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Definition: The Pandemic Equation describes multiple pandemic waves and has been applied to
describe the COVID-19 pandemic. Using the generalized approaches of solid-state physics, we derive
the Pandemic Equation, which accounts for the effects of pandemic mitigation measures and multiple
pandemic waves. The Pandemic Equation uses slow and fast time scales for “curve flattening” and
describing vaccination and mitigation measures and the Scaled Fermi–Dirac distribution functions for
describing transitions between pandemic waves. The Pandemic Equation parameters extracted from
the pandemic curves can be used for comparing different scenarios of the pandemic evolution and for
extrapolating the pandemic evolution curves for the periods of time on the order of the instantaneous
Pandemic Equation characteristic time constant. The parameter extraction for multiple locations
could also allow for uncertainty quantification for such pandemic evolution predictions.
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1. Introduction

A pandemic is defined as an epidemic that occurs on more than one continent [1]. An
epidemic is a more severe event than an outbreak of a disease, which is a sudden increase
in disease occurrence. An epidemic is a large number of outbreaks spreading to a large
geographical area.

Epidemics and pandemics such as the Athenian Plague (430 BC [2], Antonine Plague
(165–180 AD) [3], Justian Plague (541 AD) [4]. Black Death (1346–1353), the Seven Cholera
Pandemics (1827–1961), Spanish Flu (1918) [5], HIV, Ebola, Severe Acute Respiratory
Syndrome (SARS) (2002–2003), and COVID-19 have caused deaths and economic hardship.
The predicted dramatic increase in world population of slums (from 1.1 billion people today
to over 3 billion expected in 30 years from now [6]) with no access to pure drinking water
and related population migration are some of the reasons that mean that future pandemics
are unavoidable and might be harder to control. Other factors making pandemics more
difficult to control include the overuse of antibiotics and pesticides, widespread problems
with healthcare systems worldwide, corruption, wars, and racial problems. In addition, the
World Health Organization is relying more and more on private donations from donors who
might have their own agenda to promote, making preventing and controlling pandemics
more difficult [7]. Unavoidably, pandemics cause stereotypes and psychological problems,
exacerbating the pandemic problems.

This is why an expected future mysterious and disastrous pandemic Disease X (20 times
more infectious than the COVID-19 pandemic) was discussed in DAVOS 24 (one of the
sessions was called “Preparing for Disease X”) [8].

A part of such preparation is the development of simple but effective mathematical
approaches to monitor and analyze pandemics, such as the Pandemic Equation [9,10].

When a pandemic comes it develops more rapidly in hot spots and infection rates are
dramatically different in different locations. The optimum measures to control a pandemic
also vary a lot from nation to nation, from one community to another, or from a university
campus to an elementary school. To achieve that control, we need to analyze complex
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and vastly varying data accurately interpolating overall time and space dependencies of
infection rates, related hospital admissions, and deaths, as well as such dependencies for
certain groups, for example, immune-suppressed people.

To this end, the Pandemic Equation borrowed such an approach from the quantum
theory of solids comprised of practically infinite numbers of nuclei and electrons.

Solids are comprised of nuclei and electrons whose masses are as different as the mass
of a behemoth and a sparrow, and the electronic motion, compared to the nucleus motion as
fast as a flight of a sparrow, to a behemoth motion. Similarly, the Pandemic Equation uses a
fast time scale of an exponential pandemic growth or decay but varies the characteristic
time of its evolution on a much slower time scale.

Another concept borrowed from the solid-state theory is the Fermi–Dirac Distribution
function. This function describes a gradual transition between two states and the abruptness
of such a transition is controlled by a temperature parameter varying from a very abrupt at
low temperatures to very gradual at high temperatures. This function is generalized in this
paper to introduce a Scaled Fermi–Dirac function. This function is perfectly suited for the
interpolation of complicated transitions in pandemic events related to mitigation measures
or the introduction of new drugs.

