole asymmetry [43–45]. In this section, we make use of data collected
on the archetypal HF YbRh2Si2 in measurements of the thermopower [46,47] to illustrate
the particle–hole asymmetry and its behavior in magnetic fields. Thermopower S/T is
a sensitive and helpful tool to analyze the quasiparticle excitations at the Fermi surface.
Thus, we face an important problem related to revealing the scaling of the thermopower
S/T, which permits the analysis of the nature of quasiparticle (electronic) excitations at
the Fermi surface. In this direction, we will elucidate the role of quasiparticles and the
nature of the topological FCQPT that forms the flat bands and both the particle–hole
asymmetry and the behavior of the thermopower S/T in different HF compounds. We
show that the thermopower S/T of YbRh2Si2 exhibits scaling that coincides with that of
other thermodynamic functions such as (C/T)N . We demonstrate that S/T of different HF
compounds such as YbRh2Si2, β-YbAlB4, and [BiBa0.66K0.36O2]CoO2 exhibit universal scal-
ing, determined by the scaling behavior of the effective M∗N shown in Figures 1, 2b and 5.
Using YbRh2Si2 as an example, we also demonstrate that the universal behavior of S/T is
violated at the AF phase transition, while the residual resistivity ρ0 and the density of states
N0 experience downward jumps at the AF phase transition that are accompanied by the
restoration of the particle–hole symmetry. The restoration of the particle–hole symmetry
leads to the corresponding downward jumps JumpF of S/T that strongly diminishes and
changes its sign, as seen in Figure 6. This first jump, occurring at T ≤ 0.03 K, is shown in
Figure 6 and is labeled JumpF. It is accompanied by a change in sign of (S/T)N , becoming
positive [46,47]. This behavior occurs as the system undergoes the AF phase transition
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taking place at TNL. This first jump JumpF reflects the elimination of both the hole state
and the flat band in YbRh2Si2 (see Figure 4) [15–17].

5.1. Scaling

As we shall see, an analysis of the thermoelectric power S/T delivers new knowledge
of the nature of quantum phase transition defining the NFL behavior of the corresponding
HF compounds. For example, one reasonably proposes that S/T distinguishes between
the two possible scenarios for HF metals, namely the spin-density-wave theory and the
breakdown of the Kondo effect [48,49]. Indeed, S/T is sensitive to the derivative of the
density of electronic states N0 and to the change in the relaxation time τ at µ [3,50]. It
follows from the Boltzmann equation that S/T can be written as [3,50–53]

S
T

= −
π2k2

B
3e

[
∂ ln σ(ε)

∂ε

]
ε=µ

, (16)

where kB and e are, respectively, the Boltzmann constant and the electron’s charge, while σ
is the dc electric conductivity of the system:

σ(ε) = 2e2τ(ε)
∫

δ(µ− ε(p))v(p)v(p)
dp

(2π)3 , (17)

p is the wave vector of the electron, and v is its velocity. It is seen from Equation (17) that
S/T depends on the derivative of the density of electronic states N0(ε = µ) and the change
in the relaxation time at ε = µ. Within the framework of the Fermi liquid theory, the term
in the brackets on the right-hand side of Equation (16) can be simplified. As a result, one
obtains S/T ∝ N(ε = µ) ∝ C/T ∝ M∗ at T → 0 [50–53]. Taking into account that the
charge and heat fluxes at low temperatures are transferred by quasiparticles, the S/C ratio
has the form

(S/C) ' (S/Sent) ' const. (18)

Here, Sent is the entropy density of charge carriers [50–53]. It is seen from Equation (18)
that S/T ∝ M∗. Thus, within the FC theory, which proposes the universal scaling behavior
of M∗ (see Section 3), one can obtain a reliable description of the thermopower and its
universal scaling behavior [15–18,20,54,55].
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Figure 5. Scaling of the susceptibility χ(B− Bc0) as a function of scaled temperature T/(B− Bc0)

with Bc0 = 0.176 T for various B values obtained in measurements on [BiBa0.66K0.36O2]CoO2 (see
the legend [56]). The LFL region, crossover region, and NFL region are shown by the arrows. The
solid curve represents our calculations based on Equation (10), and describes the universal scaling
behavior (C/T)N = M∗N ∝ χ(B− Bc0) shown in Figure 2b.

