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Abstract: The UV/Vis absorption energies (νmax) of different solvatochromic probes measured in
co-solvent/water mixtures are re-analyzed as a function of the average molar concentration (Nav) of
the solvent composition compared to the use of the mole fraction. The empirical ET(30) parameter of
Reichardt’s dye B30 is the focus of the analysis. The Marcus classification of aqueous solvent mixtures
is a useful guide for co-solvent selection. Methanol, ethanol, 1,2-ethanediol, 2-propanol, 2-methyl-
2-propanol, 2-butoxyethanol, formamide, N-methylformamide (NMF), N,N-dimethylformamide
(DMF), N-formylmorpholine (NFM), 1,4-dioxane and DMSO were considered as co-solvents. The
ET(30) values of the binary solvent mixtures are discussed in relation to the physical properties of the
co-solvent/water mixtures in terms of quantitative composition, refractive index, thermodynamics of
the mixture and the non-uniformity of the mixture. Significant linear dependencies of ET(30) as a
function of Nav can be demonstrated for formamide/water, 1,2-ethanediol/water, NMF/water and
DMSO/water mixtures over the entire compositional range. These mixtures belong to the group of
solvents that do not enhance the water structure according to the Marcus classification. The influence
of the solvent microstructure on the non-linearity ET(30) as a function of Nav is particularly clear for
alcohol/water mixtures with an enhanced water structure.

Keywords: Reichardts dye; solvatochromism; solvent mixtures; refractive index; solvent composition;
average molar concentration

1. Introduction

The development of Reichardt’s dye 2,6-diphenyl-4-(2,4,6-triphenyl-1-pyridinium)-
phenolate (B30) (see Scheme 1) was a milestone in the study of solvent properties [1]. Recall
that the original empirical solvent parameter ET(30) is defined as the molar absorption
energy of B30 expressed in kcal/mol, measured in a given solvent [1]:

ET(30) (kcal/mol) = 28,591/λmax (nm) (1)

There are numerous studies in the literature classifying the polarity of pure solvents
and solvent mixtures according to their composition, measured with B30 and other solva-
tochromic probe molecules [2–35].

Explanatory concepts on solvatochromism can be found in the informative review
of [34]. A preliminary summary of the solvent mixtures treated can be found in Table 3
of [35]. In this context, B30 and related solvatochromic probes have been used to establish
so-called hydrogen bond strength (HBD) scales for organic solvents [36–41]. In addition to
the HBD classification, there is a definition for the hydrogen-bond-accepting (HBA) strength
of solvents [42]. The HBD and HBA classifications reflect the molecular properties of the
solvent molecule in relation to hydrogen bonding in terms of the Kamlet–Taft approach
and other similar concepts by Catalan and Laurence [36–41]. The interaction of the solvent
HBD groups with the phenolate oxygen was considered to be critical in measuring the
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HBD strength of solvents and solvent mixtures. However, this approach is only partially
justified, as we have recently shown [43]. The concept of determining HBD parameters
works quite well for ionic liquids (ILs) and other salts due to the electrostatic interaction
between the B30 phenolate anion and the constituent cation of the IL [41,44–46]. However,
due to some contradictions between theory and experimental results, the phenomenon is
still under investigation [46].
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B30 in particular is routinely used as a polarity indicator for binary solvent mix-
tures [2,6–9,13–21]. One of the most difficult problems in interpreting the solvatochromism
of B30 in solvent mixtures is the issue of preferential solvation and its influence on the
ET(30) value [10,15–21,24,34]. However, the concept of preferential solvation is interpreted
differently in the literature [9–12,24]. The fundamental problem with the definition of
preferential solvation was correctly recognized by Ghoneim [24]. Two basic scenarios must
be distinguished in this question for B30:

i. The solvent mixture (true micelles are a different situation) is inherently inhomo-
geneous and the solute B30 is therefore preferentially entrapped by a specific mi-
crodomain.

ii. The solute probe such as B30 preferably forms a specific complex with one of the two
solvent components.

A complementary good definition for preferential solvation is given by Morisue
and Ueno regarding case ii. “Preferential solvation is a phenomenon, whereby solvent
proportion of binary mixed solvent in the vicinity of a solute molecule differentiates from
the statistic proportion in bulk” [29]. It is therefore necessary to clearly distinguish whether
the probe molecule is specifically solvated by the solvent molecule or is present in a
partial volume enriched with a component of the mixture. Scenario i. assumes that the
physical structure of the solvent mixture is not affected by the solute B30. In the case of
scenario ii., the type of probe itself determines the extent to which preferential solvation
occurs. Thus, if scenario ii. is true, then different solvatochromic probes should each show
different UV/Vis absorption energy dependencies on the quantitative solvent composition
for the same mixture. Langhals had already shown in 1981 that different solvatochromic
probes used for the same mixture measure the same qualitative dependencies as a function
of solvent composition, e.g., for ethanol/water [5]. This crucial finding would rule out
scenario ii. But the situation is not so simple.

Despite ambitious work on the subject, the problem of solvatochromism in solvent
mixtures has not really been adequately addressed in the literature. It is therefore necessary
to explain the chronological development of the concepts for interpreting UV/Vis spectro-
scopic absorption energy data of probe molecules in solvent mixtures. In the first papers
on B30 [1,2], the ET(30) values of various binary solvent mixtures, including ethanol/water
and 1,4-dioxane/water, were determined. It was shown that ET(30) depends in a com-
plex way on the quantitative composition of the mixture. Langhals recognized that the
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solvatochromism of B30, the ET(30) values, can be described empirically as a logarithmic
function depending on the concentration of the solvent components [6]. As early as 1982,
Langhals also showed that the ET(30 values of the homologous primary n-alcohol series
are a linear function of the total molar concentration of the respective alcohol (N) [7]. The
core problem was that no theoretical justification for this link had been presented in the
past. Perhaps as a result, this very important discovery was not properly understood by
many scientists and its significance was not fully appreciated. These seemingly empiri-
cal findings [6,7] have an important physical background based on the Lorentz–Lorenz
relation [47].

Later in 1986, Haak and Engberts presented a valuable paper on the influence of
temperature (T) on the solvatochromic properties of B30 in aqueous solvent mixtures [8]. It
is worth analyzing this study in detail, as the authors have correctly identified the effects of
the hydrophobic alcoholic component such as 2-n-butoxyethanol (BE) in water on ET(30).
However, several interpretations need to be re-evaluated in the light of new physical
research on specific solvent mixtures, as will be shown in the course of this study.

Since 1982, the general topic of preferential solvation in solvent–water mixtures has
been studied in detail by Marcus in numerous papers based on thermodynamics using
the Kirkwood–Buff theory for fully miscible aqueous solvent mixtures [48–51]. Even
then, Marcus was aware of various discrepancies between thermodynamic results and
solvatochromic measurements [12]. He stated: “A single probe, such as the betaine used
for the ET(30) polarity parameter, cannot provide an answer”. As early as 1988, Dorsey [9]
concluded that B30 perceived the hydrogen bond network rather than direct hydrogen
bonds: “Therefore, it could be that a change in the hydrogen-bonding network of the
solution is being sensed by the ET-30 probe in the dilute alcohol concentration as well”.
This is the thesis that reaches the heart of the matter.

Since 1992, O. Connor and Rosés have independently developed the preferential
solvation model [11,15,16]. The preferential solvation model suggests the formation of
stoichiometrically defined complexes between the solvatochromic probe (solute) and the
two solvents, as well as between solvent molecules. It was assumed that the measured
UV/Vis shift was caused by the formation of a complex between the B30 probe or similar
probes and the solvent molecule [1,36,37]. This scenario belongs to case ii. These models
assume that the strength of the H-bridge bond to B30 is linearly correlated with the
magnitude of the UV/Vis shift.

In the important paper by Kipkemboi [13], which was not considered further, the sol-
vatochromism of B30 in 2-methyl-2-propanol/water and 2-amino-2-methylpropane/water
mixtures was studied in detail. The authors concluded that preferential solvation cannot be
the main reason for the observed effects. Taking into account the refractive index and the
partial molar concentration of the components in the qualitative interpretation, both the
polarizability and the number of water dipoles have an influence on the solvatochromic
shifts of B30.

In 2004, however, Bentley took up Langhals’ discovery [7] and showed the dependence
of ET(30) on the global polarity of alcohols with respect to N. In addition, the relationships
between the ET(30) values of alcohol/water mixtures were alternatively analyzed as a
function of volume or molar fraction of the mixture composition [27]. Bentley concluded
that preferential solvation may be overestimated.

An actual preferential solvation could be demonstrated for B30 in the phenol/acetone
and phenol/acetonitrile systems [43,44]. A stoichiometric 1:1 complex of B30 with phenol
can be clearly identified. In phenol/1,2-dichloroethane, depending on the quantitative com-
position, both effects i. and ii. can be observed simultaneously with different proportions
depending on the phenol concentration [43,52–54]. Importantly, these UV/Vis studies have
convincingly demonstrated that the effect of specific hydrogen bond formation on ET(30)
is much less than that of the bulk solvent phenol [43]. Recent studies show that preferen-
tial solvation can be detected, but the solute/solvent complexes must be unambiguously
identified by independent spectroscopic measurements. [55,56].
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As mentioned above, the preferential solvation models are based in particular on the as-
sumption that the UV/Vis shift of B30 and related probes such as 1-ethyl-4-(methoxycarbonyl)
pyridinium iodide (K), cis-dicyano-bis(1,10-phenanthroline) iron II (Fe), or Brookers Mero-
cyanine (BM), is mainly caused by the formation of specific interactions (hydrogen bonds)
between the solvent and the probe. This assumption is a fundamental misunderstanding.
This fact can be clearly demonstrated, independently of each other, using three different
derivatives of the Reichardt dye family found in the literature [57–59]. C. Reichardt himself
ignored the results of the solvatochromism of the thiolate betaine derivative of B30, which
did not show the desired difference from B30 when measured in HBD solvents [57]. It
was an unpleasant experience for us to discover that the H-bridge bonding patterns at the
barbiturate anion substituent of the B30 derivative caused only a negligible UV/Vis shift
compared to the bulk HBD solvents [58]. However, at the time, we did not fully appreciate
the implications of this finding for understanding the UV/Vis shift. Unfortunately, we
had to abandon the concept of molecular recognition by UV/Vis shift of solvatochromic
probes. Recently, the Sander group showed that the [2,6-di-tert.-butyl-4-(pyridinium-1-yl)]
phenolate forms a defined 1:1 complex with water, leading to only small shifts in the π-π*
transition compared to the influence of the global polarity of the bulk water [59]. Thus,
B30 and other related probes do not fulfil this purported property as an indicator of the
HBD strength of the solvent molecule when the bulk solvent is measured [36,37,40,41].
The overall UV/Vis shift of B30 in pure HBD solvents is mainly due to the effect of the
global polarity of the hydrogen bonding network of the solvent and not to direct hydrogen
bonding with the dissolved probe [7,9,28,43,60–62]. Sander and co-workers also showed
that the stoichiometric B30/HBD solvent complex is the true solvatochromic species and
not the original B30. This result was the missing link in understanding the discrepancies
between the different interpretations of the derivatives of Reichardt’s dye, as it was known
that steric shielding of the phenolate oxygen of the B30 derivatives leads to a change in the
solvatochromic properties [1].

The misinterpretation that the total UV/Vis shift is primarily due to the direct forma-
tion of hydrogen bonds at B30 must be fundamentally corrected, even though many papers
have taken this as a defined basis. Accepting this fact will be difficult for many scientists
working in this field, as it overturns entrenched patterns of thought. Following Bentley [27],
we question the classical preferential solvation approach of special solvatochromic probes
for certain alcohol/water and related aqueous binary solvent systems with respect to
scenario ii., as reported in [4,19–21,25–27,30–32].

Suppan also concluded that the process of hydrogen bonding between solute and
solvent in water can be endergonic, using the preferential solvation index for interpreta-
tion [63]. Later, Rezende recognized that the concept of preferential solvation has some
weaknesses, and the preferential solvation index was also recommended to overcome some
problems in explaining difficult results [64,65].

However, the real scientific problem with the evaluation of UV/Vis absorption energy
data of solvatochromic probes in solvent mixtures in the literature is much more serious.
Most authors routinely use the mole fraction x of a component of the solvent mixture to
define the quantitative composition in physical terms. It has been assumed that a strictly
linear dependence of the UV/Vis absorption energy of the dissolved solvatochromic dye
on x would indicate ideal mixing behavior [10,14–31]. This thesis must be fundamentally
questioned, since only the change in the Gibbs free energy (∆G) of a solvent mixture can
be linearly related to the mole fraction of the components involved [10,66]. The Gibbs free
energy is a composite variable [66]. For the UV/Vis absorption energy of a dissolved probe
molecule in a solvent mixture, however, the situation is somewhat different. The number
of transition moments, i.e., the atoms and molecules that are affected by both the light and
solvent in a given volume depends on the average molar concentration (Nav,x) of the solvent
dipoles with respect to x, but not directly on x [47,67,68]. Therefore, the experimentally
found curvilinear relationship ET(30) as a function of x(water) may indicate a preferred
solvation [10,14–21], since Nav,x is reciprocal to x(water). We assume that the real reason for
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the curved shape of the function ET(30) or EPHBD (see later Equation (2)) as a function of
x(water) is not necessarily the preferred solvation, but the influence of inhomogeneity due
to the difference in mass of the two different solvents. This aspect is particularly relevant
for aqueous mixtures due to the low molar mass of water. EPHBD is usually the UV/Vis
absorption energy (νmax in cm−1) or in kcal/mol [ET(30)] of the solvatochromic probe such
as B30 measured at λmax, Equations (1) and (2).

