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Abstract: The present study attempted for the first time an investigation on the effect of deep cryo-
genic treatment in liquid nitrogen (LN) on magnesium–cerium oxide (Mg/2wt.%CeO2) composites
containing equal amounts of different length scales (micron and nanosize) cerium oxide (CeO2)
particles. The disintegrated melt deposition method was used to synthesize Mg-2CeO2 micro- and
nanocomposites, followed by hot extrusion as the secondary processing. Further liquid nitrogen
treatment was performed at a cryogenic temperature of −196 ◦C. The combined effects of cryo-
genic treatment and reinforcement length scale on physical, mechanical, and thermal behaviors
were studied. The results indicate that LN-treated micro- and nanocomposite samples exhibit, in
common, a reduction in porosity, similar grain size, and a limited effect on the original texture of the
matrix. However, microhardness, 0.2% Compressive Yield Strength (CYS), failure strain, and energy
absorbed increased for both micro- and nanocomposite samples. Overall, results clearly indicate the
capability of deep cryogenic treatment with LN to positively diversify the properties of both micro-
and nanocomposite samples.

Keywords: magnesium; nanocomposite; cryogenic treatment; mechanical properties; ignition
temperature; grain size

1. Introduction

The commercial use of magnesium (Mg) and Mg-based materials is inevitable due to
their attractive density (1.74 g/cm3), high specific strength, excellent electromagnetic shield-
ing, easy availability, superior biocompatibility, and superior machineability [1–4]. This
makes magnesium-based materials extremely suitable for both engineering and biomedical
applications [5]. In engineering applications such as transportation (land, air, marine,
and space), defense, sports, electronics, and robotics sectors, magnesium-based materials
can play a key role in reducing energy consumption through lightweighting, while in the
biomedical sector, they can serve as a bioresorbable temporary implant that will elimi-
nate revision surgery and reduce patient trauma, medical costs, and burden on hospital
facilities [6]. Although magnesium materials exhibit superior promise for use in various
commercial sectors, their application is limited owing to shortcomings such as low fracture
strain, ignition resistance, and expedited degradation in saline environments [7]. From a
mechanical property standpoint, the key limitation of Mg-based materials is the limited
range of mechanical properties when compared to the incumbent material of choice, Al-
based alloys, which are almost 33% denser compared to Mg-based alloys. Researchers
in the lightweight metal community have been working actively over the last 20 years to
improve the property spans by (a) developing novel magnesium-based materials using
alloying, composite, and multicomponent approaches, (b) innovating novel processing
techniques to enhance the properties, and (c) using thermal treatment to tailor the proper-
ties as per the application requirement. Reasonable success has been achieved using all
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three approaches; however, the understanding of the behavior of Mg-based materials can
be further explored as the available information is limited. Hence, there is tremendous
room to try new approaches to enhance the properties of Mg-based materials.

The use of composite technology has shown tremendous advancements in the past
five decades, with fundamental research focused on aluminum-based microcomposites.
Research on nanocomposites picked up in the late 1990s, with the focus gradually tilting to-
ward magnesium-based nanocomposites. Both of these two types of composites (micro and
nano) have certain advantages of their own; however, holistically, nanocomposites appear
to have an edge over microcomposites, especially for magnesium. Mg-based nanocompos-
ites, depending on judicious selection of reinforcement, have displayed superior hardness,
tensile strength, compressive strength, creep resistance, tribological response, dry and wet
corrosion resistance, and fatigue response, making them suitable for scale-up for industrial
applications [8–11]. In order to further widen the spectrum of properties of magnesium-
based composites, additional methods can be utilized, and these include the following:
(a) judicious selection of primary and secondary processing techniques, (b) judicious matrix
and reinforcement selection based on their compatibility, and (c) heat/cryogenic treatment,
among others.

A possible composite material is CeO2 (ceria), which possesses several attractive
properties such as high hardness (6–8 on the Moh’s scale) [12,13], wear resistance [14],
corrosion resistance [15], good thermal stability [16,17], high specific chemical reactivity [18],
as well as a high light refractive index and UV-absorption capability [19]. By virtue of
this, it has found uses ranging from additives in ceramics [20], anti-corrosion coatings for
metals [15], catalytic processes [17], electrochemicals [21], and solid oxide fuel cells [22], as
well as thermal barriers and safeguards [18].