Indeed, Figure 1 demonstrates the normalized specific heat (C/T)N as a function of
TN measured on YbRh2Si2. The behavior of (C/T)N coincides with that of the magnetic
susceptibility χ ∝ C/T ∝ M∗ obtained in measurements on [BiBa0.66K0.36O2]CoO2 [56]
and shown in Figure 5. The solid curve in Figure 5 demonstrates results of the
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same calculations based on Equation (10), describing the universal scaling behav-
ior (C/T)N(T/TM) = M∗N(T/TM) ∝ χ(B − Bc0)

0.6 shown in Figure 1. As a result, we
conclude that the solid curve drawn in both Figures 1 and 5 exhibits the universal scaling
intrinsic to HF compounds [15–17].
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Figure 6. Thermopower isotherm −S(B)/T for different temperatures given in the legend [46,47].
The label JumpF represents the first downward jumps in −S(B)/T shown by the arrows. The solid
line is a guide to the eye.

As seen in Figure 7, in the case of YbRh2Si2 and at T ≥ TNL, the normalized isotherms
(S(B)/T)N behave such as (C/T)N (see Figure 1). They demonstrate a broad maximum,
which sharpens and shifts towards smaller fields upon cooling [46,47]. It is seen in Figure 6
that the above-mentioned behavior is violated as the system approaches the AF phase
transition. Here, TNL(B) is the temperature of antiferromagnetic (AF) ordering, with
TNL(B = 0) = 70 mK, and TNL(B = Bc0) = 0 at the critical field Bc0 = 60 mT, ap-
plied perpendicular to the magnetically hard c axis [57]. Thus, outside of the AF region,
S/T ∝ C/T ∝ χ ∝ M∗ over a wide range of T and B since in the framework of FC theory,
the particle–hole symmetry is violated [15–17]. It is worth noting that S/T ∝ M∗ in a
poorly ordered two-dimensional electron system in silicon and tends to diverge at a finite
disorder-independent density [58].
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Figure 7. Universal scaling behavior of the normalized (S/T)N . (a) Normalized isotherm (S(B)/T)N

as a function of normalized magnetic field BN at different temperatures T displayed in the legend.
Outside the antiferromagnetic phase, the data show the universal scaling behavior. (b) The normalized
thermopower (S/T)N in magnetic fields B depicted in the legend. The experimental data are
extracted from measurements on YbRh2Si2 [46,47] and on β-YbAlB4 [59]. The data, taken at the AF
phase [46,47] and at the superconducting one (SC) [59] (delineated by the ellipse and the rectangle,
respectively) expose the violation of the scaling. The theoretical solid curves in (a,b) coincide with
that shown in Figures 2b and 5 [15,54].

To elucidate the scaling of the thermopower S/T ∝ C/T ∝ M∗, we normalize S/T
in the same way as in the normalization of C/T (see Section 3 and Figure 1). Taking into
account that S/T ∝ C/T [51–54], we conclude that (S/T)N = (C/T)N = M∗N , provided
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that the system in question is located away from possible phase transitions that eliminate the
particle–hole asymmetry. This function (C/T)N = M∗N is displayed in Figure 5. Figure 7a,b
report (S/T)N as a function of the normalized magnetic field BN and TN , respectively.
In Figure 7a, the function (S/T)N is obtained by normalizing (S/T) by its maximum,
occurring at BM, and the field B is scaled by BM. As seen from Equation (15) and Figure 7a,
the LFL regime sets in at BN > 1 since (S/T)N = M∗N , and M∗N ∝ (B − Bc0)

−2/3 are
T-independent, while at BN < 1, M∗M becomes T-dependent and exhibits NFL behavior
with M∗N ∝ T−2/3

N . As seen in Figure 7a,b, the theoretical curves representing the universal
function M∗N (see Figures 1 and 2b) are in good agreement with the corresponding data
over the wide range of BN and TN . Thus, (S/T)N = (C/T)N = M∗N exhibits the universal
scaling over a wide range of its scaled variables BN and TN . Figure 7a also displays the
scaling violation at the AF phase, when B ≤ Bc0. It is seen in Figures 6 and 7a,b that the
scaling is violated at T ≤ TNL by the two downward jumps. The second jump, shown
in Figure 7a and marked as JumpS, occurs at TNL > T > 0.3 K, while the first, taking
place at T ≤ 0.03 K, is shown in Figure 6 as JumpF. The latter is accompanied by a change
in the sign of (S/T)N , which now becomes positive [46,47]. Below, we shall see that the
two jumps reflect the presence of a flat band at µ in the single-particle spectrum ε(p) of
HF in YbRh2Si2 [15–17]. As seen in Figure 7b, scaling is violated in the same way by the
superconducting (SC) phase transition, occurring in β-YbAlB4 at Tc ' 80 mK [59].