EPHBD ≡ νmax (cm−1) ≈ aN (mol/cm3) + b. (2)

N refers to the molar concentration, according to Equation (3), of the solvent dipoles or
the polarized solvent molecules according to the Debye–Lorenz, Clausius–Mosotti–Lorenz
or Lorentz–Lorenz relation [47]. σ is the physical density and M the molar mass of the pure
solvent substance.

N (mol/cm3) = σ(g/cm3)/M (g/mol). (3)

There are hardly any well-founded studies on the subject of the various quantities
of mixture composition, as the mole fraction x seems to have become established as a
routine basis for calculation. There are only a few papers that briefly mention the influence
of the different composition variables on ET(30) and qualitatively illustrate it with some
examples [9,27,43,50]. Significantly, Marcus already suspected that this topic would raise
a number of unanswered questions; he mentioned timidly “the different measures of
composition of a binary solvent mixture should be borne in mind” [50].

In addition, it has been empirically found that the EPHBD of pure solvents is linearly
correlated with the N (total molar concentration) of the solvent under solvent variation for
specific solvent families [7,27,43,61,62]. Furthermore, there is a fundamental relationship
between N and the spectroscopic quantities νmax and εmax (Lmol/cm = 103 cm2/mol) as
the molar absorption coefficient as shown in Equation (4).

N (mol/cm3) = νmax(cm−1)/εmax(cm2/mol),
νmax (cm−1)) = N (mol/cm3) εmax (cm2/mol).

(4)

Equation (4) has been completely overlooked in the past. The relationship is not artifi-
cial. The physical relationship between the absorption energy νmax, the molar absorption
coefficient εmax and N is theoretically determined through Beer’s approximation and the
Lorentz–Lorenz relation [67,68]. The fundamental Lorentz–Lorenz relation is given by
Equation (5).

f
(

n20
D

)
= N 4/3π Rm. (5)

With n20
D the refractive index measured at 589 nm; Rm molar refractivity and f(n20

D ) =
[(n20

D )2 − 1]/[(n20
D )2 + 2].

It is a matter of identifying the physically correct amount of N in the solvent system [69].
The general factor N in the original Lorentz–Lorenz relation, Equation (5), refers to the molar
concentration of the total number of solvent molecules [47]. It has recently been shown that,
within homologous series of n-alkane derivatives, the correlation of the refractive index as
a function of N results in a negative slope [69], which theoretically does not agree with the
original Lorentz–Lorenz relation [47]. Since N is empirically related to νmax by Equation (2),
many correlations of νmax with n20

D from the literature are not meaningful. Only when
the actual molar concentration of the “chromophore” of the solvent molecule, the C-H
bond concentration NCH, is taken into account, is the applicability of the Lorentz–Lorenz
relationship for correlation analysis fulfilled. The reason for this is simple, because N ~
−NCH. [69]. Therefore, instead of N, the respective concentration of the corresponding
functional fractions of the solvent is actually required which is NCH for special solvent
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families. Accordingly, N should be replaced by NCH when investigating structure–property
relationships with respect to refractive index. Then, Equation (6) is obtained:

f
(

n20
D

)
= NCH 4/3π Rm. (6)

For solvents containing hydroxyl- and/or -CO-NH-groups, the situation is straightfor-
ward, as the HBD groups are the dominant dipoles in the solvent volume. Thus, Equation (2)
essentially holds when solvent families are treated individually, but is convincingly appli-
cable to HBD solvents [6,27,61]. Indeed, many EPHBD correlate linearly with the physically
determined hydroxyl group density, which is proportional to the molar concentration N
[Equation (2)], rather than with the acidity in terms of the pKa of the solvent [43]. For
non-HBD solvents, linear relationships between EP and N are only found if one stays
within the series of a particular solvent family [61].

The reason for the clear result of Equation (2) is that εmax of negative solvatochromic
probes, Equation (4), changes inversely linearly with νmax as the solvent is varied [1,70,71].
Equation (2) works only moderately well for positive solvatochromic dyes as the prelim-
inary evaluation of Nile Red shows; see Figure S1a in the supplementary materials; the
UV/Vis-spectroscopic data are taken from [72]. In this context, the question is how the
molar absorption coefficient εmax of the solvatochromic probe changes systematically lin-
early with N, since εmax also correlates with the refractive index due to the Kramer–Kronig
relation [73]. For positive solvatochromic dyes, εmax remains essentially unchanged within
structurally similar solvent series [70,71]. This consideration is in line with older studies
by Suppan [74,75]. Since the electromagnetic coupling of the solvent chromophore with
the dye is theoretically understood for negative solvatochromic dyes [70,71], only the
solvatochromism of such dyes with respect to N is analyzed in this review.

There are several reasons for the motivation of this review and re-evaluation of the
ET(30) parameters of organic co-solvent/water mixtures. Enormous progress has been
made in the study of aqueous solvent mixtures, both experimentally and theoretically.
Many new insights into their microstructure and dynamics, structure and properties have
been gained in recent years for alcohol/water mixtures [76–96] and other co-solvent/water
mixtures (see references in the main text). In particular, these new findings on the mi-
crostructure of alcohol/water mixtures require a re-evaluation of many older results on
the solvatochromism of probes in these mixtures. A crucial argument for testing the solva-
tochromism of B30 in aqueous mixtures is that water is not a strongly acidic solvent in the
sense of the HBD property, but is one of the most polar solvents due to its exceptionally
high molar concentration N and the polarization of the volumetric OH bonds [60]. A
very precise distinction must be made between volumetric water and smaller quantities
of water as a solute in a mixture [75]. From x(water) < 0.2, the situation is different for
aqueous mixtures than in the water-rich range, as water behaves more like a solute than a
solvent [75–77].

Another key argument concerns the appropriate use of the various measures of mix
composition [50]. Recently, we have shown that ET(30) is an approximately linear function
of the average molar concentration (Nav) of ethanol/water and methanol/chloroform mix-
tures [43]. This is true for certain concentration ranges, then the correlation coefficient for
the linear relationship r (regression coefficient) is ~0.99 [43]. It is likely that linear depen-
dencies ET(30) as a function of Nav only arise if the thermal motion of the solvent molecules
overcomes the structuring of the solvent mixture. Is the solvatochromic probe measuring an
average number of different solvent dipoles as a snapshot in certain compositional ranges?
To answer such questions, we need to take a closer look at the dynamics of the solvent
mixture [84–86]. Pure alcoholic solvents and alcohol/water mixtures fit into a relationship
when the dielectric relaxation time τ1 and the number of OH dipoles are correlated on
the basis of N (see Figure 4 in [86]). Relaxation time of ethanol/water mixtures increases
with decreasing number of OH dipoles due to increasing alcohol content. Reminder, the
dielectric relaxation time τ1 is defined as the time it takes 63% of the molecules in the
sample to return to disorder [87]. Thus, the degree of ordering of binary alcohol/water
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mixtures containing two different types of OH-dipoles probably increases with increasing
structuring, i.e., concentration of C-C bonds originating from the alcohol molecules.

The following question arises: Can (binary) solvent mixtures can be treated in the
same way as pure solvents with regard to the average molar concentration (Nav) of relevant
solvent dipoles or polarizable solvent molecules? The situation regarding the appropriate
measure to use is complicated. To correlate the results of UV/Vis spectroscopy or dielectric
spectroscopy, different composition variables, such as the molar and volume fractions of
the mixture, are sometimes used alternately [9,27,88,89]. For ternary mixtures or multi-
component systems, the determination of the composition in suitable parameters is even
more complex. However, the work of F. Martin et al. shows that solvation models can in
principle also be used to explain the solvatochromism of probes in ternary mixtures [97,98].
Measuring the physical properties of ternary solvent mixtures in terms of density, refractive
index and heat of mixing requires careful and extensive studies. There is not as much data
available in this area. Therefore, only binary mixtures will be considered in this review.
The fundamental aspect of compositional quantities is covered in the methods chapter of
this paper.

2. Methods

The average molar concentration Nav is a crucial physical property of all non-homogeneous
substances. It must be clearly defined which atoms and molecules are being considered.
This study deals with binary solvent mixtures. The Nav of any homogeneous binary solvent
mixture can be easily calculated from the composition of the two components, their molar
masses and the actual physical density of the solvent mixture according to Equation (7) [66].

Nav,Z = ρm/MAV,z = ρm(1,2)/(Z1M1 + Z2M2) (7)

ρm(1,2) is the actual density (after mixing) of the mixture at given Z.
M1 and M2 are the molar masses (g/mol) of solvent 1 and 2, respectively;
Mav,z is the average molar mass of the solvent components.
The factors Z1 and Z2 are either:
the molar fraction (Z = x;→Nav,x),
mass fraction (Z = w;→Nav,w), or
volume fraction (Z = ϕ;→Nav,v) of solvent 1 and solvent 2 before mixing.
The average molar concentrations Nav.z in terms of different Mav,z have not yet been

fully considered as quantitative composition size in evaluating physical measurands of
solvent mixtures. We had underestimated this point in a previous paper [62]. The linearity
of a relationship between a measured quantity and a quantitative composition is not
necessarily a criterion for physical correctness. It must be emphasized that the decisive
quantity is the average molar mass Mav,z which can be calculated either by x, w or ϕ [99];
see Equation (8):

Mav,z = z1(M1 −M2) + M2 (8)

Therefore, the numerical differences between Nav,x, Nav,w and Nav,v are due to the
differences in M1 and M2 as well as the quantitative ratio of the two solvents, rather than to
the density changes, as shown for various alcohol/water mixtures when Nav,x is plotted as
a function of x(water) (see Figure S1b in the Supplementary Materials).

The problem of average molecular weight is a central one in polymer chemistry.
Different physical measurement methods, such as end-group analysis through NMR or
acid-based titration, viscosity, osmotic pressure of the polymer solution, light scattering and
ultracentrifugation, are used to measure different numerical values of the average molar
mass for the same polymer sample [100]. The numerical value of the average molecular
weight depends not only on the method of measurement but also on the shape of the
molecular weight distribution curve [101]. Note that colligative physical methods measure
the number average (Mn) of the polymer sample. This would correspond to the Mav,x of
solvent mixtures. Non-colligative physical methods (preferably) measure data related to
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the weight average (Mw). The result of the non-colligative method depends on the nature
of the solvent and polymer solute. For example, the refractive index is a non-colligative
measurement. It is therefore not surprising that the determination of mixture composition
through refractive index measurements is always controversial [102–104].

The non-uniformity of a polymer is defined by the ratio Mw/Mn [100,101]. Following
the teachings of polymer chemistry [101], the ratio of Mav,w/Mav,x = DI has been defined in
this work as the dispersion index of a binary solvent mixture. Accordingly, Equation (9)
is used in practice as an indicator of the non-uniformity of the solvent mixture. DI is an
artificially constructed variable, but the approach is borrowed from polymer chemistry.

Mav,w/Mav,x = DI (9)

For a binary mixture, this approach is straightforward. Figure 1a shows the de-
pendence of DI as a function of x(water) for methanol/water, 2-propanol/water and
2-methyl-2-propanol/water mixtures. Mav,x and Mav,w are calculated by Equations (10)
and (11), respectively.
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Figure 1. (a) Dependence of DI as a function of x(water) for methanol/water (blue), 2-propanol/water
(orange) and 2-methyl-2-propanol/water (grey); (b) Nav,z (in mol/cm3) of the 2-methyl-2-
propanol/water mixture as a function of x(water). Nav,x (blue) and Nav,w (orange), calculated
according to Equations (10) or (11); for data see Table S12a. The connections between the individual
points serve to orientate the reader.

The 2-methyl-2-propanol/water mixtures show the greatest inhomogeneity at
x(water) = 0.8 (strongest curvature of the graph in Figure 1b), since the quotient Mav,w/Mav,x
as a function of x(water) has its maximum at this position. This x(water) = 0.8 corresponds
to Nav,x = 0.25 mol/cm3 and Nav,w = 0.15 mol/cm3, respectively. As would be expected
arithmetically, the greater the mass difference, the greater the DI for a given x. The smaller
the mass difference, the wider the distribution of DI at DImax. It cannot be overlooked that
the position of DImax with respect to x(water) corresponds to both the order of the excess
molar volume of water and the excess thermodynamic properties for these alcohol/water
mixtures [78–80,83,95]. This is remarkable because the DI only considers the masses and
their proportions and does not include any other physical data. It can be assumed that
this agreement is rather random for alcohol/water mixtures. Therefore, the suitability
of the DI to support the interpretation of ET(30) as a function of solvent composition in
alcohol/water mixtures will be demonstrated in this work.

As explained in the introduction, for the evaluation of UV/Vis spectroscopic absorp-
tion data) [67,68], the mole fraction (x) is theoretically suitable for the determination of the
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average molar mass. Therefore, Nav,x, determined through Equation (10), is preferred in
this paper for correlation with ET(30).

Nav,x = ρm/MAV,z = ρm(1,2)/(x1M1 + x2M2) (10)

The weight fraction w1 is calculated from the mass fractions m1 and m2 of the two
components according to w1 = m1/(m1 + m2). Nav,w is obtained from Equation (11).

Nav,w = ρm/MAV,w = ρm(1,2)/(w1M1 + w2M2) (11)

Since Mav,w is inherently greater than Mav,x [100,101], Nav,x is always greater than
Nav,w. For example, Figure 1b shows the relationships between the compositional quantities
Nav,x and Nav,w with x(water) for the binary solvent mixture 2-methyl-2-propanol/water.
Figure 1b clearly shows that Nav,w reflects the inhomogeneity of the mixture as a function
of the quantitative composition more strongly than Nav,x, since the curve Nav,w versus
x(water) shows a stronger deviation from linearity than Nav,x versus x(water) (see also
Figure S1b in the Supplementary Materials section).

The volume fraction can also be used to determine Nav,v, Equation (12). However,
there are still some open questions regarding the physical meaning of this quantity.

