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Abstract: Filamentous fungi exhibit unparalleled potential as cell factories for protein production,
owing to their adeptness in protein secretion and remarkable proficiency in post-translational modifi-
cations. This review delineates the role of filamentous fungi in bio-input technology across different
generations and explores their capacity to generate secondary metabolites. Our investigation high-
lights filamentous fungi as frontrunners in the production of bioactive compounds, emphasizing the
imperative nature of elucidating their metabolic repertoire. Furthermore, we delve into common
strategies for genetic transformation in filamentous fungi, elucidating the underlying principles,
advantages, and drawbacks of each technique. Taking a forward-looking approach, we explore the
prospects of genome engineering, particularly the CRISPR-Cas9 technique, as a means to propel
protein secretion in filamentous fungi. Detailed examination of the protein secretion pathways in
these fungi provides insights into their industrial applications. Notably, extensive research within the
scientific community has focused on Aspergillus and Trichoderma species for the industrial produc-
tion of proteins and enzymes. This review also presents practical examples of genetic engineering
strategies aimed at augmenting enzyme secretion in filamentous fungi for various industrial applica-
tions. These findings underscore the potential of filamentous fungi as versatile platforms for protein
production and highlight avenues for future research and technological advancement in this field.

Keywords: CRISPR-Cas; protein secretion pathways; bioactive secondary metabolites; enzymes;
protoplast formation

1. Introduction

The metabolic machinery within filamentous fungi cells serves as a potent and efficient
apparatus for the large-scale production of proteins and secondary metabolites in industrial
contexts. Presently, filamentous fungi contribute to the synthesis of more than half of the
proteins available commercially [1]. Several factors designate them as prime candidates
for industrial protein and secondary metabolite production. Notably, filamentous fungi
are regarded as safe (GRAS—Generally Regarded as Safe), bolstering their suitability
for industrial processes. Moreover, they exhibit a superior capacity for protein secretion
compared to other microorganisms such as bacteria and yeast. Additionally, filamentous
fungi possess well-characterized systems for post-translational processing, pivotal for
modulating the activity and functionality of synthesized proteins. Furthermore, their
metabolic versatility enables efficient utilization of various monosaccharides including
xylose, arabinose, and galactose [2–4].
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In Brazil, numerous species of filamentous fungi are enlisted with the Ministry of
Agriculture, Livestock, and Supply (MAPA) as bio-inputs for pest and disease management
in agricultural fields. These bio-inputs are strategically developed for commercial purposes,
typically comprising the vegetative propagation structure of fungi, such as the fungus Beau-
veria bassiana IBCB 66. Notably, this product, comprising B. bassiana, demonstrates efficacy
in controlling various pests including whitefly, rhizome borer, striped mite, sugarcane wee-
vil, and corn leafhopper across diverse crops such as soybeans, beans, bananas, sugar cane,
and corn. Another noteworthy example is a commercial product containing Metarhizium
anisopliae, strain IBCB 425, which effectively targets root and grasshopper leafhoppers [5].
Moreover, products based on Cordyceps javanica, strain BRM 27666 [6], and C. fumosorosea
exhibit notable effectiveness against insect pests [7] (Supplementary Table S1).

Within filamentous fungi, Trichoderma sp. emerges prominently as a biocontrol agent,
its presence solidified in the global market with 144 registrations spanning 40 countries as of
2022 [8]. An extensive survey reveals Latin America as the most active market, with Brazil
positioned at the forefront. Among the plethora of registered products in Brazil containing
filamentous fungi as active ingredients, Trichoderma sp. accounts for 38% of the products,
followed by Beauveria sp. (20%) and Metarhizium sp. (11%). The Trichoderma species
authorized for disease management in Brazil predominantly include T. afroharzianum,
T. asperellum, T. atroviride, T. endophyticum, T. hamatum, T. harzianum, T. koningiopsis, T. reesei,
and T. stromaticum [9].

In the contemporary biological products market, all enlisted products adhere to either
the first- or second-generation classification, characterized by the presence of fungal struc-
tures, namely spores (conidia) of the active ingredient (1st generation), or a blend of diverse
microorganism species (2nd generation). Nevertheless, the burgeoning fields of genomics,
proteomics, and the substantial progress in molecular biology and genetic techniques have
facilitated the identification of diverse proteins or regulatory factors implicated in stress
responses and virulence against insect pests within certain fungi [10]. This progress paves
the way for the development of formulated biological products for subsequent generations.
For instance, the toxins synthesized by B. bassiana primarily consist of secondary metabo-
lites and low molecular weight compounds, including beauvericin, bassianin, bassianolide,
beauverolides, tenelin, oosporein, oxalic acid, calcium oxalate crystals, and various ana-
logues of beauvericin. Among these compounds, beauvericin secreted by mycelia emerges
as one of the most significant toxins [11–13]. In a recent investigation, researchers undertook
a chemical analysis of Cordyceps sp. BCC 1788, leading to the isolation of a cyclopeptide
designated cordyheptapeptide A. This isolation was achieved from the desiccated extract
of the mycelia, revealing the intracellular localization of the peptide in question [14]. Apart
from serving as a metabolite of Cordyceps sp. BCC 1788, recognized for its antimalarial
properties, cordyheptapeptide A demonstrates efficacy against malaria [15].