It is worth noting that the universal scaling of (S/T)N is seen in the experimental
data on the thermopower for [BiBa0.66K0.36O2]CoO2 [56]. The solid curve, representing our
theory in Figure 8, is the same as that displaced in Figure 5, and describes (C/T)N extracted
from measurements on the archetypal HF metal YbRh2Si2 (see Figure 1 [15]). The universal
scaling behavior, and the three regimes are seen in Figure 8. These regimes are in good
agreement with those reporting the universal behavior displayed in Figures 2b, 5 and 7a,b.
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Figure 8. Scaling of S/T. At magnetic field B = 0, the strongly correlated layered cobalt oxide
[BiBa0.66K0.36O2]CoO2 demonstrates the scaling of (S(T)/T)N versus TN . The data are extracted from
measurements on [BiBa0.66K0.36O2]CoO2 [56]. The solid curve displaying the theoretical calculations
is the same as that shown in Figure 5.

5.2. Flat Bands and S/T Jumps in the AF Phase Transition

As seen in Figure 4, the ground states of systems with flat bands are degenerate. As
a result, the occupation numbers n0(p) of single-particle states belonging to the flat band
are given by a continuous function on the interval [0, 1]. This behavior of the occupation
numbers leads to the emergence of the particle–hole asymmetry, occurring in contrast to the
LFL restriction to occupation numbers 0 and 1, resulting in the particle–hole symmetry [2].
Thus, the FC state generates the entropy excess

S0 = −∑ n0(p) ln n0(p) + (1− n0(p)) ln(1− n0(p)). (19)

The excess S0 does not contribute to the specific heat C(T). The existence of S0
contradicts the Nernst theorem. To avoid the violation of the Nernst theorem, FC must
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be absorbed by a phase transition at T → 0. For example, it can be the AF transition that
becomes of the first order at some tricritical point occurring at T = Ttr (see Section 6) [15–17].
Such a first-order phase transition eliminates the flat portion in the single-particle spectrum.
Therefore, at this first-order phase transition, both the high density of states generated by
the flat band and the hole states, shown by the arrow in Figure 4, vanish discontinuously,
while both the occupation numbers n0(p) and the spectrum ε(p) represent the LFL state, as
shown by the arrows in Figure 7a. In the same way, the Fermi sphere undergoes an abrupt
change, related to the first-order phase transition [15], in the interval from the momentum
pi to p f , so as to nullify both the swelling of the Fermi surface, the entropy excess S0,
defining the entropy Sent at low temperatures, and the particle–hole asymmetry. This is a
vivid example of the influence of magnetic field, which drives the AF phase transition and
allows the exploration of the properties of the system. As a result, the thermopower given
by Equation (18) experiences JumpF, as it is follows from Equation (19), for the entropy S0
abruptly nullifies, while both the flat band and the particle–hole asymmetry vanish. We
note that the jump is observed in the behavior of the low-T Hall coefficient of the HF metal
YbRh2Si2 [15,16,57,60].

It is seen in Figure 6 that at T = 0.03 K, S/T abruptly changes its sign (the first
jump—JumpF) because the hole states are eliminated. The positive sign of S/T of YbRh2Si2
without the hole states [52] corresponds to the positive thermopower of its nonmagnetic
counterpart LuRh2Si2, which has no the 4 f hole states at the chemical potential µ [46,47,61].
Contrarily, at TNL > T > Tcr, the AF phase transition is of the second order, and the entropy
is a continuous function at the border of the phase transition. Thus, during a second-order
phase transition, both the occupation numbers and the spectrum remain the same and
retain their FC-like shape, while the system with FC is destroyed, turning into HF liquid.
This destruction generates the second jump JumpS, shown in Figure 7. As a result, the FC
state is destroyed and its contribution, ρFC

0 , to the residual resistivity ρ0 vanishes, resulting
in a change in the scattering time τ(ε = µ). We note that in the presence of FC, the residual
resistivity is represented by two terms ρ0 = ρFC

0 + ρ
imp
0 (see Section 7.1). Here, the residual

resistivity ρFC
0 is formed by the flat band generated by the FC state, while the resistivity

ρ
imp
0 is generated by impurities [16,32]. Therefore, the thermopower experiences the second

jump JumpS, as seen from Equations (16) and (17). The first downward jump JumpF under
decreasing B, defined by elimination of both ρFC

0 and the hole states, is deeper than the
second jump JumpS and leads to the change in the sign of S/T. This is consistent with the
experimental observations, as seen in Figures 6 and 7.