Nav,v = ρm/MAVv,v = ρm(1,2)/(ϕ1M1+ ϕ2M2). (12)

This consideration refers to the solvent volume of each solvent component before
mixing according to the IUPAC definition of volume fraction: “Volume of a constituent of
a mixture divided by the sum of volumes of all constituents prior to mixing” [105]. This
definition assumes ideal mixing behavior, which is not the case for most aqueous and non-
aqueous solvent mixtures [106]. When two liquids are mixed, neither the total number nor
the total mass of molecules changes, but the sum of the volumes may change compared to
the volumes before mixing. Therefore, the use of the volume fraction in the determination
of Nav,v is controversial as to its true physical meaning. The use of Nav,v (average molar
concentration related to volume fraction) can only serve as an empirical guide.

Because of these well-known problems with volume changes after mixing, the issue
is treated thermodynamically in terms of excess molar volume (VE) by Equation (13) and
described semi-empirically by several sophisticated concepts and approaches [66,78,107].
Equation (13) is well established in the textbooks.

VE = (x1M1+x2M2)/ρm(1,2) − (x1M1/ρm(1)) − (x2M2)/ρm(2)) (13)

where ρm(1) and ρm(2) are the densities of the pure solvent 1 and 2, respectively. x1
and x2 are the mole fractions of solvent 1 and solvent 2, respectively. Analyses of VE as a
function of x(solvent 1) and x(solvent 2) can provide valuable information on the partial
excess partial molar volumes of solvents 1 and 2 as a function of composition.

If only the molar fraction of the OH groups of a component on Nav is considered, i.e.,
that of the HBD solvent fraction (M1), then Equation (7) can be modified to Equation (14).

Nav (component1) = x1.ρm/MAV = x1.ρm(1,2)/(x1M1 + x2M2) (14)

The approach of Equation (14) is useful in determining whether the influence of the
proportion of HBD solvents mixed with non-HBD solvents is due to the overall polarity or to
the preference of the HBD component. This procedure has been demonstrated for the depen-
dencies of ET(30) as function of Nav,x compared to Nav,x(CH3OH) for methanol/chloroform
mixtures [43]. It has been shown that methanol is the dominant solvent according to
scenario i of preferential solvation.

Equation (14) can also be used to consider the average number of OH groups (D,av,xDHB)
of a multifunctional OH component in the mixture, e.g., for dihydric alcohols such as 1,2-
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ethanediol [62]. For pure 1,2-ethanediol, then, 2N = DHBD. See later the treatment of
1,2-ethanediol/water mixtures in relation to ET(30).

The problem with the average molar concentration is that the sum of the two dipoles
is considered, e.g., for methanol and water. This is correct if the sum of the dipoles of the
solvent and their effects is proportional to the measured quantity. Recently, we have shown
that the total molar concentration N of pure solvents is not suitable to describe the changes
in refractive index n20

D as a function of structural variation within homologous series of
n-alkane derivatives [69]. Instead, the molar concentration of the C-H bonds (or N-H) is
crucial to adequately reflect the theoretically required linear relationship between n20

D and
N according to the modified Lorentz–Lorenz Equation (6). Equation (15) is particularly
suitable for co-solvent/water mixtures to calculate the average molar concentration of C-H
and/or N-H bonds of the co-solvent [71].

Nav,x,CH = [m x(co-solvent)] Nav,x, (15)

The factor m is the number of C-H and N-H bonds per co-solvent molecule; x is the
mole fraction of the respective co-solvent. Since the atomic refraction of the C-H and N-H
(amide) bonds are nearly equal [108], no additional correction is necessary for formamide
(FA), N-methylformamide (NMF) and N,N-dimethylformamide (DMF). For mixtures of
organic solvents, the situation is more complicated because additional chemical bonds
contribute to the molar refraction of the individual solvent molecules. This is particularly
important for halogenated and aromatic solvents. Therefore, only the co-solvent/water
mixtures are straightforward, as water is a weak (negligible) chromophore.

Basically, the general statement of this chapter shows that the absorption energy
(EP) of a dissolved dye in a mixture is inversely proportional to the mole fraction due to
Mav ~ x(co-solvent) ~ 1/EP according to Equations (4) and (8). These basic relationships
are independent of a physical law such as the Lorentz–Lorenz equation.

3. Results
3.1. Selection of the Solvent Mixtures

Because of the huge amount of data, we looked for a common thread to make state-
ments that are as representative as possible and that also reveal fundamental correlations.
Marcus distinguishes two groups of aqueous solvent mixtures in which the co-solvent
either enhance or does not enhance the water structure. The evaluation is based on the
excess partial molar volume or the excess partial molar heat capacity of the water [109,110].
Note that the Marcus classification only applies to the water-rich section of the mixture
[x(water) > 0.7, xco-solvent < 0.3] [109,110]. Marcus stated “Some solutes such as ethylene gly-
col, 1,4-dioxane, acetonitrile, NMF, FA, urea, ethanolamine, and dimethylsulfoxide, many of
which hydrogen-bond very strongly with water, do not enhance the water structure” [110].
The selection was made according to this scientifically justified criterion. However, the
Marcus evaluation can only be used as a rough guide because some co-solvents can be
classified differently depending on whether the excess partial molar volume or the corre-
sponding heat capacity is used. For some co-solvents, such as DMF, acetone, acetonitrile
or THF, the classification is borderline [109,110], which shows how difficult the issue is.
The binary mixtures acetonitrile/water, acetone/water and THF/water are each unique
and will be discussed together in a separate publication. The situation regarding the non-
enhancement of the water structure is quite clear for the FA/water, 1,2-ethanediol/water
and glycerol/water mixtures [109,110]. Enhancement of the water structure is particu-
larly relevant for the ethanol/water, 2-propanol/water and 2-methyl-2-propanol/water
mixtures [109,110]. However, the term “water structure enhancement” sounds mysteri-
ous. [78,79]. The problem is that there are qualitatively different microdomains of water
in alcohol/water mixtures in terms of structure and size [90–93,111]. Marcus [110] noted
that the “Enhancement of the water structure then consists of the changing of some of
the dense (water) domains to bulky ones”. This phenomenon would inevitably lead to
an increase in the average alcohol concentration in the remaining mixed phase compared
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to the co-existing microdomain water phase or the hypothetical phase resulting from the
initial mixing ratio for each composition. Therefore, the overall polarity of the actual
ethanol/water mixed phase should be lower than the phase that would result if ethanol
and water were statistically completely mixed at a given composition. This should be kept
in mind.

The ethanol/water mixture seems to be one of the most difficult solvent mixtures
to understand when considering simple systems; see [111] and the references cited. The
temperature increase associated with volume shrinkage when ethanol and water are mixed
is apparently a thermodynamic anomaly [79]. The strongly negative entropy of the mixing
process suggests complex structure formation depending on the composition, as demon-
strated through dielectric spectroscopy and a special microscopic technique [86–89,111].

The curves of the solvatochromic parameters as a function of x(water) in [18,19] agree
remarkably well with those of the partial excess molar volume as a function of x(water) of
methanol/water, ethanol/water, 2-propanol/water and 2-methyl-2-propanol/water [95,96].
Therefore, the physics of alcohol/water mixtures deserves special attention in this study.
There has been little discussion of the effect of the microstructure of alcohol/water mixtures
on a solvatochromic probe [33].

3.2. Refractive Index of Aqueous Solvent Mixtures

The suitability of Equation (6) in combination with Equation (15) is illustrated for
several amide derivative/water, DMSO/water and 1,4-dioxane/water mixtures. These
solvent mixtures belong to the class where no enhancement of the water structure is
observed [109,110]. References for n20

D data are given in Tables in the Supplementary
Materials section. No usable refractive index data could be found in the literature for
NMF/water mixtures.

Plotting the refractive index (n20
D ) measured at a wavelength of 589 nm as a function

of Nav,x,CH gives a straight line, as can be seen in Figure 2a and from Equation (16) to
Equation (20). The 1,2-ethanediol/water and glycerol/water mixtures, both of which show
excellent linearity of n20

D as a function of Nav,x,CH, are described in Section 3.4.6.

n20
D = 1.5 Nav,x,CH + 1.34,

n = 12 (FA/water); r = 0.9997.
(16)

n20
D = 1.736 Nav,x,CH + 1.334,

n = 8 (NFM/water); r = 0.9977.
(17)

n20
D = 1.065 Nav,x,CH + 1.34,

n = 14 (DMF/water); r = 0.988.
(18)

n20
D = 1.5 Nav,x,CH + 1.34,

n = 18 (DMSO/water); r = 0.9952.
(19)

n20
D = 1.5 Nav,x,CH + 1.34,

n = 12 (1, 4-dioxane/water); r = 0.9977.
(20)

The positive slopes ∆n20
D /∆Nav,x,CH and the excellent quality of the linear correlations

n20
D as a function of Nav,x,CH for several co-solvent/water mixtures are a clear proof of the

approach of Equations (6) and (15) for solvent mixtures. The quantity Nav,x,CH fulfils the
theoretical requirements of Beer’s approximation and the Lorentz–Lorenz relation [47,67,69].
The ET(30) parameters of these aqueous solvent mixtures decrease with increasing n20

D (see
Figure S2 in Supplementary Materials). These results will be explained at the appropriate
place in the following text where the particular mixture is discussed.
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Figure 2. (a) Correlations of refractive index n20
D as a function of Nav,x,CH (mol/cm3) for co-

solvents that do not enhance the water structure of co-solvent/water mixtures; (b) Plots of re-
fractive index n20

D as a function of Nav,x,CH (mol/cm3) for co-solvents that enhance the water struc-
ture of co-solvent/water mixtures; to (a) FA/water (orange), water/N-formylmorpholine (NFM)
(yellow), DMF/water (grey), 1,4-dioxane/water (light blue) and DMSO/water (dark blue); to
(b) methanol/water (dark blue), ethanol/water (orange), 2-propanol/water (grey), and 2-methyl-2-
propanol/water (yellow). The links between the individual points are a guide for the reader.

The conclusive linear relationships in Figure 2a clearly demonstrate the approach of
Equations (6) and (15) when analyzing the refractive index of aqueous solvent mixtures.
However, this is only true as long as alcohol/water mixtures are not considered.

Remarkably, the linearity n20
D as a function of Nav,x,CH does not apply to alcohol/water

mixtures in which the water structure is enhanced [109,110]. In particular, the methanol/
water and ethanol/water systems give a maximum curve of n20

D as a function of Nav,x,CH;
see Figure 2b. For the other alcohol/water mixtures, an asymptotic curve is obtained, but
with a positive slope along the curve; Figure 2b. In the past there were empirical concepts
to get around the non-linearity n20

D as function of composition for methanol/water; i.e., by
using the quotient n20

D /density instead n20
D alone [112]. However, the physical background

is more complicated and is still under investigation [113–115]. Recent studies have shown
that at the mesoscale there are microdomains of water and ethanol/water consisting of
different refractive indices [111]. Depending on the balance between segregation and
aggregation of these regions [115], the non-linearity of n20

D as a function of composition is
due to the coexistence of two different microdomains with different compositions and hence
different refractive indices. The ratio of the two domains is a function of the original solvent
proportions before mixing. The polarization effects and dipolar dispersion forces relevant
to methanol/water mixtures may have an additional influence [60,93,94]. Figure 2b clearly
supports the hypothesis of the coexistence of different microdomains of water/alcohol
mixtures [90,91,111]. The following preliminary result can be stated: the alcohol/water
mixtures that show an enhancement of the water structure according to Marcus do not
show a linear dependence n20

D on Nav,x,CH.
Alcohol/water mixtures will be further discussed in this paper under the aspect of the

co-existence of different microdomains.

3.3. Temperature Influence on ET(30) in Terms of Density Impact

The ET(30) data of ethanol measured at different temperatures are taken from the
original work of Dimroth–Reichardt and Linert to his subject [1,116]. The used data are
provided in Supplementary Materials, Table S1. With increasing temperature, ET(30)
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decreases due to the decreasing density of the solvent and thus the decreasing number of
dipoles per volume, which leads to perfect linear correlations of ET(30) as a function of
N(T); see Equations (21) and (22). The diagram is shown in Figure S3.

ET(30) = 1834 N (T) + 20.9,

n = 8 (Reichardt), r = 0.9969.
(21)

ET(30) = 2205 N (T) + 14.3,

n = 7 (Linert), r = 0.9978
(22)

The influence of temperature on the ET(30) value of solutions of B30 in ethanol and
methanol was also investigated by Zhao [117]. The authors hypothesized a de-defined
B30/methanol complexation with decreasing temperature due to the appearance of an
apparent isosbestic point in the UV/Vis spectrum series, in contrast to B30 in ethanol.
This conclusion is not yet clear because the increase in the intensity of the UV/vis absorp-
tion band is probably due to volume shrinkage on cooling, for which correction is not
included in the reference. It is therefore possible that the isosbestic point is caused by the
contribution of two or more different species. The presence of alcohol/B30 complexes was
also suggested by temperature-dependent UV/vis studies performed by El Soud [118].
However, complexation of B30 with ethanol has not been directly demonstrated through
independent spectroscopic measurements. Sanders suggested that the B30/HBD solvent
complex would be the actual solvatochromic species as derived from theoretical considera-
tions [59]. However, the specific influence of the dye/solvent complex on ET(30) is much
smaller than the volume effect of the global hydrogen bonding network. For these reasons,
these few results represent only a snapshot, as much remains to be done to understand the
effect of temperature on ET(30) in terms of density fluctuations associated with structural
changes as a function of temperature [118,119]. However, this first inventory shows that
the increase in ET(30) with decreasing temperature is mainly due to an increase in density
and thus in N.