However, very limited work on the use of cryogenic treatment to influence the proper-
ties of Mg-based alloys is available in the literature [23,24]. Further, limited work has been
published on Mg-based composites [25,26]. Gupta et al. [25] investigated the effect of liquid
nitrogen exposure (−196 ◦C) on the mechanical properties of Mg-2CeO2 nanocomposites.
Exposure to liquid nitrogen leads to refined grain size, reduced porosity, and improved
strength properties. Further, Gupta et al. [26] compared the effects of shallow and deep
cryogenic treatments on the properties of Mg-CeO2 nanocomposites. Deep cryogenically
treated samples displayed an overall advantage in terms of mechanical properties and
ignition temperature when compared to the shallow cryogenic treatment. A further litera-
ture search indicates that no work is performed on Mg-composites containing micron-size
particle reinforcement.

Accordingly, the present study investigates the effect of deep cryogenic treatment
(exposure to liquid nitrogen) on the physical, microstructural, and mechanical properties
of Mg/2wt.%CeO2 composites where CeO2 reinforcement was used in both micron and
nanolength scales and in the same amount. The emphasis is particularly placed on studying
the effect of different length scales of reinforcement on the end properties of composites.
The results are interesting and capable of developing a new research direction in the
development of composite materials with better properties.

2. Materials and Methods
2.1. Materials

Magnesium (Mg) and cerium oxide (CeO2) were used as matrix and reinforcement,
respectively. The size of reinforcement, source, and purity of materials are listed in Table 1.
Composites were made using 2wt.%CeO2 particles on micron and nanolength scales.

Table 1. Materials used in the present study.

Raw Material Size Purity Supplier

Magnesium - ≥99.9% Acros Organics, Morris Plains, NJ, USA
Cerium oxide (nanoscale) 15–30 nm 99.9% Alfa Aesar GmbH & Co.

KG, Haverhill, MA, USACerium oxide (microscale) 5 µm 99.9%
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2.2. Processing

Composite materials were synthesized using the environment-friendly and flux-less
disintegrated melt deposition (DMD) method. The procedure involved superheating the Mg
turnings and CeO2 particles placed in an alternating arrangement within a graphite crucible
to a target superheat temperature of 750 ◦C, with argon used as the protective gas. The melt
was stirred for 150 s using a mild steel impeller blade to ensure uniform distribution of the
reinforcement and temperature homogenization of the Mg melt. The composite slurry was
bottom-poured and subsequently disintegrated using argon gas jets before solidification
into a solid cylindrical ingot. The ingots were then machined into billets with dimensions
of 35.5 mm in diameter and 45 mm in length. Secondary processing followed, with first
soaking at 400 ◦C for 60 min, followed by direct hot extrusion at 350 ◦C using a die with a
diameter of 8 mm (extrusion ratio of 20.25:1), resulting in cylindrical extrudates.

The composites are then studied in 2 conditions: as-extruded (without further treat-
ment, AE) and after exposure to liquid nitrogen for 24 h (LN). The temperature–time cycle
for deep cryogenic treatment of LN samples is presented in Figure 1. Previous findings and
recommendations were reviewed from the open literature to determine the exposure time
at sub-zero temperatures [23,27].
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2.3. Characterization
2.3.1. Density and Porosity

The experimental densities of the samples before and after cryogenic treatment were
determined using Archimedes’ principle using an A&D GH-252 (AND Company, Limited,
Tokyo, Japan) electronic scale, with five representative samples measured. The rule of
mixtures was used to calculate the theoretical density of the Mg-2CeO2 composite using
the known constituent densities of Mg (1.738 g·cm−3) and CeO2 (7.132 g·cm−3). Porosity
was derived by comparing the measured experimental density against the calculated
theoretical density.

2.3.2. Microstructure

Samples were ground and fine-finished using a 0.05 µm alumina suspension, followed
by etching to reveal the grain boundaries. The nanosamples were etched using 10%
oxalic acid with 3 drops of ethylene glycol, and the microsamples were etched using 5%
citric acid with 3 drops of ethylene glycol. Using a Leica DM2500 optical microscope
(Leica Microsystems (SEA) Pte Ltd., Singapore) and a JEOL JSM-6010 Scanning Electron
Microscope (SEM, JEOL USA Inc., Peabody, MA, USA), representative grain images were
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obtained. The images were analyzed for grain size and aspect ratio using MATLAB (version
R2013b) based on a minimum of 6 vertices of each detected grain.