Pandemics often come in waves having many peaks and valleys. As an example, see
Figure 1 showing the weekly deaths caused by the COVID-19 pandemic. The Pandemic
Equation describes a pandemic as a summary of such waves. A more accurate approach
introduced in this paper is using another concept similar to so-called Vegard’s law in
materials science. This law interpolates the properties of a mixture by a linear combination
of the properties of the mixture components. In this paper, we introduce a Scaled Vegard’s
Law that accurately interpolates the transition between the pandemic waves.
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Figure 1. Weekly COVID-19 cases reported worldwide (in millions). Data from [11].

The COVID-19 pandemic was unique in terms of enormous data collection, and we
applied the Pandemic Equation method to the COVID-19 epidemic. However, the results of the
COVID-19 analysis could teach us valuable lessons and help combat future possible pandemics.

The Pandemic Equation parameters extracted from the pandemic curves can be used for
comparing different scenarios of the pandemic evolution and for extrapolating the pandemic
evolution curves for the periods of time on the order of the instantaneous Pandemic Equation
characteristic time constant. The parameter extraction for multiple locations could also allow
for uncertainty quantification for such pandemic evolution predictions.

2. COVID-19 Pandemic

The reported COVID cases and COVID deaths are probably underestimated, as seen
in Figure 2, which compares excess mortality during the pandemic with the reported
COVID-19 deaths in the United States.
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Figure 2. Excess deaths and COVID-19 deaths in the United States. (Data from [11]).

The infection rate and COVID-19-related hospitalizations all come in waves. These
waves rise, crest, and dip, and then rise, crest, and dip again. This applies to all other
pandemics as well. It is better seen from Figure 2 since averaging the data in Figure 1 over
the entire world smoothed the wave transitions. As seen in Figures 3 and 4, death rates
differ between different countries and even various locations in one country.
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Figure 3. Excess mortality during the pandemic and the reported COVID-19 deaths. Data from [12].
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Figure 4. Cumulative coronavirus deaths by share of the population in each county for 7 days in
March 2023. (Data from [13,14]. Map from [15]).

New pandemic waves occur due to new emerging variants caused by mutation and
recombination. The virus is asexual and replicates making copies of itself. Mistakes
(mutations) during reproduction cause new strains. Some strains are not competitive and
die out, but some are more easily spread or more deadly. Recombination occurs when a
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host cell is infected with two different variants at the same time, exchanging one part of a
virus for another. For example, the overtaking of the Delta variant by Omicron [16].

The severity of the COVID-19 peaks is clear from comparing its impact with the USA
annual death rates for varied reasons (see Figure 5).
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Figure 5. USA annual death rates in 2020 in thousands for different causes. Data from [17].

Simulations could drive the response to a pandemic (see [18–27], review papers [28–36]
and references therein). The complexity of a pandemic indicates a need for a transparent
and easily understood pandemic monitoring tool, which is especially acute. The Pandemic
Equation is such a tool using generalized approaches, approximations, and mathematics and
concepts previously applied for the description of solid-state physics phenomena, such as the
Born–Oppenheimer Approximation [37] and Fermi–Dirac distribution function [38,39]. Our
approach to pandemic modeling is based on (1) using different time scales: short time scales
over which one could use the Logistic Equation [40,41] solution and much longer times scales
over which the characteristic times of pandemic variation in the Logistic Equation slowly
vary, (2) introducing the Scaled Fermi–Dirac (SFD) function that approximates transitions
between the pandemic waves, and (3) generalization of the Vegard’s Law [42]. The advantage
of the Pandemic Equation is its ability to describe separate pandemic waves and accurately
interpolate the transitions in between. Another advantage is that its predictive ability has
a well-defined time scale (on the order of the slow characteristic time. This makes it suit-
able for use with AI models, as reviewed in references [31,34,35], and for using uncertainty
quantification models for evaluating the quality of such predictions.