3.4. Solvatochromism of B30 in Aqueous Solvent Mixtures

This part of the manuscript is the central concern. It is about correcting many misinter-
pretations in the literature. Most of the ET(30) data of the solvent mixtures to be evaluated
were taken from [1–4,11–20] and others. Some specific comments on the datasets used are
necessary, as several aspects have to be taken into account. It is necessary to check which
ET(30) value corresponds exactly to the given concentration, as mole fractions, weight
fractions and volume fractions are used alternatively [1,2,8,11–20].

The densities of the mixtures for each specific composition and temperature are
required for evaluation. This was the most difficult problem to solve. Fortunately, the
densities of alcohol/water mixtures often correlate significantly with the mole fraction (x)
in certain ranges of the composition. Thus, unknown densities for certain compositions can
be calculated from correlation equations using accurate data from the literature. References
are given in the headings of the figures and tables in the Supplementary Material section.

Fortunately, many of the measured ET(30) values from the literature are in very good
agreement between different authors for series of measurements. We have compared the
data of Reichardt [2] and Rosés [18–20] and found that an almost perfect agreement of
the measured ET(30) values as a function of Nav,x is found. For an example, see Figure
S4a for the ethanol/water mixture. For this task, it was necessary to convert the volume
percentages from [1,2] to derive a mole fraction. Despite the very good agreement, a dataset
from the same source was generally used for the analysis if sufficient measured values
were available. For the FA/water mixture, data from two different references were mixed
because the authors’ measurements covered different composition ranges [21,120]. The
deviations are very small. When staying within one data series, the regression coefficient
r approaches one for FA/water. For the NMF/water mixtures, there is no large variation
above x(water) > 0.2, see Supplementary Materials of [21].
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The high quality of the overall dataset from Rosés should be emphasized. Rosés
also used the carboxylate substituted betaine dye of B30; the B30-COONa to study al-
cohol/water mixtures due to the low solubility of B30 in pure water and highly water
concentrated mixtures [19]. There is an almost perfect agreement between ET(30) and
ET(30-COONa) over the whole composition range. This aspect will be taken up again in
the discussion section.

The perfect complementarity of the different ET(30) values for DMSO/water from
several references [7,12,14,121,122] should be noted (see Figure S4b). All datasets fit exactly
in one relationship (see below). However, there are very small differences [∆ET(30) ~ 1 kcal)
between the authors’ results.

Since the ET(30) datasets for 1,2-ethanediol/water show some unacceptable differences
in the low water concentration range between the data from [12,15], we used only the
dataset from [12] which fits well (see Figure S5).

The perfect complementary agreement of the ET(30) data from [13,19] for the 2-methyl-
2-propanol/water mixture at high water concentration is also particularly noteworthy.

An unfortunate and common problem was that many measured UV/Vis data of
various solvatochromic dyes were accurately reported neither in the tables nor in the
Supplementary Materials [6,10]. Often only the coefficients of the applied solvation models
or artificially modified parameters were given instead of the original spectroscopic data.

To support the correlations of ET(30) as a function of Nav,x, Kosower’s Z-scale was
considered appropriate [123–125] because of the linear correlation of Z with the ET(30)
parameter [1,34,35]. However, this proved not to be the case. It is important to clarify
the situation of the different Z values for DMSO/water and ethanol/water mixtures in
the literature, as only the Z values given by Kosower have been directly determined with
K [123,124]. The Z values used by Marcus for correlations were calculated by himself
indirectly using Brownstein’s S values [126] (see note in citation 23 of Marcus’ paper) [12].
The same applies to Gowland’s Z values, which were also determined indirectly from 4-
pyridine-N-oxide via a correlation equation [127]. We are convinced that the main problem
is the reproducible measurement of Z values with Kosower’s dye, because in [127] it was
mentioned that the Z value depends on the concentration of K in ethanol/water. Sufficient
dilution is necessary or, alternatively, extrapolation to infinite dilution if experimental
problems may occur.

To test whether case ii. of preferential solvation is significant, the literature data
of other negatively solvatochromic probes such as B1 [(2,4,6-triphenyl-1-pyridinium)-
phenolate] [1], Brooker’s Merocyanine (BM) [128] or Fe [129] were considered, although
fewer data points per individual correlation are available. For this purpose, EP of BM or
the UV/Vis absorption energy at the peak maximum νmax(Fe) are analyzed as a function
of Nav,x.

3.4.1. 1,2-Ethanediol/Water, Methanol/Water and Ethanol/Water Mixtures

The reason for considering 1,2-ethanediol/water mixtures in comparison to methanol/
water and ethanol/water mixtures is as follows. In all three binary solvent mixtures, the
enthalpy of mixing is exothermic over the whole composition range [82,83,130]. While
1,2-ethanediol as a co-solvent does not enhance the water structure, methanol and ethanol
do [109,110].

As mentioned above, the relationship ET(30) as function of x(water) resulted in a
curved line, regardless whether methanol/water, ethanol/water or 1,2-ethanediol/water
mixtures were considered, as seen in Figure 3b. This was discussed in the introduction and
is well described in the literature [2,8,10–20]. The greater the difference in molar mass, the
more non-uniform the mixture will be. The order of DImax is as follows: ethanediol/water
mixtures (green) > ethanol/water mixtures (blue) > methanol/water mixtures (grey) (see
Figure 3b). This in turn depends on the x(water) in the mixture. It can be clearly seen that
the strongest curvature along a line of ET(30) as a function of x(water) for each specific
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co-solvent/water mixture occurs when the DI is highest. This is a purely physical effect
and has nothing to do with the specific solvation.
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Figure 3. (a) Comparison of correlations of ET(30) (kcal/mol) as a function of Nav,x (mol/cm3) for
1,2-ethanediol/water (blue dots) with methanol/water (grey dots) and ethanol/water (yellow dots).
The orange dots belong to the correlation of ET(30) as function of DHBD for 1,2-ethanediol/water;
(b) plots of ET(30) (kcal/mol) as a function of x(water) and DI, respectively, for methanol/water (grey
and yellow), 1,2-ethanediol/water (light blue and green) and ethanol/water (orange and blue).

The situation is different when ET(30) is theoretically correctly correlated with Nav,x
(see Figure 3a). An excellent linear correlation of ET(30) as a function of Nav,x is then ob-
tained for the 1,2-ethanediol/water mixtures (Equations (23) and (24)). This overall result is
very significant. This corresponds to the physical finding that the 1,2-ethanediol/water mix-
tures do not show abrupt structural changes over the entire composition range [77,110,130].
The interpretation of the ET(30) curve as function of Nav,x for the 1,2-ethanediol/water
mixtures requires an essential comment, because each 1,2-ethanediol molecule contains
two OH groups. Therefore, the number of OH dipoles per 1,2-ethanediol is doubled. For
the 1,2-ethanediol/water mixtures, the hydroxyl group concentration is calculated as a
function of the number of the total OH dipoles using the DHBD model [62]. The D,av,xHBD
quantities are calculated from Equation (14) using the partial OH concentration of the 1,2-
ethanediol component in the mixture (see Table S2). The function ET(30) versus DHBD for
1,2-ethanediol/water mixtures determined according to Equation (14) is the orange dotted
line in Figure 3a. This curve is completely congruent with the relationship ET(30) versus
Nav,x for methanol/water mixtures in the water-rich range (Nav,x > 0.04 mol/cm3) (grey dot-
ted line of Figure 3a). However, it is noteworthy that the correlation ET(30) versus Nav,x of
methanol/water mixtures from Nav,x < 0.04 mol/cm3 runs parallel to the correlation ET(30)
versus Nav,x (dark blue) for 1,2-ethanediol/water mixtures. This agreement illustrates the
significant influence of the concentration of OH dipoles on ET(30). This result also shows
the strong influence of the total number of OH groups of binary aqueous mixtures in terms
of D,av,xHBD or Nav,x on ET(30) [62]. These clear results completely exclude a preferential
solvation of B30 in methanol/water, ethanol/water and 1,2-ethanediol/water mixtures in
the sense of scenario ii. The results for the methanol/water and ethanol/water mixtures
do not really correspond to scenario i either. It is always the total number of dipoles per
volume that determines the ET(30) value within certain composition ranges, regardless of
structural variations.

A kink can be seen in the correlation line ET(30) as a function of Nav,x for both
methanol/water and ethanol/water mixtures in Figure 3a. These noticeable kinks in
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the graphs of ET(30) as a function of composition in alcohol/water mixtures have been
recognized in several previous studies and attributed to structural changes in the solvent
structure [5,6,131,132].

However, the linear correlations of ET(30) as function of Nav,x for each section of the
solvent mixture are of excellent quality as shown by Equations (23)–(28).

ET(30) = 181.3 Nav,x + 53.02,

n = 12 (1,2-ethanediol/water); r = 0.999.
(23)

ET(30) = 341.1 DHBD + 44,

n = 12 (1,2-ethanediol/water); r = 0.999.
(24)

ET(30) = 342 Nav,x + 44.02,

n = 7 (methanol/water; Nav,x >0.04); r = 0.9957.
(25)

ET(30) = 162 Nav,x + 51.5

n = 6 (methanol/water; Nav,x < 0.04; r = 0.9985.
(26)

ET(30) = 500.7 Nav,x + 35.6,

n = 8 (ethanol/water; Nav,x > 0.04; r = 0.995.
(27)

ET(30) = 158.6 Nav,x + 49.27,

n = 10 (ethanol/water; Nav,x < 0.04); r = 0.998.
(28)

Various physical data on the properties of methanol-water mixtures indicate a struc-
tural variation in the range of x(water) = 0.5 to 0.6; corresponding to Nav,x = 0.035 and
0.04 mol/cm3 [86–95].

This wide distribution is also confirmed by the heat of interaction as a function
of composition, with the largest measured heat of about −850 kJ/mol in a range from
x(water) ~06 to 0.75 [81,82]. The refractive index of methanol/water mixtures reaches its
maximum at x(water) = 0.6 [112–114]. The highest heat of the exothermic interaction is at
x(water) = 0.6 [82,83] (Nav,x = 0.038 mol/cm3), which is fully reflected by the DImax of the
methanol/water mixtures, which is highest at x(water) = 0.6 (see Figure 1b).

However, the overall situation with these two monohydric alcohol/water mixtures
is not entirely clear. For ethanol/water mixtures, the function ET(30) versus Nav,x shows
a clear kink at exactly Nav,x = 0.04 mol/cm3 corresponding to x(water) = 0.8. The excess
molar volume for ethanol/water mixtures is at x(water) = 0.6, but the heat of interaction
is highest at x(water) = 0.82 to 0.845 [82,83]. Therefore, the refractive index maximum of
ethanol/water mixtures does not correspond to thermodynamics, as is apparently the case
for methanol/water mixtures. The different behavior of the composition of methanol/water
and ethanol/water mixtures with respect to the refractive index was also noted by Lang-
hals [112]. For the ethanol/water mixtures, the plots ET(30) as function of Nav,x or x(water)
are clearly determined through thermodynamics. Exactly at this composition, where the
largest heat of interaction is measured, the graphs show a kink in the line indicating the
structural change [5,81,82,84,89]. This agreement between the curves in Figure 3a and the
thermodynamics or refractive index clearly show the influence of the physical properties of
the mixture on ET(30), as suggested in previous studies [5,6,131,132].

However, there are a number of other aspects to consider. Bentley [27] has shown that
the volume fraction correlates better linearly with the static dielectric constant (εr) or the
ET(30) values of alcohol/water mixtures than the mole fraction as a composition parameter
of alcohol/water mixtures. The volume fraction has also been recommended in a recent
publication to explain the ET(30) as a function of solvent composition more accurately
than using the mole fraction [133]. Accordingly, for ethanol/water and methanol/water
mixtures, the Nav,w and Nav,v quantities have been calculated and empirically tested as vari-
ables for correlation with ET(30) [62]. It seems surprising that the Nav,w and Nav,v quantities
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give a much better linear relationship with ET(30) than the use of Nav,x when the whole
range of composition is considered. The methanol/water and ethanol/water mixtures fit
seamlessly into the primary alcohol series when the full dataset ET(30) of primary alcohols
is included; see Equations (29) and (30) and Figure S6a in the Supplementary Materials.
The overall correlations with 42 data points are convincing.

ET(30) = 313 Nav,v + 46.7,

n = 42 (methanol/water, ethanol/water and primary alcohol); r = 0.994.
(29)

ET(30) = 304.8 Nav,w + 46.7,

n = 42 (methanol/water, ethanol/water and primary n-alcohol); r = 0.994.
(30)

We are therefore in full agreement with the conclusions of [133], that the volume
fraction gives better results in terms of linear correlation. For the correlation with ET(30),
however, it makes no qualitative difference whether the mass or the volume fraction is used
to determine Nav,z. Therefore, the motivation for using the volume fraction given in [133]
should be reconsidered. Using the mass fraction would give similar results. Whichever
alcohol/water mixture is considered, the actual curve ET(30) versus Nav,w or Nav,v is
not really strictly linear, although a very good regression coefficient for linearity can be
calculated. The data points along the relationship lines show a significant pattern like a
string of pearls, as can be seen in Figure S6 in the Supplementary Materials. This is an
important detail. Thus, the subtleties observed in the correlation of ET(30) with Nav,x do not
disappear, but are merely reduced in the plots ET(30) as a function of either Nav,w or Nav,v.
The approximate linearity of ET(30) as a function of Nav,w or Nav,v is due to the stronger
algorithmic consideration of the inhomogeneity of the solvent components in Nav,w or Nav,v
(see Figure 1b).

These results clearly show that the discussed preferential solvation of B30 by water is
meaningless for methanol/water and ethanol/water mixtures. This is also an indication
that the polarization forces and dipolar effects of the molecules in the solvated mixture
act collectively on B30. In 1963, in the first paper on phenolate betaine dyes, Dimroth and
Reichardt also studied the better water soluble B1 probe in ethanol/water mixtures [1]. For
data, see Table S4. There is also a very good correlation of ET(1) as function of Nav,v, as can
be seen from Equation (31). The correlation of ET(1) as versus Nav,x is equivalent to that of
ET(30) versus Nav,x.