6. The Tricritical Point in the B − T Phase Diagram of YbRh2Si2

The Landau theory of the second-order phase transitions is valid near the tricritical
point, occurring at T ' Tcr. In that case, the fluctuation theory generates only the logarith-
mic corrections to the values of the critical indices [62]. Upon using the Landau theory,
we obtain that the Sommerfeld coefficient γ0 = C/T takes the form γ0 ∝ |t− 1|−α, where
t = T/TNL(B) with the exponent being α ' 0.5 as the tricritical point is approached at fixed
magnetic field B [17,62,63]. As seen in Figure 9, the value α = 0.5 gives a good description
of the data collected in measurements of the specific heat on YbRh2Si2 [63]. Taking into
account that the specific heat capacity increases during the transition from the symmetric
AF phase to the asymmetric one [62], we obtain

γN =
γ0(t)

A1
= 1 +

B1

A1
√
|t− 1|

. (20)

Here, B1 = B± are the proportionality factors which are different for the two sides of
the phase transition. The parameters A1 = A±, related to the corresponding specific heat
(C/T)±, are also different for the two sides, and “+” stands for t > 1, while “−” stands for
t < 1.
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Figure 9. The normalized Sommerfeld coefficient γN = γ0/A± as a function of the normalized
temperature t = T/TN0. The Sommerfeld coefficient γ0 is given by Equation (20) and shown by the
solid curves. The normalized Sommerfeld coefficient is extracted from the data obtained during
measurements on YbRh2Si2 at the AF phase transition [63] and is represented by geometric figures.

The fit to the data for γ0 = C(T)/T in YbRh2Si2 at the AF phase transition in zero
magnetic fields [63] is displayed in Figure 9. We show there the normalized Sommerfeld
coefficient γ0/A+ as a function of the normalized temperature t = T/TN0. It can be seen
that the normalized Sommerfeld coefficient γ0/A+ extracted from C/T measurements at
YbRh2Si2 [63] are well described over the entire temperature range around the antiferro-
magnetic phase transition by the formula (20) with A+ = 1. Now, transform Equation (20)
to the form

γnorm =
γ0(t)− A1

B1
=

1√
|t− 1|

. (21)

It follows from Equation (21) that the ratios γnorm for t < 1 and t > 1 versus |1− t|
collapse into a single line on a double logarithmic plot. The ratios extracted from the
data [63] are shown in Figure 10, the coefficients A1 and B1 are taken from fitting γN shown
in Figure 7. As seen in Figure 10, the ratio γnorm collapses into the single line.
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Figure 10. The temperature dependence of the ratios γnorm = (γ0 − A1)/B1 for t < 1 and t > 1 as a
function of |1− t| given by Equation (21) is shown by the solid line. The ratios are extracted from the
data obtained in measurements of γ0 on YbRh2Si2 at the AF phase transition [63] and are shown as
triangles, as shown in the legend.

Based on the fits to the data, given by Functions (20) and (21) (with the critical exponent
α = 1/2) and shown in Figures 9 and 10, we predict that the AF phase transition of the
second order in YbRh2Si2 goes into the first order under the action of a magnetic field [17].
As seen in Figure 9, the peak is sharp, while one expects that the anomalies in the specific
heat related to the onset of magnetic order are to be broad [63]. Thus, the observed behavior
demonstrates that the second-order phase transition is changed to the first-order phase
transition at the tricritical point (see Figure 11).



Magnetism 2023, 3 194

NFL

S/T<0

0
Bc0

 LFL

NFL

 

B

AF

T

Crossover 
region

0

Tricritical point
TNL(B)

S/T>0

Tcr
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The AF phase transition line is designated TNL(B). The tricritical point marked with the arrow is at
the point T = Tcr. At T < Tcr the AF phase transition becomes of the first order, and is depicted by
the orange dots.

Schematic T − B Phase Diagram

Now, we construct the schematic T− B phase diagram of the HF metal YbRh2Si2 (see
Figure 11). In Figure 11, the NFL region formed by the state FC is characterized by an
excess of entropy S0, defined by Equation (19). The border separating the AF state from
the NFL region is shown by the solid curve TNL(B). At B < Bc0 and T < TNL(B), the
system is in its AF state and exhibits LFL behavior [57]. The tricritical point Tcr at which
the AF phase transition becomes of the first order is shown by the arrow. At that phase
transition, the thermopower experiences the jump JumpF shown in Figure 6, changes its
sign, and becomes S/T > 0, for the hole states shown in Figure 4 are eliminated at T < Tcr.
At T > Tcr, the AF transition is of the second order, and the thermopower experiences
JumpS (see Figure 6) in the NFL region S/T > 0, as seen in Figure 11. It is seen from the
phase diagram Figure 11, that outside the area of the AF phase transition the SN = M∗N ,
considered a function of the dimensionless variable TN or BN , has the universal scaling
behavior. Figures 5, 7a,b and 8 demonstrate that all the data extracted from measurements
on YbRh2Si2, β-YbAlB4, and [BiBa0.66K0.36O2]CoO2, collapse on the single scaling curve
shown in Figure 5.