Conventional molecular methodologies encompass strategies such as optimizing
the fermentation process and inducing random mutagenesis to further enhance desired
traits, such as augmenting protein production via novel mutants derived from filamentous
fungi. However, certain genetic engineering strategies hold promise in elevating protein
expression and secretion in a targeted manner [4,16,17]. The methodologies involving
knock-out, knock-in, gene replacement, and conditional gene expression have become
standard procedures, facilitating the swift generation of genetically modified filamentous
fungi harboring targeted genetic modifications. Moreover, the simultaneous expression of
all genes constituting a complete biosynthetic pathway via a polycistronic expression cas-
sette has demonstrated feasibility in filamentous fungi. This approach is employed for the
production of bioactive secondary metabolites, including antibiotics such as penicillin and
eniatin, as well as austinoid insecticides, across various species of Aspergillus sp. [18–21].

The demand for bio-insecticides (for insect control) and bio-fungicides (for fungal
control) has exhibited notable growth, indicating an escalating prevalence of biological
products in agricultural settings. These products are instrumental in the prevention, surveil-
lance, and management of pests and diseases. Moreover, they align with the principles of
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the bioeconomy and underscore the value of biodiversity, reflecting a global perspective
aimed at fostering increasingly sustainable production systems. This approach integrates
environmental, economic, social, and productivity considerations [22]. For biofuels, which
are pivotal for sustainable energy production, fourth-generation biofuels seek to integrate
biofuel synthesis with carbon dioxide (CO2) capture and storage methodologies, employing
techniques such as oxy-fuel combustion or leveraging genetic engineering and nanotech-
nology [23]. Analogous to the evolution observed in biofuel technology, the utilization of
genetic engineering to procure agriculturally significant biological products can be likened
to fourth-generation bio-inputs. In this context, the objective of this review is to elucidate
potential genetic engineering frameworks applicable to filamentous fungi, with a specific
emphasis on realizing fourth-generation bio-inputs in the near future.

2. The Generations of Bio-Input Technology

Bio-input can be defined as a product, process or technology of plant, animal or micro-
bial origin, intended for the production, storage and processing of agricultural products,
in aquatic production systems or planted forests, which positively interfere in the growth,
development and response mechanism of animals, plants, microorganisms and derived sub-
stances that interact with physical-chemical and biological products and processes [24,25].

Microbiological products or products of microbial origin are live or inactivated mi-
croorganisms, including viruses, as well as those resulting from techniques involving
changing hereditary material, which should prevent, destroy, repel, or mitigate any pest or
to be used as a plant regulator, stimulator, defoliant, or desiccant [26].

Similar to bio-inputs, biofuels refer to fuels that are produced from living plant matter
or by-products of agricultural production. We can divide biofuel technology into conven-
tional and advanced. Conventional biofuels (also known as first-generation biofuels) are
ethanol and biodiesel produced from food crops. The need for advanced biofuels arose
from a concern about competition for natural resources (e.g. water, energy, land) between
fuel and food production. Thus, advanced biofuels cannot compete with food produc-
tion. In addition, they need to meet higher sustainability requirements, i.e. contribute
to reducing greenhouse gas (GHG) emissions by a greater percentage than conventional
biofuels [27,28].

The designation of generations of biofuels depends on the specific technology and
raw material used to produce biofuels. It also links to temporal development trends over
the years and the complexity of the biofuel market, which includes an increasing number
of potential raw materials to be used in biofuel production [23]. Similarly, researchers are
constantly searching for raw materials and technologies to produce them at lower costs
while maintaining the quality and efficiency of the biological agent in the production areas.
Thus, we can categorize bio-input technology into generations. Figure 1 shows bio-input
technology and its stages of development in generations.

Table 1 shows some definitions and similarities between biofuel and bio-input tech-
nology and how important it is to understand and separate the generations of these
technologies to have a holistic view based on science.