ET(1) = 216.7 Nav,v + 57.95,

n = 10 (B1 in ethanol/water and water), r = 0.988.
(31)

If pure water is omitted from Equation (31), then the correlation quality is significantly
improved to r = 0.999. This is also a strong indication that B1 is preferentially enriched in
ethanol/water-rich regions when the mixture is examined. The xb values of BM (xb is the
shift of the UV/Vis peak of BM in methanol/water) [128]) correlate very well with Nav,x;
see Equation (32).

xb = 201.2 Nav,x + 57.8,

n = 11 (BM in methanol/water), r = 0.997.
(32)

Consequently, the preferential solvation of BM in methanol/water as assumed by
Machado [26] or Tanaka [134] is not applicable when Nav,x is used instead of x(water) to
evaluate solvatochromism. The methanol/water mixtures were also studied by Taha using
the Fe probe [129]. There is also a linear correlation and no curved curve for νmax(Fe) as
function of Nav,x, Equation (33).

νmax(Fe) [103 cm−1] = 36.66 Nav,x + 17.32,

n = 11 (Fe in methanol/water), r = 0.992.
(33)
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For ethanol/water mixtures, the νmax(Fe) as function of Nav,x shows a similar corre-
lation with excellent quality as previously reported [43]. The correlation of νmax(Fe) with
x(water) in place with Nav,x is worse.

These results clearly show that several types of negatively solvatochromic dyes such
as B30, B1, BM and Fe do not indicate preferential solvation in the methanol/water and
ethanol/water mixtures. Thus, the linear correlations of EP parameters as function of
Nav,x according to Equation (2) are clearly confirmed by other solvatochromic dyes despite
the smaller dataset compared to ET(30). Since the UV/Vis energies of the different solva-
tochromic probes show the same linear dependencies as a function of Nav,x, it is quite clear
that the solvent structure determines the solvatochromism and not the preferred solvation
according to scenario ii. This conclusion is in complete agreement with older results by
Langhals [5].

3.4.2. Formamide/Water and other Amide/Water Mixtures

FA/water is the only binary aqueous mixing system considered in this study that fulfils
the thermodynamics of ideal mixing [66,110,135,136]. The heat of mixing is endothermic,
and the entropy is positive over the whole composition range. The mixing entropy is
highest at x = 0.5 [135,136].

The best linear correlations (r about 1) of ET(30) as a function of Nav,x over the whole
composition range of the solvent mixture were found for FA/water, NMF/water and
1,2-ethanediol/water mixtures (see Figures 3a and 4a).
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Figure 4. (a). Correlations of ET(30) (kcal/mol) as a function of Nav,x (mol/cm3) formamide/water
(yellow), NMF/water (grey), N-formylmorpholine/water (blue) and DMF/water (orange) mixtures.
For data, see Tables S2–S5; (b) correlations of ET(30) (kcal/mol) as a function of Nav,x (mol/cm3) for
DMSO/water mixtures (orange, all data); blue dots are data from [15] (O Connor).

For FA/water mixtures the linear correlations ET(30) as function of Nav,x are of excel-
lent quality; see Figure 4a as well as Equation (34).

ET(30) = 229 Nav,x + 50.2,

n = 16 (FA/water); r = 0.999.
(34)

The perfect linearity of ET(30) as a function of Nav,x can be explained by the excellent
physical properties of the FA/water mixtures [109,110,135–138]. The water-like structure of
FA is due to the fact that water and FA molecules can exchange positions without changing
the solvent structure [139]. Only the VE (Equation (13)) changes a little, as a function of
composition [138]. There is no segregation within the FA/water mixtures and the average
number of dipoles per volume perfectly determines the ET(30) at room temperature. A
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very good linear relationship ET(30) versus Nav,x is also obtained for NMF/water mixtures,
see Equation (35).

ET(30) = 212 Nav,x + 50.5,

n = 17 (NMF/water); r = 0.993.
(35)

Furthermore, for NFM/water and DMF/water mixtures, there are also excellent linear
correlations of ET(30) as function of Nav,x in the section of higher water content range;
xco-solvent < 0.35 [31,107,140–142].

The slight kinks in the curves at lower water contents are due to the non-linear change
in density as a function of composition [140–142]. The physical data of the NMF/water,
DMF/water and NFM/water mixtures are given in Tables S2–S5 in the Supplementary
Materials. According to [76], water is considered to be a solute rather than a solvent when
Nav,x < 0.035 mol/cm3. However, an excellent linear correlation of the refractive index as
a function of Nav,x,CH is seen for all mixtures (see Figure 2a) over the entire composition
range, including the range of low water concentrations.

Marcus also described the aqueous urea solution as a binary solvent mixture system
in which no enhancement of the water structure occurs, although pure urea is a solid at
room temperature [110]. Accordingly, we analyzed the ET(30) values of the urea/water and
N,N-dimethylpropylene urea/water binary mixtures from the literature [143–145]. There
are very good linear correlations of ET(30) as a function of Nav.x for both urea/water and
N,N-dimethylpropylene urea/water mixtures with high correlation quality (see Figure S6a
in Supplementary Materials). This result shows that solutions of solids in water can also be
treated in the same way. If the co-solvent or co-component (urea, N,N-dimethylpropylene
urea) can form a three-dimensional hydrogen bond structure with water, then a linear
correlation of ET(30) with Nav,x is found.

3.4.3. DMSO/Water Mixture

DMSO/water mixtures represent a physical challenge among binary aqueous solvent
systems due to the unclear thermodynamics at higher DMSO contents [146–154]. This was
therefore chosen for this fundamental work as an illustrative example. There are a large
number of physical studies on these mixtures, so only those relevant to the explanation of
solvatochromism in terms of Nav,x will be referred to. The following analysis shows where
the problems lie. There results a very good linear correlation of ET(30) as function of Nav,x
including ET(30) data from several references, Equation (36) and Figure 4b.

ET(30) = 432 Nav,x + 39.7,

n = 22 (DMSO/water) r = 0.993.
(36)

Although the overall correlation ET(30) with Nav,x seems convincing due to the clear
linearity, there is a small kink in the linear plot at Nav,x ≈ 0.025 to 0.03 mol/cm3. The kink
becomes more obvious when considering only the data from [15], see Equations (37) and (38).

ET(30) = 414 Nav,x + 40.7,

n = 9 (DMSO/water-rich; Nav,x > 0.02); r = 0.998.
(37)

ET(30) = 624 Nav,x + 36.2,

n = 5 (DMSO/water low; Nav,x < 0.02); r = 0.999.
(38)

This small effect has a significant physical background as the density of the binary
solvent mixture changes significantly at this composition [146,148]. However, density
measurements for DMSO/water mixtures in the DMSO-rich region are not consistent in
the literature [146,148]. In the water-rich range from Nav,x < 0.05541 mol/cm3 (pure water)
to Nav,x = 0.03 mol/cm3, the density of water/DMSO mixtures decreases linearly with
increasing water content. The density is almost constant in the range from Navx = 0.03 (60%
weight DMSO) to 0.014 mol/cm3 (pure DMSO) (see Table S9). In [148], it was reported
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that the density even decreases slightly. It should be noted that exactly at this mixture
composition Nav,x = 0.028 mol/cm3 the plot of ET(30) as a function of Nav,x has a slight,
imperceptible kink.

In the literature, there are several investigations on the DMSO/water mixtures us-
ing different solvatochromic probes [12,15,129,155–157]. Regardless of the type of solva-
tochromic probe used, it is clear that at Nav,x ≈ 0.03 mol/cm3 a slight change in the profile of
the parameter values can be observed as a function of the composition. Thus, the physical
structural change of the DMSO/water mixtures determines the empirical parameter and
not the artificially constructed acid-base properties of the solvent system [155,157]. This
result is fully consistent with the prediction in the introduction that no differences should
occur in scenario ii. when different probes are used. For reasons of space, the analyses of
the Kamlet–Taft (KAT) parameters of DMSO/water mixtures [157] are presented in Figure
S9 in the Supplementary Materials. As a consequence of this result, the determination of
individual empirical polarity parameters in terms of the KAT or Catalán scale is mean-
ingless for DMSO/water mixtures. Furthermore, a curved function of the ET(30) value of
the solvatochromic probe on x(water) of DMSO/water mixtures is found (see (Figure 5)
of [12]). If the x(water) is replaced by Nav,x, a linear correlation is obtained, as shown in
Figure 4b. The correlation of the UV/Vis absorption energy of other probes such as Fe
[νmax10−3 cm−1 (Fe)] [129] as function of Nav,x for DMSO/water mixtures clearly shows a
linear dependence, see Equation (39).

νmax10−3 cm−1 (Fe) = 67.7 Nav,x + 15.8,

n = 12 (DMSO/water), r = 0.996.
(39)

The change in the curve of the solvatochromic parameter after at Nav,x about 0.03 mol/cm3

is clearly due to physical changes in the solvent structure. Furthermore, if the static di-
electric constant (εr) of DMSO/water mixtures is plotted as a function of Nav,x, then the
kink at Nav,x at 0.03 mol/cm3 becomes also evident (see Figure S7a). The εr data are taken
from [151]. This property is also shown in the plots of ET(30) as a function of n20

D (Figure S2).
While the correlation of n20

D as a function of Nav,CH (Equation (10)) is nearly linear (Figure 2a),
the correlation of ET(30) as function of n20

D shows a slight kink at Nav,x = 0.03 mol/cm3.
To return to the DMSO/water mixtures, the concentration of all dipoles (water + DMSO)

of the system determines the solvatochromic property and not the preferential solvation.
This is a clear result. The only surprising thing is the rather good linearity of the function
ET(30) versus Nav,x when many data from the literature are used together. This shows that
B30 is not very sensitive to physical changes in the DMSO/water mixture system at RT.
Therefore, the solvatochromic method is not well suited to detecting the physical change in
the liquid structure of DMSO/water at different compositions.

What is the reason for the good linearity of ET(30) as a function of Nav,x although major
structural changes of the mixture occur at Nav,x = 0.03 mol/cm3? The complexity of the
water dynamics of DMSO/water mixtures has been thoroughly investigated through ultra-
fast IR experiments and dielectric spectroscopy [149–151]. These results are very important
in partially explaining the results of the correlations in this study. The average lifetime of
water-bound DMSO changes (decreases) almost linearly with the mole fraction of water.
This result is consistent with ET(30) increasing almost linearly with water content (see also
Figure 5 in [149]). This explains why the barely noticeable kink in the correlation can be
neglected, as the water dynamics overcome the local structuring around the dissolved dye.
Thus, the lifetime of the water/water component is independent of the water concentra-
tion in the high DMSO region Nav,x < 0.03 mol/cm3. Obviously, neither water/DMSO
nor B30/water complexes are relevant for the determination of ET(30) since the solvent
mixture has a high dynamic at 298 K [150,151]. Thus, even if DMSO/water or B30/water
complexes are present, they cannot be detected using B30 due to the fast dynamics of the
binary solvent system. The situation is similar to other solvatochromic dyes such as Fe.
Therefore, other physical measurements such as dielectric spectroscopy are more suitable
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than solvatochromic probe molecules for analyzing the structure of DMSO/water mix-
tures. The outstanding behavior of the DMSO/water mixtures at higher DMSO contents
Nav,x < 0.028 mol/cm3 has been the subject of numerous simulation experiments [152–154].
Apparently, the behavior at Nav,x < 0.03 mol/cm3 is due to the entropy increase in the
system, which is still difficult to understand theoretically [154], since the experimentally
determined heat of interaction is exothermic over the whole composition range.

3.4.4. 1,4-Dioxane/Water Mixtures

The 1,4-dioxane/water mixtures were subjected to numerous physical tests [158–169].
The dependence of the UV/Vis-absorption energy maxima of solvatochromic dyes such as B30,
Fe, M540, various 7-N,N-diethylaminocoumarins or harmaline as function of dioxane/water
composition has been extensively studied in the literature [2,5,70,129,165–169].

The thermodynamics of 1,4-dioxane/water mixtures is characterized by a transition
from exothermic to endothermic heat of mixing with increasing 1,4-dioxane content [158].
This is the main difference to the DMSO/water system [147]. The heat of interaction ∆rH of
1,4-dioxane/water mixtures has its maximum exothermic heat at around x(water) = 0.8 (yel-
low dot in Figure 5b) corresponding to Nav,x = 0.032 mol/cm3 or Nav,v = 0.018 mol/cm3. The
largest partial molar volume of water in 1,4-dioxane/water mixtures is x = 0.8 [167]. ∆rH is
zero at x(water) = 0.52 (Nav,x = 0.02 mol/cm3). With this composition, the 1,4-dioxane/water
mixture has the highest density and the lowest −T∆S value. At x(water) < 0.52, the heat of
interaction becomes endothermic. For the evaluation in this paper, the volume fractions
of the 1,4-dioxane/water mixtures given in [2] were reconverted to the average molar
concentration of the solvent dipoles. Fortunately, there is excellent agreement between the
ET(30) data from four different literature sources, as shown in Table S7. The ET(30) data
from these four different sources fit perfectly into a relationship. To evaluate the influence
of the inhomogeneity of the mixture with respect to the composition, we plotted ET(30) as
function of Nav,x and Nav,v as well as x(water) (Figure 5a,b).
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Figure 5. (a) Correlations of ET(30) (kcal/mol) as a function of Nav,x (mol/cm3) (orange dots) and
Nav,v (blue dots) for 1,4-dioxane/water mixtures at 298 K; (b) plots of ET(30) (kcal/mol) as a function
of x(water) for 1,4-dioxane/water mixtures (orange dots) compared with the inhomogeneity (DI) of
the system in terms of Mav,v/Mav,x ratio (blue dots). The yellow dots indicate the composition with
the greatest inhomogeneity. The yellow dots indicate the composition with the inflection point and
the greatest inhomogeneity. The grey dots show the correspondence between the two curves in terms
of maximum inhomogeneity.
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The correlation of ET(30) as a function of Nav,x results in two consecutive linear lines
with different slopes. The change in the function ET(30) as function of Nav, is at Nav,x = 0.015
[x(water) = 0.3] mol/cm3; see Equations (40) and (41) and Figure 5a.