X-ray diffraction (XRD) studies were performed on the longitudinal surface of the ma-
terial using a Shimadzu LAB-XRD-6000 (Shimadzu Corporation, Kyoto, Japan) automated
spectrometer with Cu Kα radiation of 0.154056 nm wavelength, a scan range of 2θ between
20◦ and 75◦, and a scan speed of 2◦ min−1, where θ is the Bragg angle.

2.3.3. Thermal Properties

A Differential Scanning Calorimetry (DSC) analysis was conducted using a Shimadzu
DSC-60 (Shimadzu Corporation, Kyoto, Japan) and a temperature range of 30 ◦C–600 ◦C,
with a heating rate of 5 ◦C·min−1 with argon gas supplied at 25 mL·min−1. This was
performed to measure the effect of cryogenic treatment on the thermal response of the
microstructural evolution of the material.

Ignition temperatures of Mg-2CeO2 composites before and after the cryogenic treat-
ments were determined using a Shimadzu DTG-60H Thermo Gravimetric Analyzer (Shi-
madzu Corporation, Kyoto, Japan). Parameters included a heating rate of 10 ◦C min−1,
purified air supply at 50 mL·min−1, and a measured temperature range of 30 ◦C–1000 ◦C.

2.3.4. Mechanical Properties

Microhardness was measured using a Shimadzu HMV-2 automatic Vickers micro-
hardness tester (Shimadzu Corporation, Kyoto, Japan) in accordance with ASTM standard
E384-08 [28]. Indentations were performed with a 25 g force load and a dwell time of 15 s.
A total of 20 representative readings were taken per sample.

A MTS E44 (MTS Systems, Eden Prairie, MN, USA) servohydraulic mechanical tester
was used to conduct quasi-static compression of samples in accordance with procedures
prescribed in standard ASTM E9-09 [29] at a strain rate of 5 × 10−3 min−1. Samples with
a length-to-diameter (L/D) ratio of 1 were used, with a minimum of three representative
compressions conducted. Post-fracture, compressive fractography was conducted, and the
fracture images were studied to investigate the material’s fracture response.

3. Results and Discussion
3.1. Density and Porosity

The results in Table 2 show that the deep cryogenic treatment (DCT) in liquid nitrogen
reduced the porosity in both the micro- and nanocomposites. The percentage reduction
in porosity was noticed to be higher in the nanocomposite samples in comparison to the
microcomposite samples. The reduction in porosity can be in general attributed to (a) the
development of compressive stresses [23,27] during the DCT that allowed the inward
movement of the matrix in pores and (b) the capability of pores to serve as sinks for the
extra dislocations that are generated during DCT treatment [30], which is enhanced for
composites where the matrix and reinforcements have different coefficients of thermal
expansion. Comparing the overall porosities, the microcomposite samples displayed lower
porosities than the nanocomposite samples, both before and after the DCT.

Table 2. Results of density and porosity measurements.

Before Treatment After Treatment

Material
Theoretical Density

[g/cm3]
Experimental Density

[g/cm3]
Porosity

[%]
Experimental Density

[g/cm3]
Porosity

[%]
Change in

Porosity [%pt]

Pure Mg * [31] 1.7380 1.732 ± 0.0005 0.3190 - - -

Mg-2CeO2
(AE-nano) * [25,26] 1.7648 1.745 ± 0.002 1.099 - - -

Mg-2CeO2
(LN-nano) * [25,26] 1.7648 1.7476 ± 0.0009 0.9764 1.755 ± 0.002 0.5445 −0.4319

(↓44.2%)
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Table 2. Cont.

Before Treatment After Treatment

Material
Theoretical Density

[g/cm3]
Experimental Density

[g/cm3]
Porosity

[%]
Experimental Density

[g/cm3]
Porosity

[%]
Change in

Porosity [%pt]

Mg-2CeO2
(AE-micron) 1.7648 1.760 ± 0.001 0.355 - - -

Mg-2CeO2
(LN-micron) 1.7648 1.7596 ± 0.002 0.2924 1.761 ± 0.001 0.2153 −0.0771

(↓26.3%)

*—Values obtained from other work using similar raw materials and processing methods. Downward arrows
indicate decrease in property after treatment.