Currently, products registered in Brazil whose active ingredient is filamentous fungi
are the first and second generation of bio-inputs. Most biological assets used in agricul-
ture are the fungal species Trichoderma sp., Beauveria bassiana and Metarhizium anisopliae
(Figure 2) [9].
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Table 1. The generations of conventional and advanced technologies for biofuels and Bio-inputs.

Generations Biofuel Technology [23] Bio-Input Technology
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The First
Generation

First-generation biofuels are
derived from agricultural crops
intended for human consumption.
For instance, (a) Biodiesel is
obtained through the chemical
processes of transesterification and
esterification from oilseed plants or
vegetable materials.
(b) Ethanol is derived from plant
biomass containing fermentable
sugars, which undergo
fermentation to produce fuel.

First generation bio-inputs of microbial origin refer to the
utilization of cells or spores of microorganisms, such as bacteria,
fungi, or viruses, for the management of pests and/or diseases in
agricultural crops. These bio-inputs can be produced through
various methods:
(a) Liquid (submerged) fermentation is employed when the
objective is to harvest cells, particularly for the production of
bacterial cells and spores [29].
(b) Solid fermentation is utilized when the goal is to acquire
spores, particularly for the cultivation of fungal spores [29].
(c) Two-phase fermentation involves an initial stage of liquid
fermentation, followed by solid-state fermentation [30,31].
(d) In vivo cultivation of insects is employed to obtain viruses for
bio-input production [29].
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The Second
Generation

Second-generation biofuels
originate from non-food crops, such
as crop residues, wood, and
dedicated energy crops cultivated
explicitly for biofuel production.

Second-generation bio-inputs entail the amalgamation of diverse
microorganisms within a formulation aimed at broadening the
spectrum of action exhibited by biological agents. Some examples
of application of the 2nd generation of bioinputs: (a) Use of
isolates Bacillus amyloliquefaciens, CCT 7901 + Trichoderma
asperellum URM 8120 + Trichoderma harzianum, URM 8119 in the
control of belly rot (Rhizoctonia solani), cottony soft rot (Sclerotinia
sclerotiorum) and anthracnose of bean (Colletotrichum
lindemuthianum); (b) Bacillus licheniformis, ATCC 12713 + Bacillus
subtilis, ATCC 6051 + Paecilomyces lilacinus (Purpureocilium
lilacinum), CPQBA 040-11 DRM 10 in the control of Root-knot
nematode (Meloidogyne incognita) and Root-lesion nematode
(Pratylenchus brachyurus); (c) Bacillus thuringiensis, S 234 +
Metarhizium rileyi, CG 1153 in the control of Soybean caterpillar
(Anticarsia gemmatalis), Soybean looper (Chrysodeixis includens),
Cotton bollworm (Helicoverpa armigera), The black army worm
(Spodoptera cosmioides), Southern armyworm (Spodoptera eridania)
and the fall armyworm (Spodoptera frugiperda); (d) Beauveria
bassiana, IBCB 66 + Metarhizium anisopliae, IBCB 425 in the control
of Grasshopper leafhopper (Deois flavopicta) and The neotropical
brown stink bug (Euschistus heros) (Supplementary Table S1) [9].

The Third
Generation

Third-generation biofuels are
predicated on advancements in
biomass production, with algae
serving as the principal raw
material within this category.

Third-generation bio-inputs refer to those designed to acquire
and refine the primary and secondary metabolites generated by
microorganisms through fermentation processes. Within this
context, the active component comprises organic molecules or
proteins that exert influence over pest and/or disease
management in agricultural crops. An example of a third
generation bioinput is the fermentation of S. spinosa produces a
natural mixture containing spinosyn A as the major component
and spinosyn D as the minor component, a mixture that has been
named spinosad. Several commercial products containing
spinosad as their active ingredient for insect control on organic
crops, and fruitfly and fire ant bait traps. The products are also
useful in integrated pest management and insecticide resistance
management programs [32].
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Table 1. Cont.

Generations Biofuel Technology [23] Bio-Input Technology
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The Fourth
Generation

Fourth-generation biofuels strive to
offer enhanced sustainability in
production methodologies,
integrating biofuel manufacturing
with carbon dioxide (CO2) capture
and storage techniques such as
oxy-combustion processes or
employing genetic engineering and
nanotechnology approaches.