Here, it is worth noting a few remarkable points. As it follows from Figures 5 and 7b,
at TN < 1, the normalized thermopower (S/T)N becomes constant, thus exhibiting LFL
behavior. However, at TN ' 1, the system enters the crossover region. At growing
temperatures and fixed magnetic field B, NFL behavior prevails. At low temperatures
and growing B and at the tricritical point, the line of the second-order phase transitions
changes to the line of the first-order phase transitions, as shown by the circle in Figure 11.
The same change in the phase transition occurs in the archetypal HF metals CeCoIn5 under
the application of magnetic fields B > Bc2 ≥ Bc0, where Bc2 is the critical field destroying
the superconducting state, and Bc0 is the critical field at which the topological FCQPT
takes place [17,64]. This observation allows us to conclude that at lower temperatures and
under the application of magnetic field B, the curve of any second-order phase transition
passes into the curve of the first-order curve at the tricritical point Tcr (see Figure 11). Such
a behavior occurs since, at Tcr the entropy Se starts to experience a jump because of the
residual entropy S0, occurring at the NFL state and given by Equation (19), is absent in the
ordered state [15]. Thus, we again underline the important role of the magnetic field in the
study of the properties of HF compounds.
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7. Magnetic Field to Probe the Nature of Quantum Phase Transition

In this section, we show how to utilize magnetic field when probing a quantum phase
transition that forms the properties of an HF metal. As an example, we consider the
archetypal HF metal CeCoIn5.

The condensed-matter community is involved in active debate on the nature of the
quantum phase transition (QPT) governing the low-temperature properties of heavy-
fermion (HF) metals. Recent experimental observations of the archetypal HF metal CeCoIn5
at low temperatures probe the nature of its magnetic-field-tuned QPT under the supercon-
ducting state. These studies detected the smeared jump-like behavior revealed both in the
residual resistivity ρ0 and the Hall resistivity RH , along with the violation of the time invari-
ance symmetry T and the particle–hole symmetry C. As a result, the studies provide vital
clues on the nature of QPT taking place in CeCoIn5 (see, e.g., [28,64,65]). Based on a number
of experimental data, we show that observations point out unambiguously that the QPT of
CeCoIn5 is accompanied by the symmetry violation, and the QPT itself is represented by
the topological FCQPT connecting two Fermi surfaces of different topological charges. We
show that the behavior of CeCoIn5 at the FCQPT in magnetic fields and under pressure is
related to the flattening of the single-particle spectrum induced by the FCQPT that exerts
profound effects on ρ0 and the differential tunneling conductance in the normal state. The
application of a magnetic field or pressure to CeCoIn5 restores the Landau Fermi liquid
behavior, leading to the suppression of both ρ0 and the violation of T and C symmetries.

7.1. Residual Resistivity ρ0

In the NFL state, the resistivity ρ(T) is of the form

ρ(T) = ρ0 + ATn; n = 1, (22)

where ρ0 is the residual resistivity, and A is a T-independent coefficient. The index n takes
the values 1 and 2, respectively, for the NFL and LFL behaviors and 1 . n . 2 in the
NFL-LFL transition (see Figures 5, 12 and 13) . The residual resistivity ρ0 usually results
from the scattering of impurities. At T > Tc, the zero-field resistivity ρ(T, B = 0) varies
linearly with T (see Equation (22)). At magnetic fields B ≥ Bc2 and at low temperatures
the resistivity exhibits LFL behavior, ρ(T, Bc2) ∝ T2. Experimentally, CeCoIn5 is one
of the purest heavy-fermion metals [65–68]. As a result, the regime of electron motion
there is ballistic. Thus, under the application of the weak magnetic field B, one could
observe a small positive contribution δB ∝ B2 to ρ0 arising from the orbital motion of
electrons induced by the Lorentz force. As seen in Figure 12, this is not the case: specifically
ρ0(B = Bc0) ' 3.0 µΩcm in the NFL state, while ρ0(B = 6 T) ' 0.3 µΩcm in the LFL
state (see the inset to Figure 12) [65,68]. Moreover, it is seen in Figure 3 that at elevated
temperatures, all the resistivities taken at different fields B = 6, 10, 16 T tend to coincide at
the NFL state with ρ(T) ∝ T since the contribution δB is relatively small.