3. Logistic Equation

As explained above, a pandemic is a complex event involving outbreaks of disease on
several continents and at multiple and widespread geographic locations. A pandemic could
be traced and characterized at different levels: globally and locally at the continent, country,
state, or even county or campus level. At each level, there is a number of people, Nt, that
could be infected, which is the relevant infection pool. As mentioned in the introduction,
a pandemic is an epidemic that occurs on more than one continent, and an epidemic is a
large number of outbreaks spreading to a large geographical area. A pandemic has to be
monitored locally and globally. For local monitoring, Nt is the local pandemic pool, such
as the total number of people in a certain locality, such as a county, city, town, or even a
university campus. For more global monitoring, Nt is the population of a state or even of
a continent. The mathematics of global and local pandemic monitoring are similar. Only
the scale is different. As explained below, the Pandemic Equation could even monitor
the spatial dependence of the pandemic assuming the anisotropic Gaussian distribution
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of infections. This definition of Nt allows us to compare the solutions of the Pandemic
Equation with the actual reported data at all levels.

The relevant characteristics of the infection include the total number of infections, N1; the
number of hospital admissions to treat the disease, N2; the number of disease-related deaths
N3; or the access mortality number, N4. Each such characteristic has its characteristic time
constant τk corresponding to the infection characteristics Nk. The Logistic Equation describes
an outbreak, endemic, or pandemic event in a simple but not exactly accurate way:

dNk
dt

=
(1 − Nk/Nt)Nk

τk
(1)

Here k = 1,2,3, or 4, and τk are the characteristic time constant of the initial pandemic
growth. This equation could be rewritten in a dimensionless form using fk = Nk/Nt:

The solution of Equation (1) is

Nk =
Nt fok exp(t/τk)

fok exp(t/τk) + 1
. (2)

Here, fok = fk(0).
The daily number of new infection events, ∆Nk, is more important for following the

pandemic evolution than the total number of infections to date, Nk. From Equation (7), the
daily number of new infection events, ∆Nk, is

∆Nk =
dNk
dt

=
Nt foket/τk(

1 + et/τok fok
)2

τk
. (3)

The maximum of this symmetric curve is reached at tmo = τ ln(1/ fo).
The change in the initial condition (initial fraction of infection events fok = Nk(t = 0)/Nt)

only shifts the pandemic curve in time by a few τk periods (see Figure 6).
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As seen in Figure 7, the solution of the Logistic Equation describes the pandemic
evolution only at the initial pandemic stage (till approximately week 14). After that, the
actual time dependence is quite different. The solution of the Logistic Equation with
the same initial increase in the infection rate predicts a much larger peak. The actual
dependence is flattened. This effect is referred to as “curve flattening”. As schematically
shown in Figure 7, the curve flattening effect brings the peak infection rate below the
capability of the health system to treat the infection.
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Figure 7. Weekly COVID-19 case in Connecticut interpolated by the solution of the Logistic Equation.
(Connecticut data from [43]) (The health system capacity is shown for illustration only and might be
different from the capacity of the Connecticut health system.).

The actual dependence is asymmetrical: the decay stage is longer than the growth
stage. There are significant deviations from a smooth curve shape. These deviations might
be related to the introduction of a new protocol in treating the disease, to the changes in
people’s behavior, to mitigation measures, such as demanding to wear masks or closing or
opening the economy.

As shown in Figure 7, the Logistic Equation only describes a single pandemic wave,
whereas the pandemic develops in many overlapping waves (for example, see Figures 1 and 2).

The Pandemic Equation addresses all these issues for a much more realistic description
of a pandemic.

4. Pandemic Equation

The Pandemic Equation uses the solution of the Logistic Equation but introduces the
time dependence of the pandemic characteristic time constant, which is, in most cases, just
a slow linear dependence on time τk = τk(t) = τok(1 + αkt). This approach is similar to the
Born–Oppenheimer approximation used in solid-state physics, to separate rapid electronic
motion and much slower nuclei motion. Nuclei are thousands of times heavier than
electrons and rapid electron motion could be considered using “frozen” nuclei positions.
Likewise, the Pandemic Equation uses the solution of the Logistic Equation for short
periods of time, but the characteristic time constant slowly varies with time, as described
by Equation (8). Parameter ak is the curve flattening parameter (see Table 1 listing the
parameters used in the Pandemic Equation).