Fourth-generation bio-inputs, the focus of this review article, seek
to present heightened sustainability in production strategies
through the utilization of genetic engineering or nanotechnology
methodologies. This encompasses the application of the CRISPR
Cas system for genetic editing and augmenting the secretion of
proteins and metabolites by microorganisms. A pioneering study
demonstrated the modification of Trichoderma harzianum using the
CRISPR/Cas9 marker-free system, targeting the albA (pks4) and
ku70 genes. This achievement marks the first successful
application of this recyclable system for constructing fungal
strains with agricultural applications [33].
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3. Secondary Metabolites from Filamentous fungi

In the early 1940s, antibiotics of fungal (penicillin, griseofulvin) and bacterial (gram-
icidin) were at the forefront of interest, but after the discovery of streptomycin and later
chloramphenicol, tetracyclines and macrolides, attention turned to the actinobacteria of
the genus Streptomyces spp. These species yielded the majority (70%) of antibiotics discov-
ered in the 1950s and 1960s. Over the next two decades, the importance of actinobacteria
increased to between 25 and 30% of all antibiotics discovered. And since the early 1990s,
the number of bioactive compounds isolated from various filamentous fungi and other
species of microscopic and higher fungi has increased by over 50% at the turn of the
millennium [34].

Regarding the number of bioactive metabolites produced by microorganisms, it is
possible to verify that fungi are in second place in obtaining these metabolites, behind
only actinobacteria. And within the group of fungi, filamentous fungi are in first place in
the ranking, thus showing the importance of exploring the metabolites produced by them
(Figure 3) [35].
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Filamentous fungi secrete a variety and quantity of enzymes. In addition, they can
secrete primary and secondary metabolites, such as organic acids and antimicrobial com-
pounds, also known as idiolites. Organic acids also work to release nutrients for fungal
growth. For example, they solubilize minerals in the soil and may be involved in the degra-
dation of cellulose [36]. In addition, fungi secrete organic acids to lower the environmental
pH, promoting fungal growth and inhibiting bacterial growth [37].

Secondary metabolism and primary metabolism have a strong link in the sense that the
precursors and cofactors for secondary metabolites are derived from processes in carbon
metabolism. Figure 4 below illustrates the production of secondary metabolites during
the growth of filamentous fungi in a representative and generalized manner. For example,
the cell only produces penicillin after the logarithmic growth phase (trophophase). The
production of the secondary metabolite occurs during the stationary phase of the cell
(idiophase), in which the cells do not divide but are metabolically active [38].

The genes that are necessary for synthesizing a primary metabolite disperse through-
out the fungal genome. About that, biosynthetic gene clusters (BGCs), such as aflatoxin,
arrange the genes coding for the enzymatic activities necessary to produce any secondary
metabolite [39]. Secondary metabolites are crucial in the development of fungi and actively
shape their interactions with other organisms [40–42].
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of secondary metabolites occurs, adapted from [38]. The solid blue line represents the growth curve
of a hypothetical microorganism. The dashed brown line represents the nutrient concentration. And
the dashed purple line represents the concentration of secondary metabolites, which occurs during
the stationary growth phase of the microorganism.

Researchers focus on the secondary metabolites that filamentous fungi can produce be-
cause they can use some of them as anti-cancer compounds, antibacterials, and mycotoxins.
These metabolites play an extremely important role in the fields of health and agricul-
ture [43]. Fungi produce two main classes of secondary metabolites: polyketides (PKs),
which derive from short-chain acyl-coenzyme A (acyl-CoA) units and are synthesized
by polyketide synthases (PKSs), and non-ribosomal peptides (NRPs), which derive from
amino acids and are synthesized by non-ribosomal peptide synthases (NRPSs). In addition,
the secondary metabolite pathways use cofactors such as ATP and NADPH derived from
energy metabolism. Besides these dominant classes, there are ribosomal peptides (RiPPs)
and terpenoids [44–46].

To illustrate, seven linear chain NRPs were reported in some species of the genera
Cordyceps, Paecilomyces, Metarhizium and Hirsutella. Cicadapeptins obtained from Cordy-
ceps heteropoda, leucinostatins can be found in Purpureocillium lilacinum (Paecilomyces lilac-
inus), Metarhizium marquandii (Paecilomyces marquandii) and Acremonium sp. Efrapeptins,
which can be found in Acremonium sp. and Metarhizium anisopliae, peptaibols, culicinins,
metanicins and LP237 analogues [47].

In fungi, polyketides (PKs) comprise CH2 (C=O) units and are the most abundant sec-
ondary metabolites [44,48]. Different routes synthesize fungal polyketides, each involving
a specific class of polyketide synthase (PKS). Type I iterative PKSs are multidomain en-
zymes responsible for producing most fungal polyketide compounds [49]. A second route,
dependent on type III iterative PKSs, are enzymes comprising a single keto-synthase (KS)
domain [50]. While type I iterative PKSs have been well characterized and found in fungal
genomes, some type III fungal iterative PKSs have already been characterized [51–56].