At this composition (at ET(30) ~ 46 kcal/mol), there is also the strongest curvature in
the curve ET(30) as a function of x(water) in the 1,4-dioxane-rich section (see Figure 5b).

ET(30) = 2997.5 Nav,x + 2.123

r = 0.944, n= 7 (Nav,x < 0.02 mol/cm3, 1,4-dioxane rich section)
(40)

ET(30) = 398,8 Nav,x + 40.42

r = 0.997, n= 12 (Nav,x > 0.02 mol/cm3, water-rich section)
(41)

The correlation of ET(30) as a function of Nav,v (blue dots in Figure 5a) gives an
asymptotic curve without linearity of specific sections. This could be explained by the fact
that the variable Nav,v better reflects the inhomogeneities of the composition.

The 1,4-dioxane/water mixtures are subject to fine structuring over the whole com-
position range, in which both types of molecules are always involved [161–164]. The
volume structure of 1,4-dioxane/water mixtures changes significantly in the range of
Nav,x < 0.02 mol/cm3. Accordingly, the strongest bend in the graph ET(30) as function of
Nav,x corresponds to the composition where the significant change in the volume struc-
ture of the 1,4-dioxane/water mixtures takes place. Exactly at ET(30) = 47 kcal/mol
(Nav,x = 0.018 mol/cm3), the dielectric relaxation time τ1 passes through a maximum
(τ1 ≈ 25 ps) for 1,4-dioxane/water mixtures [162]. The use of Nav,X(water) according to
Equation (14) as the mixture composition parameter gives a similar plot as when Nav,x is
used (see Figure S8b), indicating that 1,4-dioxane and water are always involved together
in the volumetric structure and thus in the dissolution of dissolved B30. Thus, 1,4-dioxane
does not enhance the water structure in any way, which is in full agreement with the
Marcus classification [110].

It is worth analyzing the correlations of ET(30) as a function of x(water) from the point
of view of thermodynamics and the structural change of the 1,4-dioxane/water mixtures
as shown in Figure 5b. At x(water) = 0.52 (Nav,x = 0.02 mol/cm3), the curve ET(30) as a
function of x(water) shows an inflection point (not marked in Figure 5b). It is precisely at
this composition that this binary solvent system behaves in an athermal manner, i.e., ∆rH
mixture = 0 [158,159]. The strong curvature ET(30) as a function of x(water) = 0.8 (marked
in yellow) (Nav,v = 0.015 mol/cm3) is clearly due to the inherent mass inhomogeneity of
the mixture, as shown in the simultaneous plot for the DI (Figure 5b). At this composition
(Nav,x = 0.032 mol/cm3), mixing has the highest exotherm. This result is consistent with the
results from the thermodynamics of methanol/water and ethanol/water mixtures, which
are a good indication that x(water) reflects the thermodynamics of the mixture in relation
to other quantities more comprehensively than the quantity Nav,x. Thus, the S-shaped
function ET(30) versus x(water) (Figure 5b, orange dots) is attributed to the change in
interaction heat as function of composition. This feature is only partly recognized when
Nav,x is used as the composition size, as seen in Figure 5a. There is no bend or kink in the
plot ET(30) as function of Nav,x for Nav,x ~ 0.032 mol/cm3 (largest exothermic heat), but at
Nav,x = 0.02 mol/cm3 (zero heat).

The linear function of ET(30) as a function of Nav,x in the water-rich region
Nav,x > 0.02 mol/cm3 is due to the fact that the average concentration of both the wa-
ter dipoles and 1,4-dioxane molecules determines the ET(30) value. Both fractions are
constantly mixed together and do not segregate [162,163]. The larger ET(30) in the 1,4-
dioxane rich fraction, compared to a hypothetical linear plot of ET(30) versus Nav,x, can be
easily explained by the results of Buchner: “This indicates a largely microheterogeneous
structure for such mixtures, with the presence of water-rich domains of significant size
in the dioxane-rich fraction” [163]. Thus, B30 preferentially measures the water enriched
portions of the 1,4-dioxane/water domains within the compositional spectrum. Obviously,
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the water clusters are solvated by the 1,4-dioxane excess and the B30 is enriched in the
1,4-dioxane clusters below Nav,x < 0.015 mol/cm3.

The refractive index as a function of the composition Nav,xCH of the 1,4-dioxane mixture
(see Figure 2a, red dots) and Equation (23) give a linear curve. This is consistent with the
fact that the static permittivity εr of 1,4-dioxane/water mixtures is also a linear function of
Nav,x including pure 1,4-dioxane (see Figure S7b). For this investigation, the composition
data x(water) from [162] were converted to Nav,x. In contrast, the correlation of ET(30) as a
function of εr or n20

D is not linear over the whole composition range, because the values of
the pure 1,4-dioxane or the 1,4-dioxane-rich fraction do not fit linearly; see Figure S8a.

As a consequence, the B30 probe reflects the volumetric structure of 1,4-dioxane/water
differently compared to volumetric polarity-related physical measurements such as di-
electric spectroscopy or refractive index. In summary, the 1,4-dioxane/water mixtures
present a challenge in terms of the formation of solvent structures as a function of the
quantitative composition, since different physical methods (UV/vis spectroscopy of B30,
dielectric spectroscopy, refractive index, calorimetry) register different dependencies of the
measurand on the different composition sizes.

Note that only x and Nav,x are physically based quantities, referring to thermodynamic
and UV/Vis spectroscopic quantities, respectively. Despite this concern, in summary, the
complex dependence of ET(30) on the composition of 1,4-dioxane/water mixtures can
be readily interpreted in terms of Nav,x, Nav,v or x(water). This is possible by analyzing
the physical properties of this binary solvent system, where thermodynamics, dipole
concentration and solvent dynamics play a role. Despite this caveat, it is clear that the
specific solvation of B30 by HBD solvent molecules is not responsible for this UV/Vis shift.
The ET(30) of 1,4-dioxane/water mixtures is mainly determined through the concentration
of water dipoles permanently mixed with 1,4-dioxane molecules.

3.4.5. 2-Propanol/Water and 2-methyl-2-propanol/Water Mixtures

The 2-propanol/water and 2-methyl-2-propanol/water mixtures are considered sepa-
rately because they show a change in the heat of mixing with increasing alcohol content
in the sense of a reversal from exothermic to endothermic heat [80,82], similar to the
1,4-dioxane/water mixtures [158]. In particular, the 2-methyl-2-propanol-water mixtures
in particular have been the subject of research and speculative interpretations in recent
decades [170–179]. A mystical character has been attributed to this particular mixture due
to the method-dependent results of the mixture [178].

First, the correlations of ET(30) as function of Nav,x and x(water) are discussed; Figure 6a,b.
The plot of ET(30) as a function of mole fraction x(water) shows relatively similar

curves for all mixtures (see Figure S10 in the Supplementary Materials).
If one compares the curves ET(30) with the curve of the inhomogeneity (DI) of the

solvent mixture, both as a function of x(water), see Figures 3b and 6b, then the same
result is obtained for 2-propanol/water and 2-methyl-2-propanol/water, methanol/water,
ethanol/water and 1,4-dioxane/water mixtures. The strongest curvature of the plot ET(30)
versus x(water) always occurs immediately after the strongest inhomogeneity. This corre-
sponds “immediately after” to a difference of about 1.5 kcal/mol with respect to ET(30),
which is illustrated by the horizontal lines (grey and green dots) between the two curves in
Figure 6b. This scenario can be found in all plots of ET(30) versus Mav,w/Mav,x, regardless
of the type of alcohol/water mixture.

The curves ET(30) as a function of Nav,x for methanol/water, ethanol/water, 2-propanol/
water and 2-methyl-2-propanol/water mixtures differ qualitatively for both methanol/water
and ethanol/water mixtures compared to both 2-propanol/water and 2-methyl-2-propanol/
water mixtures in the low water content range. Therefore, the plots of ET(30) as a func-
tion of Nav,x show an inflection points at about 0.031 mol/cm3 and 0.0273 mol/cm3 for
2-propanol/water and 2-methyl-2-propanol/water mixtures, respectively.
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Figure 6. (a) Correlations of ET(30) (kcal/mol) as a function of Nav,x (mol/cm3) for 2-propanol/water
(yellow) and 2-methyl-2-propanol/water (blue); (b) plot of ET(30) (kcal/mol) as a function of x(water)
for 2-methyl-2-propanol-water (dark blue and orange) and 2-propanol/water (yellow and light blue)
compared with the plot of ET(30) as a function of the inhomogeneity (DI) of the solvent mixture in
terms of Mav,w/Mav,x (orange and light blue).

At lower water concentrations, the 2-propanol/water mixtures (x(water) < 0.5;
Nav,x = 0.02 mol/cm3) and 2-methyl-2-propanol mixtures (x(water) < 0.55; Navx = 0.018 mol/cm3)
are endothermic in terms of the heat of mixture. At about x = 0.65 to x = 0.5 (water) (Nav,x
≈ 0.03, see Figure 6a), both systems behave athermally; i.e., ∆Hmixing = 0. Exactly at this
composition, the curve ET(30) as a function of Nav,x (see Figure 6a) shows an inflection
point. The same result is found for the 1,4-dioxane/water mixtures (see Figure 5b). In the
composition range with endothermic heat of mixing, both curves ET(30) vs. Navx show a
higher ET(30) than would be expected from linearity. In this region, the entropy of mixing
is positive and the proportion of water in the mixture determines the ET(30) proportionally,
more than in the water-rich region does. The dielectric relaxation time decreases signifi-
cantly from low to high water content, i.e., the structure in the water-poor region is more
stable in time than in the water-rich region.

The Fe complex has also been studied in 2-propanol/water mixtures [129]. Consistent
with the correlations of ET(30) versus Nav,x„ the plot of νmax (Fe) as a function of Nav,x (see
Figure S11) shows a similar pattern to that of Figure 6a. This shows the influence of the
physical structure of the solvent as a function of composition.

In addition, there are numerous studies with positive solvatochromic probes such
as Nile Red [7], 4-nitroaniline [18,180–182], 4-nitroanisole [18], 4-(1-azetidinyl)-benzo-
nitrile [177] or coumarin 343 and 480 [178] in various alcohol/water mixtures.

While ET(30) as a function of Nav,x for 2-propanol/water and 2-methyl-2-propanol/water
mixtures show similar curves, the situation is different for the 2-butoxyethanol/water mixtures.

3.4.6. 2-Butoxyethanol/Water Mixtures

As a final example, the solvatochromism of B30 in 2-butoxyethanol (BE)/water mix-
tures is reanalyzed. The ET(30) data are taken from [8]. BE itself is partially hydrophobic,
but it mixes completely with water at room temperature; separation occurs only at higher
temperatures [8,183]. Due to their self-structuring properties, BE/water mixtures have
been the subject of numerous physical investigations [184–193]. The self-propelled agglom-
eration of the BE molecules in water has been demonstrated through various scattering



Liquids 2024, 4 215

methods [184,185]. At x(BE) > 0.02 agglomeration begins to occur resulting in an inhomoge-
neous solvent mixture at the level of about 1 nm [184]. However, other studies have shown
that 130 nm aggregates are present [185]. The inhomogeneity of the BE/water mixing
system is complicated by the fact that this feature can be observed at different length and
time scales [188–191,193].

The mixtures BE/water and 2-methyl-2-propanol/water are often compared for their
similarity [193]. We will show that, despite the discussion in the literature, the two solvent
mixtures are completely different. The microstructures of both solvent mixtures are very
subtle and are strongly influenced by the composition in the water-rich part. However,
the heat of mixing is exothermic over almost the whole composition range for BE/water
mixtures, but weakly endothermic at high BE concentrations (about 95 wt%) [187,188].
In addition, photo-switchable spiro compounds have been measured in BE/water mix-
tures [192]. It has been suggested that the solvent structure of BE/water is affected by this
type of photo-switching. Therefore, it cannot be excluded that the dissolved probe molecule
co-determines the fine structure of BE/water mixtures, complicating the whole situation.
Therefore, only the analysis of the ET(30) values will be discussed here. Unfortunately, the
interesting solvatochromic results of El Seoud on this solvent system were not given as
original data [22]. Plotting ET(30) as a function of Nav,x for BE/water mixtures gives an
asymmetric profile, as shown in Figure 7a (grey dots).
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Figure 7. (a) Relations of ET(30) (kcal/mol) as a function of Nav,x (in mol/cm3) for BE/water
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D as a function of Nav,x,CH for 2-butoxyethanol/water
(grey), 2-methyl-2-propanol/water (yellow), 1,2-ethanediol/water (blue) and glycerol/water mix-
tures (orange).