3.2. Microstructure

The results of the grain size measurements can be interpreted in two ways. The
presence of the CeO2 reinforcement in both the micron and nanolength scales reduces the
grain size to approximately 1/10th of pure magnesium’s grain size (Table 3 and Figure 2).
The average grain size of the nanocomposite samples remained approximately 31% lower
than that of the microcomposite samples before cryogenic treatment. This can be attributed
to the capability of a higher number of reinforcement particles to pin the movement of
grain boundaries, and this is in line with the Zener relation, which states that the grain size
of a given metal matrix decreases with the size of reinforcement particles [32,33]. Following
the DCT, the grain size of the nanocomposite increased from 2 µm to 2.8 µm, but the
microcomposite grain sizes remained unchanged. Furthermore, no conclusions can be
drawn on the action of the DCT or the different length scales of the reinforcement on the
aspect ratio of grains, as the values remained within each other’s standard deviations.

Table 3. Results of grain size measurements.

Composition Mean Grain Size (µm) Mean Aspect Ratio

Pure Mg [31] 21 ± 0.8 1.4 ± 0.2

Mg-2CeO2 (AE-nano) [25,26] 2 ± 0.6 1.4 ± 0.3

Mg-2CeO2 (LN-nano) [25,26] 2.8 ± 0.6 1.2 ± 0.3

Mg-2CeO2 (AE-micron) 2.9 ± 0.8 1.5 ± 0.3

Mg-2CeO2 (LN-micron) 2.8 ± 0.8 1.6 ± 0.5
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The results of XRD studies are detailed in Table 4 and Figure 3. The results revealed
that the nanocomposite samples displayed a dominant basal texture both before and
after cryogenic treatment. The basal texture became stronger after the DCT, as evidenced
by the reduction in the relative intensities of the prismatic and pyramidal planes. In
the microcomposite samples, the dominant texture was pyramidal both before and after
DCT. The pyramidal texture became stronger upon the DCT as the relative intensities
of the prismatic and basal planes were reduced. These results both show that the DCT
assisted in strengthening the texture of the as-extruded samples but was not capable of
randomizing the texture. Therefore, the XRD results clearly reveal that the length scale
of the reinforcement affects the textural development of the matrix and that the DCT
strengthens the prevailing texture (basal or pyramidal) of the as-extruded samples. The
end properties of the different composites can hence be expected to be different for both
as-extruded and after DCT.

Table 4. Relative intensities of Mg crystalline plane peaks.

Material Plane I/Imax

Mg-2CeO2 (AE-nano) [25,26]

10–10 prism 0.217021

0002 basal 1

10–11 pyramidal 0.753191

Mg-2CeO2 (LN-nano) [25,26]

10–10 prism 0.104399

0002 basal 1

10–11 pyramidal 0.52514

Mg-2CeO2 (AE-micron)

10–10 prism 0.21600

0002 basal 0.75415

10–11 pyramidal 1

Mg-2CeO2 (LN-micron)

10–10 prism 0.21109

0002 basal 0.40639

10–11 pyramidal 1
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3.3. Thermal Response

The results of the DSC studies are plotted in Figure 4. As no alloying element was
used in the magnesium matrix (>99.9% pure), dissolution or precipitation of secondary
phases was ruled out. Minor exothermic peaks were observed in liquid nitrogen-treated
micro- and nanocomposite samples at ~484 ◦C and 469 ◦C, respectively. These peaks can
be attributed to the release of compressive stresses stored during DCT within the matrix
and particle–matrix interfaces. The results are consistent with earlier findings [25,26].
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The ignition studies reveal that the presence of reinforcement in micron and nano-
length scales increased the ignition temperature by 11.0% (64 ◦C) and 10.0% (58 ◦C),
respectively, when compared to pure magnesium in the as-extruded condition (Table 5 and
Figure 5). The results are consistent with observations made by researchers earlier, which
attributed a direct relationship between a decrease in thermal conductivity (owing to the
presence of reinforcement) and an increase in ignition temperature [34,35]. As the thermal
conductivity of the materials is affected by the amount of porosity [36] and grain size [37],
the lower grain sizes (Table 3) and higher porosities (Table 2) of the as-extruded composites
compared to pure magnesium are likely contributors to their higher ignition temperatures.
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Following the DCT, the thermal conductivities of the micro- and nanocomposite
samples will be dependent on the remaining porosity and dislocation density, as their
average grain sizes are similar. Considering the larger number of reinforcement particles in
the matrix for nanocomposites (the ratio of the number of particles on the nanolength scale
and the micron length scale ≈ nnano/nmicron = 4.6 × 106), their capability to increase the
dislocation density will be higher. This is evident by the larger increase in their hardness
value (Table 6). This capability of dislocations to scatter phonons and, thus, reduce thermal
conductivity is well established [38]. Expectedly, the ignition temperature of Mg-2CeO2
(LN-nano) remained 36 ◦C higher when compared to Mg-2CeO2 (LN-micron).