Another direct experimental confirmation of the change in ρ0 is obtained in measurements
on CeCoIn5 at various pressures P [69]. As seen in Figure 13, ρ0(P→ 0)→ 3.0 µΩcm, and
decreases by an order of magnitude to a value of about ρ0(P → P∗) → 0.2 µΩcm, with
P∗ ' 1.6 GPa [69]. Note that these values of the residual resistivity approximately coincide
with those shown in Figure 12. Obviously, pressure P does not remove impurities from the
sample. Thus, this large decrease in ρ0 is due to the pressure-induced destruction of the
FC state, as seen from the restoration of the LFL behavior at the same P∗. Similarly, the
resistance ρ(T, B) at fixed T as a function of B diminishes when the system transits from
the NFL regime to the LFL regime under the application of magnetic field (the magnetore-
sistance becomes negative) [65]. This behavior is consistent with the FC theory [15]. Thus,
the destruction of the FC state under the application of both magnetic fields B and pressure
P entails a dramatic suppression of the flat band and its contribution to ρ0 [32]. The same
behavior of ρ0 has been observed on twisted bilayer graphene, where a strong variation of
ρ0 is seen toward the magic angle [11,70]. In that case, the residual resistivity increases by



Magnetism 2023, 3 196

more than three orders of magnitude and resembles the behavior of ρ0 shown in Figure 13.
These observations are explained with the framework of the FC theory [27,32], and, to our
best knowledge, have not found any different explanations.
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Figure 12. Resistivity ρ(T, B) obtained in measurements on CeCoIn5 under the application of mag-
netic fields B displayed in the legend [65]. The inset (a,b) shows both the LFL behavior of the
resistivity at low temperatures and the crossover with 1 . n . 2 at elevated T.
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Figure 13. Adapted from [69]. Values of the residual resistivity ρ0 (left axis, solid squares) and the
index n in the fit ρ(T) = ρ0 + ATn (right axis, solid squares) versus pressure P.

7.2. Asymmetric Tunneling Differential Conductivity

The particle–hole asymmetry is observed experimentally, analyzing the thermopower
of HF compounds [43–45] (see Section 5). In this subsection, we continue to consider the
particle–hole asymmetry taking place in HF compounds (see Section 4), and demonstrate
that the differential tunneling conductivity (resistance) is an important instrument to
explore the asymmetry in magnetic fields. The asymmetry takes place at a large scale of the
universe [24], but here, we confine our consideration of HF compounds to illustrate the
versatile and unique role of magnetic fields in analyzing the properties of HF compounds.
Again, we shall see that the application of magnetic field makes the system transit from the
NFL behavior to the LFL behavior (see Figures 2 and 11).

Consider the differential tunneling conductivity σd(V) between an HF metal and a sim-
ple metallic point. At low temperatures, σd(V) can be noticeably asymmetric with respect to
the change in voltage bias V, which makes the asymmetric part ∆σd(V) = σd(V)− σd(−V)
finite. The asymmetry can be observed in experiments on HF metals whose electronic
system has undergone the topological FCQPT, while the application of magnetic field
causes the system to exhibit the LFL behavior and eliminates the asymmetry, as it has
been predicted [24,29]. Such behavior has been observed in measurements on the HF
metal CeCoIn5 [71], displayed in Figure 14. The data displayed in Figure 14 have been
extracted from [71] (Figure S17) and demonstrate the sample independence of the asym-
metry. As seen in Figure 14, ∆σd(V) is a linear function of V and vanishes in the presence
of magnetic field at a sufficiently low temperature of 1.75 K [15,24,29,30]. We note that at
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rising temperatures and fixed magnetic field B, the asymmetry emerges as soon as the NFL
behavior again restores (see Figure 2a) since the elimination of the asymmetry is related to
the crossover, rather than to a phase transition that takes place at finite temperature. We
suggest that in the case of YbRh2Si2 at QCP tuned by the application of magnetic field, the
asymmetry exhibits a jump as it does in the Hall coefficient. In the case of CeCoIn5, such a
jump is absent since the corresponding QCP is hidden under the superconducting dome
(see Section 7.3).
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Figure 14. Asymmetric part ∆σd(V) of the tunneling differential conductivity measured on CeCoIn5

and extracted from the experimental data [71]. Linear dependence of ∆σd is shown by the straight
line. The asymmetric part disappears at B = 14 T and T = 1.75 K, with Bc0 ' 5 T.