The crucial region of low BE content (at Nav,x = 0.0497 mol/cm3) deserves special atten-
tion, since, at this composition, the agglomeration of BE molecules occurs [x(BE) ≈ 0.02; or
Nav,xCH = 0.017 mol/cm3] [184]. B30 dye is apparently absorbed by these BE-rich agglom-
erates, leading to an abrupt decrease in ET(30) at Nav,x ≈ 0.05 mol/cm3, as shown by the
grey dotted line in Figure 7a. This is consistent with the fact that ET(30) decreases abruptly
with increasing C-H concentration due to the BE component at Nav,CH = 0.017 mol/cm3

(not plotted; for data, see Table S13). There is only a narrow transition.
This result exactly fulfils the preferential solvation scenario i., as explained in the

Introduction. The agglomeration of BE is driven by hydrophobic interactions, as also
suggested by the analysis of the fluorescence of coumarin and related probe molecules
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in BE/water mixtures [193,194]. Obviously, the trapping of probes is also determined
through the solvent cage property of the BE/water mixtures. This is in contrast to 2-methyl-
2-propanol/water mixtures, where strong thermal fluctuations in partial concentrations
occur [195,196]. Thus, in 2-methyl-2-propanol/water mixtures there is no true hydrophobic
solvation of B30, but the partial water structures are changed depending on the composition,
as discussed in the previous chapter.

The two binary solvent mixtures glycerol/water and 1.2-ethanediol/water show a per-
fect mixing behavior according to the Marcus classification, so that there is no enhancement
of the water structure in any way [110]. These two mixtures are documented in Figure 7b as
references. For glycerol/water and 1,2-ethanediol/water mixtures, there are perfect linear
correlations of n20

D as a function of Navx,CH; see Equations (42) and (43) [89,197].

n20
D = 2.062 Nav,x,CH + 1.335,

n = 12 (glycerol/water); r = 0.9999.
(42)

n20
D = 1.381 Nav,x,CH + 1.333,

n = 14 (1, 2-ethanediol/water); r = 0.997.
(43)

The larger slopes of ∆n20
D /∆Navx,CH for glycerol/water and 1,2-ethanediol/water

mixtures compared to BE/water mixtures are attributed to the influence of the polarizability
of the hydrogen bond network and the higher refraction of the C-O bond compared to
C-H [60,62,108].

The change in the overall bulk solvent structure of 2-methyl-2-propanol/water mix-
tures as a function of composition is also clearly visible in the plot of the refractive index
as function of Nav,xCH (yellow dotted lines in Figures 2b and 7b), which shows a kink at
about 0.035 to 0.04 mol/cm3. Remarkably, the kink in the plot of ET(30) as a function
of Nav,x is also observed at this composition; see Figure 6a. In this concentration range,
the thermodynamic changes from exothermic to endothermic with increasing Nav,xCH for
2-methy-2-propanol/water mixtures. This thermodynamic scenario does not apply to
BE/water mixtures [187,188].

Remarkably, the correlation of n20
D as function of Nav,xCH for BE/water mixtures is

approximately linear over the whole composition range; see Equation (44) and Figure 7b
(grey dotted line).

n20
D = 0.876 Nav,x,CH + 1.353,

n = 11 (BE/water); r = 0.998.
(44)

Obviously, BE as a co-solvent does not enhance the water structure, but water en-
hances the BE structure. That is the special thing. According to the Marcus classification,
this is the reverse scenario of solvent structure enhancement. These considerations convinc-
ingly show the qualitative differences between BE/water and 2-methyl-2-propanol/water
mixtures. The different solvation behavior of B30 in BE/water mixtures compared to
2-methyl-2-propanol/water mixtures can also be supported by considering the DI from
Equation (9). The BE/water mixtures show the greatest inhomogeneity with respect to DI
at x(water) = 0.85 (Nav,x = 0.029 mol/cm3), while the kink in the curve ET(30) as a func-
tion of Nav,x occurs far away from this at ≈ 0.045 mol/cm3. This is the crucial difference
between BE/water mixtures and all other (monohydric) alcohol/water mixtures studied
in this work. Therefore, this result could be used as a criterion to define the preferential
solvation scenario of case i. However, the results do not exclude that the B30 dye itself has
an influence on the solvent cage of the BE/water mixture at low BE content, as mentioned
in [192,193] for other solutes.

4. Discussion

The plot of ET(30) as a function of Nav,x for co-solvent/water mixtures shows a different
pattern depending on the co-solvent of the mixture. The scenario of each specific co-
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solvent/water mixture can be clearly assigned according to the Marcus classification. Four
different scenarios can be identified:

A. The ET(30) increases significantly and linearly with Nav,x (1,2-ethanediol/water, FA/water,
urea/water, NMF/ water and DMSO/water mixtures) (see Figures 3a and 4a,b). These
co-solvents belong to the group of solvents that do not enhance the water structure at
all and form strong hydrogen bonds with water. In these cases, the ET(30) of the pure
co-solvent is fitted to the linear plot.

B. The ET(30) increases asymptotically with increasing Nav,x where the ET(30) value is
always higher than with a linear dependence (1,4-dioxane/water, DMF/water and
NFM/water mixtures) (see Figures 4a and 5a). In these cases, the co-solvent-rich
fraction shows the non-linearity ET(30) as function of Nav,x. These co-solvents do not
enhance the water structure but form weaker hydrogen bonds with water than those
belonging to scenario (A).

C. The ET(30) increases as Nav,x increases, with the ET(30) value always being lower than ex-
pected for a linear dependence (see Figure 3a). This scenario applies to methanol/water
and ethanol/water mixtures. These co-solvents enhance the water structure.

D. ET(30) shows an S-shaped curve as a function of Nav,x (see Figure 6a). With increasing
Nav,x the ET(30) value is always higher than expected with a linear dependence in
the co-solvent-rich part. In the water-rich part, the ET(30) is lower than with a linear
dependence according to scenario (C). The mixtures 2-propanol/water, 2-methyl-
2-propanol/water and 2-butoxyethanol/water belong to this group. This scenario
applies to binary solvent mixtures that interact either on the structure of the water or
on the structure of the co-solvent.

In particular, these binary co-solvent/water mixtures of scenario (A), which include
glycerol/water mixtures, have been shown to be robust reference liquids for contact an-
gle measurements, as no segregation occurs when in contact with different types of sur-
faces [198]. This is an important result in support of the Marcus theory for the classification
of aqueous mixtures.

When rapid solvent dynamics occur in a particular solvent system, thermal motion
overcomes local structuring effects. An almost perfect linear relationship of ET(30) as a func-
tion of Nav,x is then observed. This scenario is shown to hold for FA/water, DMSO/water,
1,2-ethanediol/water, urea/water and NMF/water mixtures. This interpretation is strongly
supported by the results of dielectric spectroscopy and ultrafast IR experiments.

The heat of mixing of the 1,2-ethanediol/water, DMSO/water and NMF/water mix-
tures is exothermic over the whole composition range, whereas the heat of interaction of
the FA/water mixtures is always weakly endothermic. The best fits of ET(30) as a function
of Nav,x are for 1,2-ethanediol/water, NMF/water mixtures (exothermic over the whole
composition range) and FA/water mixtures (weak endothermic over the whole composi-
tion range). For all co-solvent/water mixtures with respect to scenario (A), the qualitative
heat of interaction does not change as a function of composition.

With regard to scenario (B), these co-solvents also belong to the Marcus classification,
which do not enhance the water structure. There is a linear dependence of ET(30) as a
function of Nav,x up to Nav,x > 0.02 mol/cm3. However, the water fraction obviously has a
greater effect on ET(30) than the average number of dipoles over the whole composition
range would suggest. A linear correlation of ET(30) as a function of Nav,x is always found
in the range of higher water contents. Thus, the average molar concentration of the dipoles
(water and co-solvent) acting on the probe is the dominant factor in the higher water
content range. Only from Nav,x > 0.0135 is there a bend in the curve, indicating that water
as a co-component loses its influence on ET(30). These co-solvents form weaker hydrogen
bonds with water compared to scenario (A), indicating that the water structure changes
non-linearly with composition [199–201]. These co-solvents can be classified differently
depending on the criteria used by Marcus for evaluation.

For the 1,4-dioxane/water mixtures, the ET(30) is always larger than expected from the
sum of water and 1,4-dioxane dipoles. The curves for 1,4-dioxane/water and DMF/water
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mixtures are congruent up to Nav,x = 0.0135 mol/cm3. However, while the heat of mixing of
DMF with water is exothermic over the whole composition range, the situation is different
for 1,4-dioxane/water mixtures, as discussed above. Therefore, the thermodynamic changes
in the DMF/water and dioxane/water mixtures are not always captured by the correlation
of ET(30) with Nav,x.

The correlation of ET(30) with x(water) gives a better indication of the thermodynamic
changes at different compositions of the 1,4-dioxane/water mixture.

This detailed result is very significant because it shows the linkage of x(water) with
thermodynamics but not directly with the UV/Vis shift. In summary, scenario (B) requires
more detailed studies using related binary solvent mixtures. Further studies will consider
the complexity of THF/water, acetone/water and acetonitrile/water mixtures and other
binary solvent mixtures such as pyridine/water or piperidine/water mixtures [2] with
respect to solvatochromism. These evaluations are necessary to clarify or complement
some of the conclusions regarding scenario (B) of this study. As shown by Marcus [200,201],
each specific mixture actually requires special treatment in order to understand the many
physical effects. Therefore, this review provides only a rough overview of the overall
problem using selected examples.

In scenarios (C) and (D), the co-solvents belong to the Marcus classification, which en-
hance the water structure. But why is the ET(30) value for methanol/water, ethanol/water,
2-propanol/water and 2-methyl-2-propanol/water mixtures lower at high water concen-
trations than would be expected from a linear dependence such as that observed for
1,2-ethanediol/water, as seen in Figure 3a? The answer is quite pragmatic: the hydrophobic
dye B30 is difficult to dissolve in pure water [1]. It therefore dissolves much better in
the alcohol/water domain, where the partial alcohol concentration is greater than the
total alcohol concentration in the initial mixture. Accordingly, a lower ET(30) is logically
measured than would be expected from the total average molar concentration (Nav,x), since
the average water concentration in the partial alcohol/water fraction must be lower outside
the areas of enhanced water structure. The mole fraction x(water), as a measure of solvent
composition in solvatochromism analysis, falsifies preferential solvation, since x is inversely
proportional to Nav,x. The previously observed curved functions of ET(30) as a function of
x(water) determined so far are due to the inhomogeneity (DI) of the solvent mixture.

This result is a significant contribution to the identification of enhanced water struc-
tures in alcohol/water mixtures. The enhanced microdomain water structure ranges of
alcohol/water mixtures are apparently not recognized by B30 for two reasons: firstly, B30
dissolves poorly in pure water; secondly, the molar absorption coefficient of B30 in water is
rather low [1,70].

The first argument is supported by the fact that different solvatochromic dyes such
as 4-nitroaniline, 4-nitrophenol, 4-nitroanisole or B30 show qualitatively different depen-
dencies of the UV/Vis absorption energy as a function of alcohol/water composition,
especially in the water-rich range x(water) > 0.8 [18,19]. This observation holds regardless
of the methanol/water, ethanol/water, 2-propanol/water or 2-methyl-2-propanol/water
mixtures is considered. Obviously, hydrophilic dyes are distributed in all these fractions
and hydrophobic dyes are preferentially dissolved in the alcohol/water fraction. As B30
itself is a hydrophobic molecule, this scenario is likely.

This explanation is also consistent with the results of the BE/water mixtures. The
BE/water domain captures the hydrophobic B30 particularly well, as there is an abrupt de-
crease in ET(30) with increasing BE content occurs when agglomeration of n-butoxyethanol
takes place.

However, it appears that B30 and B30-COONa measure the water-rich fraction in the
same sense [19]. Note that the full width at half maximum of the UV/Vis absorption band of
B30 measured in alcohol/water mixtures is quite broad. These very broad UV/Vis spectra
with large half-widths are often measured in water/salt mixtures [202]. Unfortunately, the
UV/Vis spectra are not given in [19]. Therefore, it is not possible to say whether there
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are superpositions of several UV/Vis bands originating from different solvation states. A
definitive statement is therefore not yet possible.

The 2-propanol/water and 2-methyl-2-propanol/water mixtures belong to scenario
(D). In the co-solvent rich range the B30 is preferentially influenced by the partial water
concentration of the mixture due to the larger ET(30) is measured as expected from the
linearity. The situation is quite delicate because the thermodynamics of the mixture changes
from exothermic to endothermic depending on the composition. Then, at ∆rHmixing = 0,
the plot ET(30) as function of Nav,x shows an inflection point, as is clearly seen for 2-
propanol/water, 2-methyl-2-propanol/water and 1,4-dioxane/water mixtures. However,
this is only a preliminary result that needs to be confirmed by further studies.

The conclusion from these considerations is that the thermodynamics of the interaction
between the solvatochromic probe and the solvent mixture is crucial. Unfortunately, the
dissolution thermodynamics of B30 in different solvents has not yet been systematically
studied. There are only two papers with calorimetric results on the solvation thermody-
namics of B30 [203,204]. The ambiguous results of the two references are not consistent
with the theory of exothermic solvation of the probe leading to a lowering of the ground
state energy [34,35]. The dissolution process of B30 in acetonitrile, ethyl acetate and higher
alcohols is found to be endothermic, which is difficult to explain and may be due to entropic
effects rather than re-association of B30 as discussed [204]. Thus, the thermodynamics of
the B30/HBD solvent interaction is not trivially explainable in terms of specific hydrogen
bond formation. This is consistent with the results of the present study that hydrogen bond
formation has no significant effect on the ET(30) value. As consequence, the influence of
the thermodynamics of solvation of B30 in terms of the real ground state energy is difficult
to assess because the calorimetric studies on several B30/solvent systems are difficult
to interpret.

There are various approaches to correlating polarity data with calorimetric results,
which are partly successful, but also give very strange results [180,205]. Therefore, this
approach has often not been pursued further.

The complicated situation regarding solvation thermodynamics is similar for positive
solvatochromic dyes such as 4-nitroaniline [206]. The dissolution process of 4-nitroaniline
in co-solvent/water mixtures is endothermic in terms of the heat of mixing in the high-
water content range [180,206]. Therefore, a reinterpretation of the solvatochromic re-
sults of 4-nitroaniline and related probes in co-solvent/water mixtures from the litera-
ture [18,19,181,182] is imperative. The effect of endothermic solvation and its impact on
the UV/Vis absorption energy requires more detailed analysis in future work. The idea
that solvation of an electronic state leads to an energetic decrease should be abandoned.