Table 5. Results of ignition temperature measurements.

Composition Ignition Temperature
(◦C)

Pure Mg 580

Mg-2CeO2 (AE-nano) 638 (↑10.0%)

Mg-2CeO2 (LN-nano) 676 (↑16.6%)

Mg-2CeO2 (AE-micron) 644 (↑11.0%)

Mg-2CeO2 (LN-micron) 637 (↑9.8%)

AZ31 [39] 628

AZ61 [40] 559

AZ81A [40] 543

AZ91 [39,40] 600

ZK40A [40] 500

ZK60A [40] 499

AM50 [40] 585

WE43 [40,41] 644
↑—The increase indicated is with respect to pure Mg.
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Table 6. Results of hardness measurements.

Composition Microhardness (HV)

Pure Mg [31] 55 ± 3

Mg-2CeO2 (AE-nano) [25] 86 ± 2

Mg-2CeO2 (LN-nano) [25,26] 92 ± 4 (↑7%)

Mg-2CeO2 (AE-micron) 74 ± 3

Mg-2CeO2 (LN-micron) 88 ± 7 (↑19%)
↑—The increase is with respect to the respective as-extruded condition.

The results of the XRD texture analysis and ignition temperature measurements
(Table 5) revealed the following:

a. The samples exhibiting basal texture, Mg-2CeO2 (AE-nano) and Mg-2CeO2 (LN-
nano), showed higher ignition temperatures than the Mg-2CeO2 (AE-micron) and
Mg-2CeO2 (LN-micron) samples showing pyramidal texture.

b. Within the Mg-2CeO2 nanocomposites, the weakened basal texture in Mg-2CeO2
(AE-nano), as evidenced by the intensities of prismatic and pyramidal peaks, leads
to a reduced ignition temperature.

c. Within the Mg-2CeO2 microcomposites, the weakened pyramidal texture in Mg-
2CeO2 (AE) increases the ignition temperature. In this case, the basal peak was
stronger (Figure 2).

The results of this study directly indicate that an increase in the basal texture in the case
of magnesium-based nanocomposites has a strong and direct positive correlation with the
ignition temperature. The present study also showcases the superiority of both micro- and
nanocomposites, in the context of ignition temperature, to commercial magnesium-based
alloys such as the AZ and ZK series and the WE 43 alloys (Table 5).

3.4. Mechanical Response

The mechanical response of the samples was assessed in the context of hardness
(microhardness) and compressive response (CYS, UCS, and fracture strain). The results of
the hardness measurements (Table 6) reveal that the hardness of composite samples with
or without cryogenic treatment was superior when compared to pure Mg. This can be
attributed to (a) the presence of harder ceramic particles (Moh’s hardness of CeO2 and Mg
being 6–8 [12,13] and 2 [2], respectively), (b) a reduction in grain size (Table 3) in line with
the Hall–Patch relationship [42–44], and (c) an increase in the dislocation density in the
matrix due to CTE differences between metallic Mg and ceramic CeO2.

The DCT-treated samples exhibited an increase in hardness in composite samples,
within both length scales (micro and nano). The results are consistent with the capability
of DCT to (a) further increase the dislocation density [23,30,45], (b) decrease the porosity
(Table 2), and (c) strain the lattice due to induced compressive stresses [23,30,45]. Com-
paring the length scales of the reinforcement, the composites with micron length scale
reinforcements showed lower hardness when compared to those with nanolength scale
reinforcements in both AE and LN conditions. This can be attributed to the larger number
of nanolength scale particles (reduced particle-free matrix zones) and, accordingly, their
capability to resist the localized deformation more effectively.