Table 1. Pandemic Equation parameters.

Parameter Unit Meaning Comment

k - The index corresponding to
monitoring different pandemic events

k = 1 number of infections, k = 2
number of hospital admissions,
k = 3 number of deaths, k = 4

excess mortality numbers

w -
The index corresponding to different

mitigation events during
pandemic wave

l - The index corresponding to different
pandemic waves

Nk
The number of people infected from

the pandemic start
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Table 1. Cont.

Parameter Unit Meaning Comment

Nt - Total number of people who could be
infected in a local pool .

Nok
Number of infected people at the

pandemic start Typical values 1 to 20

fok - Initial infection ratio fk = Nk/Nt

τoκ day Initial growth time constant Typical values from 2 to 5 days

τk day Time-dependent growth time constant τk = τok + akτ

αk - Curve flattening parameter αk is extracted from pandemic
peak time, tm

αωk - Mitigation event flattening parameter

βkw - Mitigation parameters for
w = 1, 2, . . .n mitigation events

Negative β corresponds to
lifting restrictions. Typical

values −3 to 1

twk day Times of mitigation events Typically, larger than the
pandemic peak time

τwk day Time constants of mitigation events

tm day Time of the pandemic peak

Fwk - Scaled Fermi–Dirac (FDS)
distribution function Fwk = 1

1+exp((twk−t)/τwk(t))

q C Electronic charge 1.602 × 10−19 C

T K Temperature Degrees Kelvin

kB J/K Boltzmann constant 1.38 × 10−23 J/K

EF eV Fermi level

Table 1 defines Pandemic Equation parameters.
Parameter αk determines the asymmetry of the pandemic evolution curve, as shown

in Figure 8.
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Figure 8. Effect of flattening parameter α.

In the solid-state theory, the Fermi–Dirac (FD) function, FFD, is used to describe the
transition between a non-degenerate and degenerate energy state, i.e., the transition from
the occupied electronic states to empty electron states with the temperature, T, determining
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the transition interval. We now introduce the Scaled Fermi–Dirac unction (SFD) where the
temperature itself is a function of energy

FSFD =
1

1 + exp
(

q(EF−E)
kBT(E)

) . (4)

In the simplest case, this dependence is linear: T = T(E) = To(1 + αTE). Here, q is
the electronic charge, EF is the Fermi level energy, and kB is the Boltzmann constant (see
Figure 9a). As can be seen, this function describes the transition from zero to unity centered
at the Fermi level with the transition width on the order of 3 kBT. To apply the FFD function
to describe the transitions in the pandemic evolution curves, we have replaced the variables.
Figure 9b shows the same function using the variables relevant to the Pandemic Equation
(time, t, instead of energy E, the time of transition twk instead of the Fermi level, EF, and the
characteristic transition time constant τwk instead of kBT/q):

Fk =
1

1 + exp
(

twk−t
τwk(t)

) (5)
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(Index w designates different mitigation events.)
The Pandemic Equation could use the FSFD function, such as that shown in Figure 9, to

describe the mitigation measures that determine the transition from a high to a lower infection
rate. This more accurate pandemic evolution model must account for a slow variation in the
mitigation event characteristic time constant with time. Here τwk(t) = τwko(1+ αwkt), τwko is
the time-independent initial characteristic transition time constant, and αmk is the mitigation
event flattening parameter.

We call the function FSFD defined by Equation (4) the Scaled Fermi–Dirac (SFD)
distribution function. The SFD distribution function could find applications in solid-state
physics to describe the electron temperature increase in the electric field more accurately
since electrons with a higher energy could also have a higher energy of random motion
(i.e., a higher temperature [44]). Figure 10 shows the effect of parameter αT on the FDS
distribution function.
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Figure 10. FDS distribution function for αk = 0.1 (a) and αk = 0.3 (b). (Compare with Figure 9b for
αk = 0).