There is another aspect to consider. Dissolved B30 probes are statistically influenced
by the dynamically moving solvent molecules. For this reason, the UV/visible spectrum
only measures a snapshot of different solvation states. A superposition of many solvation
states is recorded. Thus, the discrimination of domain formation in solvent mixtures by
solvatochromic probes is only possible if the dynamics of the solvent is much lower than that
of the optical excitation process of B30. This argument applies precisely to those mixtures
where the co-solvent enhances the water structure. This can be explained by considering
the relaxation time τ1 measured by dielectric spectroscopy. The larger the τ1 values, the
more structural subtleties of the mixture are detected using the solvatochromic probe at
ambient temperature, as shown for 2-propanol/water and 2-methyl-2-propanol/water
mixtures [86,88,89]. Therefore, the results of dielectric spectroscopy in terms of relaxation
time are a useful adjunct to explain the results of UV/Vis measurements.

The two groups of co-solvents, which either enhance or do not enhance the water
structure, can probably be distinguished on the basis of the refractive index. When n20

D
is correlated as function of Nav,x,CH as shown in Figure 2, different curves are obtained.
If there is no linear correlation of n20

D with Nav,x over the entire composition range, then
microdomains of water have formed in the mixture in the form of enhanced water structures.
This hypothesis should be tested in further studies. However, this proposed rule does not
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apply to the correlation of the dielectric constant as a function of Nav,x for DMSO/water
mixtures, where a curved line is found instead of a straight line [207–209]. For this, εr
correlates linearly with x(water), but not linearly with n20

D [208]. This particular behavior of
DMSO/water mixtures is due to the recently recognized unusual microheterogeneity of
these particular mixtures [209]. This important detail supports the thesis that the local mass
inhomogeneity in terms of DI has an influence on the result of the physical measurement.
Therefore, nothing is riskier than relying on routine evaluations of measurement results as
a function of the composition of co-solvent/water mixtures.

Due to the complex structure of aqueous solvent mixtures, a growing body of knowl-
edge is emerging based on conventional and modern measurement methods that take
into account the density, refractive index, heat of interaction and other properties (dielec-
tric relaxation) of the individual solvent mixture systems. The combination of UV/Vis
spectroscopic data such as ET(30) with physical properties of the solvent mixture (molar
concentration of dipoles, dielectric dynamics, thermodynamics, domain size formation)
has proved to be necessary but very complex.

New work on the structure of ethanol/water or 2-methyl-2-propanol/water mix-
tures continues to emerge, providing a refined picture of these unusual solvent sys-
tems [111,210,211]. However, the results of recent studies clearly confirm the presence
of coexisting microdomains of water and alcohol/water. The considerations of this study
also apply to organic solvent mixtures. As early as 1981, Langhals showed that the same
relationships that apply to aqueous mixtures can also be used for binary organic solvent
mixtures [212]. This motivates us to re-evaluate and classify binary organic solvent mix-
tures as well, in terms of the average molar concentration. This evaluation requires an
extensive literature search for density data. However, the formation of hydrogen bonds on
the probe can have a stronger effect in special systems [213], but the use of Nav,x instead of
x is necessary for a correct evaluation of UV/Vis spectroscopic data [67,68]

Despite the correlations found between UV/Vis data and physical solvent properties
of mixtures, it must be made clear that solvatochromism is of limited use for analyzing
the chemical properties of solvent mixtures, unless one simply wants to measure the
composition quickly using calibration curves [6]. To understand the complex dependence of
the absorption energy of a solvatochromic probe on the solvent composition, the structure
of the solvent mixture must be analyzed. However, solvatochromism cannot analyze
structures, as Marcus correctly concluded for acetonitrile/water mixtures [214].

5. Conclusions

The Marcus classification of aqueous solvent mixtures has proved to be very useful
and explains the qualitatively different correlations of ET(30) with Nav,x for different co-
solvent/water mixtures. This should easily solve many puzzles in the literature, as all
previous evaluations of solvatochromic data using the molar fraction x(water or co-solvent)
as the composition variable are physically incorrect. Various linear and curvilinear relation-
ships of ET(30) as a function of solvent composition in terms of Nav,x have been analyzed.
With increasing both the OH dipole and co-solvent dipole concentration, ET(30) increases
linearly for those mixtures where the co-solvent does not enhance the water structure.
This characteristic holds for FA/water, 1,2-ethandiol/water, NMF/water, urea/water and
DMSO/water.

Co-solvents which enhance the water structure of aqueous mixtures (Marcus) show an
S-shaped or curved curve of ET(30) as function of Nav,x. Whether a curved or an S-shaped
function is obtained depends on the thermodynamics of the mixing process and the solvent
dynamics in terms of the relaxation time. Even if preferential solvation of a solute occurs,
this may not always be observed with solvatochromic probes if the dynamics in the binary
solvent mixture are too high. An average number of solvation states is then recorded. The
complexity of the structure of alcohol/water mixtures is reflected in the correlation of the
refractive index or ET(30) as a function of various compositional quantities such as x(water),
Nav,x, Nav,x,CH or Nav,v.
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The Nav,x of the binary mixture is physically justified as a suitable measure of com-
position for the analysis of UV/Vis results of solvatochromic probes, because of its linear
relationship with the UV/Vis absorption energy according to the Lorentz–Lorenz relation.
The refined interpretations of ET(30) as a function of solvent composition in this work were
only possible on the basis of many new and modern insights into the physical structure of
solvent mixtures and the true significance of optical measurements.

In general, the significance of the various measures of the average molar mass of
solvent mixtures requires further research into their relationship with physical methods
of investigation and their informative value. The use of the inhomogeneity of the solvent
mixtures in terms of the Mav,w/Mav,x quantity should be considered for other solvent
mixtures in order to support the conclusions of this study in future work.

Finally, it is incomprehensible why hardly anyone has used the average molar con-
centration Nav,z as a measure of the composition of solvent mixtures. The molar fraction x
is needed for thermodynamics, but not for spectroscopy. However, both x and Nav,z are
crucial in understanding the physics of mixing. Irrespective of the theoretically justified
relationships of the Debye, Clausius–Mosotti or Lorentz–Lorenz equations, the use of the
molar concentration is actually necessary for the evaluation of UV/vis spectroscopic data
and the refractive index.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/liquids4010010/s1, References [215–222] belong to this chapter.
Figure S1a. (left panel) Correlation of ET(nile red) (kcal/mol) as a function of DHBD (mol/cm3) for
protic solvents including water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-2-
propanol, 2-ethanolamine, 1,2-ethandiol, 2,2,2-trifluoroethanol and 1,1,1,3,3,3-hexafluoro-2-propanol.
The UV/vis-spectroscopic data are taken from ref. [72] and the DHBD parameter from [62]. ET(nile
red) = −118.8 DHBD + 54.3, n = 12, r = 0.924. The correlation supports the DHBD parameter pro-
posed for 2,2,2-trifluoroethanol and 1,1,1,3,3,3-hexafluoro-2-propanol from ref. [62]. Figure S1b.
(right panel) Plots of Nav,x (sum of total OH dipoles) (in mol/cm3) as a function of x(water) for
methanol/water (orange dots), ethanol/water (grey dots) 2-propanol/water (yellow dots), 2-methyl-
2-propanol/water (light blue dots); 2-n-butoxyethanol/water (dark blue) mixtures, physical data
from references [191,198–202]. Figure S2. Plots of ET(30) (kcal/mol) as function of n20

D for 1,2-
ethanediol/water (grey), DMSO/water (blue) and 1,4-dioxane/water (orange) mixtures. Figure S3.
Correlation of ET30) (in kcal/mol) as a function of N (in mol/cm3) in the temperature range from−75
to + 75 ◦C, Reichardt [1] (blue dots) and Linert [116] (orange dots). Densities see ref. [218]. Figure S4a
(left panel). Comparison of ET(30) (kcal/mol) as function of Nav,x (mol/cm3) for ethanol/water
mixtures. Data from Dimroth–Reichardt [2] (red dots) and data from Rosés [18] (blue dots), (25 ◦C).
Figure S4b (right panel). Comparison of ET(30) (kcal/mol) as a function of x(DMSO) for DMSO/water
mixtures data from [12,14,121,122] (orange dots) (25 ◦C) and data from Connors [15] (blue dots).
Figure S5. Comparison of ET(30) (kcal/mol) as function of x(1,2-ethanediol) (mol %) for 1,2-
ethanediol/water mixture, data from Kosower/Marcus [12] (orange dots) (25 ◦C); data from Con-
nors [15] (blue dots). Figure S6a. ET(30) (kcal/mol) as a function of Nav,x (mol/cm3) for urea/water
(blue) and N,N’-dimethylpropyleneurea/water (orange) mixtures; data from [143,144]. ET(30)
(urea/water) = 80.3 + 58.7; n = 8, r = 0.996; ET(30) N,N’-dimethylpropyleneurea/water) = 432 + 39.7;
n = 7, r = 0.994. Figure S6b (right panel). Overall correlation of ET(30) (kcal/mol) as a function
of N for the homologous series of primary alcohols (orange dots) as well as ET(30) as function of
Nav,v (mol/cm3) for ethanol/water mixtures (blue dots) and methanol/water mixtures (grey dots).
All ET(30) data are taken from [2,18,34]. Figure S7a. Correlation of the static dielectric constant
of DMSO /water mixtures [151] as a function of Nav,x (mol/cm3). Figure S7b. Correlation of the
static dielectric constant εr as function of Nav,x (mol/cm3) for several co-solvent/water mixtures,
including the pure co-solvents, 1,4-dioxane/water mixtures [162]: εr = 1827 Nav,x − 25; n = 11;
r = 0.996 (grey dots). The 1,2-ethanediol/water mixtures, εr = 975 Nav,x + 25; n = 11; r = 0.994
(blue dots) and the glycerol/water mixtures, εr = 908 Nav,x − 29; n = 11; r = 0.999 (orange dots)
are used as independent reference. Figure S8a (left panel) Correlation of ET(30) (kcal/mol) as a
function of the static dielectric constant εr for DMSO/water (orange) [151] and 1,4-dioxane/water
mixtures [162] (blue). Figure S8b. (right panel) Correlation of ET(30) (kcal/mol) as a function of
Nav,x (blue) and Nav,x(water) (orange) for 1,4.dioxane/water mixtures. Figure S9. Plots of Kamlet–

https://www.mdpi.com/article/10.3390/liquids4010010/s1
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Taft (KAT) α HBD parameter (orange and grey dots), β (HBA) parameter) (yellow dots) and π*
dipolarity/polarizability parameter (blue dots) as a function of Nav,x (mol/cm3) for DMSO/water
mixtures [157]. Note the maximum KAT value for π* corresponds exactly to the kink in the curve
for KAT α as a function of Nav,x and the inflection point of β versus Nav,x at the same compo-
sition. Figure S10. Correlations of ET(30) as a function of x(water) for methanol/water (grey),
ethanol/water (orange), 2-propanol/water (blue), and 2-methyl-2-propanol/water (yellow) mixtures.
Data from [2,18,19]. Figure S11. Plot of νmax(Fe) [103 cm−1] as a function of Nav,x (mol/cm3) for
the 2-propanol/water mixtures [126]. Linear fit: νmax(Fe) [103 cm−1] = 41.95 Nav,x + 17.05; r = 0.99,
n = 11. Table S1. ET(30) values for ethanol measured at various temperatures; data from Reichardt
and Linert [1,116] and densities at various temperatures of the ethanol/water mixture [218]. Table S2.
Physical properties of the 1,2-ethanediol/water mixture in terms of mole fractions as well as refractive
index and ET(30) values [12,77,130]. Dav,x,HBD values are the total concentration of OH dipoles when
the partial OH concentration of the 1,2-ethanediol component is taken into account according to
Equation (9). Table S3. Physical data of methanol/water mixtures with respect to mole, volume
and mass fraction, and ET(30) values [17]. Physical data from [215–217]. Table S4. ET(30) and ET(1)
values, density, average molar masses and average molar concentrations in ethanol/water mixtures.
Data from Reichardt [1,2]. Physical solvent mixture are data from [215–217]. Table S5. Physical
properties and ET(30) values of the formamide/water mixtures [21,120,137,138]. Table S6. The N-
methylformamide (NMF) /water mixtures. X(water), Mavx, Nav,x. Data from [139,219]. ET(30)data
from [21]. Table S7. The N,N-dimethylformamide (DMF)/water mixtures, physical data and ET(30)
values [21,141,142,220]. Table S8. The N-formylmorpholine/water mixtures, Nav.x, refractive index
and ET(30) values [32,221,222]. Table S9. Physical properties and ET(30) values of DMSO/water mix-
tures from different literature sources [12,15], Density from [146,148]. Table S10. Physical properties
of the 1,4-dioxane/water mixtures in terms of mole and volume fractions as well as refractive index
and ET(30) values, data from [2,159–162,165]. Table S11. Physical properties of 2-propanol/water mix-
tures [215–217] and ET(30) values [2,18,19]. Table S12a. ET(30), density, various average molar masses
and corresponding molar concentrations of 2-methyl-2-propanol/water mixtures, data from [173,174].
ET(30) values, data from [19]. Table S12b. Refractive index, density, average molar masses and aver-
age molar concentrations of 2-methyl-2-propanol/water mixtures, data from [173,174]. ET(30) values,
data from [19]. Table S13. Physical data and ET(30) values, data from [8], for the 2-Butoxyethanol
(BE)/water mixtures at 25 ◦C, physical data from [191].
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