The compressive response of the samples (Figure 6) in the context of the presence
and length scale of reinforcements and DCT is described succinctly in the subsequent
paragraphs. The presence of the CeO2 reinforcement in either length scale increased the
0.2 CYS and UCS of the Mg matrix. The fracture strain remained higher for the Mg-
CeO2 (LN-nano) and Mg-CeO2 (AE-micron and LN-micron) samples. The increase in
strengths in the case of the composite samples can be attributed to particle-associated
strengthening mechanisms such as grain size strengthening and dislocation density-related
strengthening that originate due to CTE and elastic modulus mismatch [46]. The increase
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in the fracture strain of the Mg-2 CeO2 (LN-nano) samples can be attributed to an increase
in interfacial bonding during the LN treatment (due to compressive stresses), delaying both
crack initiation and crack propagation [25]. The higher fracture strain of the Mg-2 CeO2
microcomposites before and after LN treatment compared to the nanocomposites can be
attributed to the dominating pyramidal texture rather than the basal texture [47].

Micro 2024, 4, FOR PEER REVIEW 12 
 

 

 
Figure 6. Compressive stress–strain diagrams of materials in this work, grouped into (a) micro-
composites, (b) nanocomposites, (c) as-extruded materials, and (d) LN-treated materials.  

A visual examination of the fractographic studies conducted on the micro- and nano-
composite samples (Figure 7) indicates that the samples exhibited approximately 45° frac-
tures with respect to the compression axis. No effect of LN treatment and length scale of 
reinforcement particles was thus observed at the macro level. 

At the microscopic level, the fractographs of Mg-2CeO2 (AE-micron) samples re-
vealed relatively rougher surfaces indicative of more plastic deformation when compared 
to the Mg-2CeO2 (AE-nano) samples (Figure 8). This indicates that Mg-2CeO2 (AE-micron) 
samples have undergone more plastic deformation, which is also evident from their frac-
ture strain (Table 7), where the microcomposites exhibit ~75% higher total fracture strain 
in the AE condition when compared to nanocomposites. For the LN-treated samples, the 
fractographs showed the presence of a limited number of microcracks in Mg-2CeO2 (LN-
nano), which were absent in Mg-2CeO2 (LN-micron) samples (Figure 8). The presence of 
cracks may be attributed to the clustering points of nano-CeO2 particles (often associated 
with voids), which cannot be avoided, particularly for nanolength scale reinforcements, 
irrespective of the processing method used (powder metallurgy or casting). The signifi-
cantly higher fracture strain exhibited by Mg-2CeO2 (LN-micron) composites (37%) when 
compared to Mg-2CeO2 (LN-nano) composites (29.7%) can thus be attributed to the ab-
sence of microcrack development during compressive loading besides pyramidal texture. 

Figure 6. Compressive stress–strain diagrams of materials in this work, grouped into (a) microcom-
posites, (b) nanocomposites, (c) as-extruded materials, and (d) LN-treated materials.

Results show that LN treatment in both types of composites leads to an increase in
the 0.2 CYS and fracture strain (Table 7, Figure 6a,b). The grain size effect is ruled out
as the grain sizes of all the samples are very similar and within each other’s standard
deviation (Table 3). The increase in 0.2 CYS following LN treatment and a significant
reduction in its standard deviation indicate homogenization of the matrix microstructure,
more predictable deformation, and an increase in the stresses required to initiate the motion
of dislocations, which is characteristic of the yield point and yield zone. No trend was
observed in the UCS values, as they remained within each other’s standard deviations. In
both the micro- and nanosamples, the LN treatment led to an increase in failure strain, which
can be attributed to an improvement in interfacial characteristics due to improved matrix-
reinforcement bonding triggered through the LN treatment, as described elsewhere [6].
The nanocomposite samples displayed higher strength levels (0.2 CYS and UCS), while the
microcomposite samples showed higher failure strain levels in both AE and LN conditions
(Figure 6c,d). The relatively higher strength of the nanocomposite samples can primarily
be attributed to the Orowan strengthening and higher basal texture [48], both of which are
missing in the microcomposites. The higher failure strain of the microcomposites in both
the AE and LN conditions (Figure 6a,b) can be attributed to their pyramidal texture [47].
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Table 7. Results of compressive property measurements.