Based on the above discussion, we can now introduce the generalized Pandemic
Equation that describes multiple mitigation events (see [9,10] and references therein):

∆Nk = ∆Nko

nw

∏
w=1

(1 − βkwFkw) (6)

Here,

∆Nko =
Nt fkw exp[(t − tkw)/τkw(t)]

τkw(1 + fkw exp[(t − tkw)/τkw(t)])
(7)

Figure 11a illustrates the effect of the mitigation events. Figure 11a simulates the effect
of vaccination of the different degrees of effectiveness. Figure 11b represents the effects of
opening and closing the economy.
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A generalized Pandemic Equation accounts for the infection space dependence:

∆Nkxy =

nj

∑
j=1

∆Nkj

4π2σxjσyj
exp−

(
x − xj

)2

2σ2
xj

exp−
(
y − yj

)2

2σ2
yj

. (8)

Here ∆Nkj is the total number of the infection events in a given location, and ∆Nkj is
given by Equation (8). xj, yj are the coordinates of the maximum infection event location
using the x-y coordinate system related by the angle θ with respect to the north–south
direction, and σxj and σyj are the standard deviations (see Figures 12 and 13). The standard
deviation values are extracted from the published pandemic data. Index j corresponds to
the different peaks of the pandemic events in space.
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This formalism could be applied to the description of the multiple pandemic waves
using the SDF function to describe the transition between the pandemic waves l and l + 1:

∆Nl,l+1(t) = 2∆Nl(1 − x)Fl(t, t1) + 2∆Nl+1xFl+1(t, t2). (9)

Here, x = (t − t1)/(t2 − t1); Fl(t, t1) =
(

1+ exp t−t1
τ1

)−1
; Fl+1(t, t1) =

(
1+ exp t2−t

τ2

)−1
.

We call Equation (9) the Scaled Vegard’s Law (SVL). The SVL is the generalization
of Vegard’s Law that is used in solid-state theory, material science, and chemistry for a
description of properties of mixtures and ternary materials:

a = a1x + a2(1 − x). (10)

Here, a is the unit constant of a ternary compound comprising binary components
with unit constants a1 and a2 and molar fraction x of compound 1. In contrast to Vegard’s
Law, the SVL interpolates a large variety of transitions. Figure 14 shows that SVL could
interpolate transitions from those corresponding to the conventional Vegard’s Law to highly
nonlinear transitions.

As seen in Figure 15, this approach allows us to describe all five waves of the COVID-
19 pandemic by fitting each pandemic wave independently and interpolating the transition
between the waves using SVL.
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As seen from Figure 15, the Pandemic Equation and SLG interpolation described the
five waves of the COVID-19 pandemic.

5. Conclusions

Epidemics and pandemics have affected humankind throughout history. The last
pandemic, COVID-19, is unique because of the many steps implemented to mitigate the
pandemic that differed between different countries and even different localities. There
is also an unprecedented amount of data characterizing COVID-19 development. The
Pandemic Equation applies the generalized approaches of the quantum theory of solids
to describe pandemic events using different time scales: a fast time scale, at which the
solutions of the Logistic Equation apply and a slow time scale, at which the parameters of
the Logistic Equation change. To describe the transitions between the pandemic events,
the Pandemic Equation is using Scaled Fermi–Dirac distribution functions and the Scaled
Vegard’s Law. These generalizations might also find applications in solid-state theory. One
example is the behavior of hot electrons having the Fermi–Dirac distribution function with
a non-Maxwellian tail [36].

The Pandemic Equation is a valuable tool for researching and quantifying the effects
of health care and mitigation measures on pandemic evolution and will allow humankind
to better prepare for possible future pandemics and epidemics. Further research will focus
on the development of artificial intelligence models to automatically extract optimum
Pandemic Equation parameters.
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