Now, we analyze how the asymmetrical part ∆σd(V) of the conductivity is related
to the violation of T and C symmetries. Suppose we have a contact between HF and
common metals. Let initially the electron current be directed from the HF metal to the
usual metal. When voltage V is applied to the contact, we also change the electron charge
−e by +e, which changes the direction of the current. Consequently, one obtains exactly the
above electric current under the voltage sign change V → −V. As a result, the differential
conductivity obtains the same asymmetric part ∆σd(V), as seen in Figure 14. If C were
conserved, the asymmetric part would vanish, ∆σd(V) = 0. Thus, we conclude that because
of the finite value of ∆σd(V), the C symmetry is broken. In the same way, the time reversal
t → −t for the constant charge generates the change in the current direction only. Since
this reversal can also be achieved with V → −V, it is clear that time-reversal symmetry is
broken if ∆σd(V) is finite. Hence, both the C and T symmetries are violated, provided that
the non-zero ∆σd(V) 6= 0 emerges. In this case, the simultaneous transformation of e→ −e
and t→ −t does not change anything, which means that the combined CT symmetry is
conserved. It is worth noting that in the present case, the coordinates reversal symmetry,
the parity P , is not violated so that the combined general CPT symmetry is kept intact. It is
well known that both C and T symmetries are preserved for systems of fermions described
by the Landau theory. It follows that for such systems, as well as for ordinary metals, σd(V)
is a symmetric function of its variable V so that the conductivity asymmetry ∆σd(V) is not
observed in them at low T (see, e.g., [15,24,29]). Thus, ∆σd(V) 6= 0 signals the presence
of FC and the corresponding flat band, which produce the violation of both T and C, as
explained in Ref. [24]. It is seen in Figure 15 that in CeCoIn5, in both superconducting and
the pseudogap state, the asymmetric tunneling conductivity rises, ∆σd(V) 6= 0.

The data [72] displayed in Figure 15 are in good agreement with the data obtained in
Ref. [73], as shown in Ref. [15]. These facts confirm that beyond Bc0, the FC state occurs,
promoting both the superconducting and the corresponding pseudogap (PG) states [17]. As
seen in Figure 15, at T ≤ 2.7 the asymmetric tunneling conductivity ∆σd(V) is temperature
independent. Such behavior is the intrinsic feature of HF metals located near the topological
FCQPT [15]. This observation points to the fact that the PG state can be considered as the
incoherent state emerging from the superconducting one. Thus, magnetic fields allow one
to obtain unique information about the PG state.
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We note that, as predicted by [15,20,24,29], C-symmetry violation in strongly correlated
Fermi systems [43,45] has been experimentally observed. It is seen from the phase diagram
in Figure 2 that at raising magnetic fields B and low temperatures T, the HF metal CeCoIn5
exhibits LFL behavior and the symmetries are restored [24]. We note that the same behavior
is exhibited by the HF metals YbRh2Si2 [74], YbCu5−xAlx (for x = 1.5 [75]) and graphene [11],
and explained within the framework of the FC theory [15]. We conclude that the phase
transition in CeCoIn5 is represented by the topological FCQPT and accompanied by the
symmetry violation, as it does in the mentioned above HF metals such as the archetypal
HF metal YbRh2Si2 (see Section 5) and graphene. We note that both C and T symmetries
are violated due to the emergence of the flat band formed by the FC state (see Section 4).
This observation is experimentally confirmed by the fact that the symmetries are restored
under the application of magnetic field [15,24,29,75].

It is possible to measure the differential resistance dV/dI as a function of the cur-
rent I. In fact, the symmetry properties of this function are the same as those of σd(V):
when a magnetic field is applied, the asymmetry of the differential resistance disappears
since the system goes into the LFL state. Magnetic field dependence of the differen-
tial resistance dV/dI measured on graphene versus direct current I for different mag-
netic fields B is reported in Figure 16 [11]. Asymmetric part of the differential resistance
As(I) = dV/dI(I)− dV/dI(−I) decreases in an increased magnetic field and vanishes at
B ' 140 mT, as can be seen in Figure 16. Such behavior is of great importance since the
strongly correlated graphene has a perfect flat band [11]. Thus, in accordance with the
prediction [15,29] the asymmetric part tends to zero at sufficiently high magnetic field, as
seen in Figure 16. It is seen as well that the asymmetry remains at the superconducting
state, and is suppressed at B ' 140 mT [24]. Thus, we can safely conclude that the strongly
correlated state in graphene is controlled by the topological FCQPT, as it is in the HF
compounds. To support our statement on the transition of graphene from the NFL behavior
to the LFL, as it follows from vanishing the asymmetric part (see Figure 16), we predict
that the resistance ρ(T) versus T exhibits linear dependence, ρ(T) ∝ T in the normal state
at zero magnetic field, while at relatively high magnetic fields and low temperatures of
kBT << µBB ρ(T) exhibits ρ(T) ∝ T2 behavior, as it occurs in strongly correlated Fermi
systems [15,16].

To conclude this subsection, we note that the violation of C-symmetry in HF metals is
directly sequestered with T -symmetry violation. Meanwhile, the application of magnetic
field B, driving the HF metal into its LFL state, restores both the T and C symmetries.
One could suggest that the application of magnetic field is also to create the T -symmetry
violation. It is true, but the corresponding violation is rather weak in comparison with
that induced by the presence of the flat band and needs special facilities to be observed.
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Again, we have to stress the valuable role of magnetic fields in exploring the properties of
HF compounds.
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Figure 16. Magnetic field dependence of the asymmetric part dV/dI(I)− dV/dI(−I) on the current I
extracted from [11]. The different values of B are shown in the inset.