Composition 0.2 CYS
(MPa)

UCS
(MPa)

Total Fracture
Strain (%)

Plastic Fracture
Strain (%)

Energy Absorbed
(MJ/m3)

Pure Mg [31] 63 ± 4 278 ± 5 24 ± 1 - 45

Mg-2CeO2 (AE-nano) [26] 178 ± 19 473 ± 16 16.5 ± 0.7 10.5 43.3 ± 1.8

Mg-2CeO2 (LN-nano) [26] 203 ± 5
(↑14.2%)

452 ± 15
(↓4.4%)

29.7 ± 1.2
(↑80%) 13.0 76 ± 6

(↑72%)

Mg-2CeO2 (AE-micron) 142 ± 11 341 ± 8 29 ± 3 21.0 70 ± 10

Mg-2CeO2 (LN-micron) 157.5 ± 1
(↑10.9%)

347.6 ± 6
(↑1.9%)

37 ± 3
(↑27.6%) 23.0 100 ± 8

(↑42.9%)

AM50 [49] 110 312 11.5 -

NA

AZ91D [50] 130 300 12.4 -

AZ31 [51] - 250 28 -

Mg-5Zn/5BG [26] - 112.8 - -

WE43 [52] 261 ± 16 420 ± 13 16.3 ± 1.0 -

WE43 + Apatite [52] 229 ± 6 380.1 ± 9.0 11.7 ± 0.5 -

ME21 [53] 87 260 25 -

WE54 [26] 210 325 27 -

ZK60 [54] 159 472 12.4 -

Mg4Zn3Gd1Ca [26] 260 ± 3 585 ± 18 12.6 ± 0.3 -

Mg4Zn3Gd1Ca-ZnO [26] 355 ± 5 703 ± 40 10.6 ± 0.3 -

Arrows indicate increase or decrease relative to as-extruded condition.

A visual examination of the fractographic studies conducted on the micro- and
nanocomposite samples (Figure 7) indicates that the samples exhibited approximately
45◦ fractures with respect to the compression axis. No effect of LN treatment and length
scale of reinforcement particles was thus observed at the macro level.
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At the microscopic level, the fractographs of Mg-2CeO2 (AE-micron) samples revealed
relatively rougher surfaces indicative of more plastic deformation when compared to the
Mg-2CeO2 (AE-nano) samples (Figure 8). This indicates that Mg-2CeO2 (AE-micron) sam-
ples have undergone more plastic deformation, which is also evident from their fracture
strain (Table 7), where the microcomposites exhibit ~75% higher total fracture strain in
the AE condition when compared to nanocomposites. For the LN-treated samples, the
fractographs showed the presence of a limited number of microcracks in Mg-2CeO2 (LN-
nano), which were absent in Mg-2CeO2 (LN-micron) samples (Figure 8). The presence of
cracks may be attributed to the clustering points of nano-CeO2 particles (often associated
with voids), which cannot be avoided, particularly for nanolength scale reinforcements,
irrespective of the processing method used (powder metallurgy or casting). The signifi-
cantly higher fracture strain exhibited by Mg-2CeO2 (LN-micron) composites (37%) when
compared to Mg-2CeO2 (LN-nano) composites (29.7%) can thus be attributed to the absence
of microcrack development during compressive loading besides pyramidal texture.

Micro 2024, 4, FOR PEER REVIEW 13 
 

 

 
Figure 7. Macroscopic images of compressively fractured samples. 

 
Figure 8. SEM micrographs of compressively fractured samples, with microcracks indicated by yel-
low arrows. 

  

Figure 8. SEM micrographs of compressively fractured samples, with microcracks indicated by
yellow arrows.

4. Conclusions

In this study, the combined effects of the deep cryogenic treatment and the length
scale of the reinforcement on the properties of Mg-2CeO2 composites were studied. The
following observations were made:

a. At a constant amount of CeO2 (2wt.%), the grain sizes of the composite samples
(micro- and nanocomposites) remained similar. Deep cryogenic treatment did not
noticeably affect grain size at either length scale of reinforcement.
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b. The porosity values were reduced when the as-extruded micro- and nanocomposite
samples were deep cryogenically treated (reduction of 0.08 and 0.43%pt, respectively).

c. The deep cryogenic treatment did not randomize the texture of composites, which
remained basal for nanocomposites and pyramidal for microcomposites. Instead, the
intensity of individual peaks changed to further strengthen the original texture.

d. The deep cryogenic treatment had a stronger effect on increasing ignition temperature
in the case of the nanocomposite samples. This can be attributed to the coupled and
complex effects of the number of particles in the matrix and the texture of the matrix.

e. The deep cryogenic treatment enhanced the microhardness, 0.2 CYS, and fracture
strain of both micro- and nanocomposite samples. The changes in UCS remained
insignificant. The fracture strain increased significantly for nanocomposites (~80%)
and microcomposites (27.6%).
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