7.3. Hall Effect

We are now in a position to consider a possible jump in the Hall coefficient of the
CeCoIn5 at B → Bc0 at the zero-temperature limit. Measurements of the Hall resistivity
RH(T, B) in external magnetic fields B versus T have revealed a diverse low-temperature be-
havior of this basic property in HF metals, ranging from the LFL behavior to the challenging
NFL one [28,31,33].

It is instructive to compare the behavior of the Hall coefficient in archetypal HF metals
CeCoIn5 and YbRh2Si2. At T → 0 in YbRh2Si2, the application of the critical magnetic
field Bc0 suppressing the antiferromagnetic phase (with the Fermi momentum pAF ' pF)
restores the LFL behavior with the Fermi momentum p f > pF, making an abrupt change in
the Hall coefficient RH(T → 0, B→ Bc0), as a function of B [15,31,33]. At low temperatures
and B < Bc0, the ground-state energy of the antiferromagnetic phase is lower than that
of the heavy LFL, while at B > Bc0, the opposite happens, and the LFL state wins the
competition. At B = Bc0, both the antiferromagnetic and the LFL states have the same
ground-state energy. Thus, for T = 0 and B = Bc0, an infinitesimal change in the magnetic
field B leads to a finite jump in the Fermi momentum (see the phase diagram in Figure 11).
In response to this change, the Hall coefficient RH(B) experiences a corresponding sharp
jump [15,31,33]. In the case of CeCoIn5, one can hardly expect to observe such a jump since
the QCP is hidden under the superconducting dome (see the phase diagram Figure 2a).
As a result, one can only observe RH(B > Bc0). Measurements of the Hall coefficient on
CeCoIn5 do not show the possible jump, while the observed temperature dependence of
RH(T, B) [28] can be explained within the framework of the FC theory [76]. The absence of
the jump in the Hall coefficient could lead to the false impression that the quantum phase
transition in CeCoIn5 is not accompanied by the symmetry violation, but the study of the
T and C symmetries and the change in the residual resistivity ρ0 clearly signals that the
violation of the symmetry does take place.

8. Summary

In our short review, we have analyzed the influence of magnetic field on the properties
of strongly correlated heavy-fermion compounds such as heavy-fermion metals and frus-
trated insulators with quantum spin liquid. We have shown that the magnetic field B can be
considered a universal tool, allowing one to explore the main properties of HF compounds.
These properties are the T/B scaling, exhibiting under the application of magnetic field B at
temperatures T and the emergence of the LFL behavior under the application of magnetic
field. This emergence of the LFL behavior is accompanied by the restoration of the T and C
symmetries and by the decrease of the residual resistivity ρ0.
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We have revealed and explained the universal scaling of the thermopower S/T in
such different HF compounds as YbRh2Si2, β-YbAlB4, and [BiBa0.66K0.36O2]CoO2. Our
calculations are in good agreement with observations and show that the promoted universal
S/T scaling actually takes place. This scaling does not depend on the specific properties of
the HF compounds under consideration and coincides with the scaling of the normalized
effective mass M∗N = (C/T)N , i.e., it is a scaling characteristic of HF compounds. We have
also shown that destruction of the flattening of the single-particle spectrum profoundly
affects S/T, eliminates the particle asymmetry, and leads to the two jumps and to the
change of sign of the thermopower occurring at the antiferromagnetic phase transition.

We have delineated the quantum phase transition in CeCoIn5, and explained a number
of experimental data collected in measurements on CeCoIn5 that allowed us to clarify the
corresponding quantum phase transition. We have shown that the data related to the
behavior under the application of magnetic fields of both the residual resistivity and the
asymmetrical tunneling conductivity clearly point to the symmetry violation occurring
at the quantum phase transition in CeCoIn5. From the experimental point of view, we
have shown that these data demonstrate that the quantum phase transition in CeCoIn5 is
accompanied by the symmetry breaking related to the violation of the T and C symmetries,
and is represented by the topological FCQPT that connects two Fermi surfaces of different
topological charges, as it occurs in graphene and the archetypal HF metal YbRh2Si2. We
have explained why the Hall coefficient does not exhibit the jump at the phase transition in
CeCoIn5, as it does in the case of YbRh2Si2.

Finally, our explanation of the number of experimental results within the framework of
the fermion condensation theory suggests that the topological FCQPT is the intrinsic feature
of many strongly correlated Fermi systems. This topological phase transition can be viewed
as the universal cause for the non-Fermi liquid behavior and for the existence of the new
state of matter represented by the strongly correlated Fermi systems (see, e.g., [15–17,24]).
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