Fungi are a prolific source of polyketides (PKs), which exhibit remarkable structural
diversity and biological activity. Representative examples include the cholesterol-lowering
drug lovastatin, the antifungal drug griseofulvin, the immunosuppressive drug mycophe-
nolic acid, and the phytopathogenic fungal virulence factor T toxin [57].
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Genetic engineering tools with bioinformatics and molecular biology are used to
change the metabolic pathways of microorganisms. This may involve the introduction
or overexpression of genes related to the metabolite biosynthesis pathway, removal of
competing pathways, or increasing the supply of precursors. These modifications aim to
increase the yield and productivity of the desired metabolite [58].

4. Tools for the Genetic Transformation of Filamentous fungi

For a genetic transformation tool of a microorganism to achieve industrial viability, the
expression system necessitates fundamental components: (a) A host strain with a history
of safe utilization (Generally Regarded as Safe—GRAS), characterized by robust growth
and proficient protein production in cost-effective media and at industrial scales. The
implementation of a selection system ensures the successful integration of the gene into the
host. Various nutritional marker genes (e.g., pyrG, amdS, and niaD) and antibiotic resistance
markers (e.g., hygB) can serve this purpose. In the industrial production of food enzymes,
avoidance of antibiotic resistance markers is advisable due to regulatory requirements for
the final strain. (b) Utilization of a transformation tool to introduce one or more copies of
the expression cassette containing the gene of interest into the strain’s genome, preferably
at specific loci. (c) Incorporation of a robust promoter facilitating gene expression under
fermentation conditions. Table 2 presents a comprehensive overview of the principles,
advantages, and disadvantages of the most prevalent and established tools employed for
the genetic transformation of filamentous fungi [59].

Post-genome sequencing, gene editing technologies have emerged as efficient tools
for elucidating gene function. Among nucleases-based gene manipulation methods, the
CRISPR/Cas9 system stands out as the most prominent. Originating from the adaptive
immune system of bacteria, the CRISPR/Cas9 system serves as a sophisticated genomic
engineering tool, evolved as a defense mechanism against viral and plasmid invasion [55,
56]. Comprising two principal components, the Cas9 nuclease and a guide RNA (gRNA)
molecule, this gene editing system directs the nuclease to a specific genomic location,
termed the target site. The chimeric guide RNA (sgRNA) is formed through the fusion of a
CRISPR RNA (crRNA) with a trans-activating RNA (tracrRNA), processed by endogenous
bacterial machinery to generate the functional gRNA [60,61].

The guide RNA (gRNA) directs the Cas9 endonuclease to a precise genomic locus,
facilitating the formation of Watson-Crick base pairs with the target DNA sequence. This
interaction allows Cas9 to induce double-stranded DNA breaks at specific genomic sites.
Binding of the Cas9 nuclease to the crRNA/tracrRNA complex induces a structural al-
teration in the protein, activating the Protospacer Adjacent Motif (PAM) recognition site.
PAMs, consisting of 2 to 5 nucleotides (5’NGG3’ and 5’NNGRRT3’), are essential for an-
choring the Cas9 nuclease to the cleavage site [61,62].

Following the induction of DNA double-strand breaks (DSBs), two distinct repair
mechanisms ensue: non-homologous end joining (NHEJ) and homology-directed repair
(HDR). NHEJ represents an error-prone and predominant pathway for DSB repair, wherein
the broken ends are directly ligated without reliance on a homologous template. Conse-
quently, this pathway may lead to targeted mutations, such as random deletions, insertions,
base substitutions, targeted chromosomal rearrangements, or mutations at DNA break-
points, resulting in premature stop codons within the Open Reading Frame (ORF) of the
target gene. In contrast to the NHEJ pathway, which predominates as the primary DSB
repair mechanism in microorganisms, HDR is a less efficient but notably reliable path-
way [63–65]. Figure 5 illustrates the anchoring of the Cas9 nuclease to the cleavage site
and subsequent DNA double-strand breakage at the Protospacer Adjacent Motif (PAM)
sequence, followed by depiction of the two principal DNA repair pathways (gene edit-
ing methods).
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Table 2. Usual strategies for genetic transformation of filamentous fungi.

Method Principle Advantages Disadvantages Reference

TMP

Use of cell wall degrading
enzymes to get protoplasts.

DNA transfer occurs by adding
PEG and CaCl2.

Spores, spores in the process
of germination, and hyphae

are usable.

The transformation rate
depends on the efficiency

of the lytic enzyme used to
get the protoplasts.

Requires cell
regeneration procedure.
High number of DNA

copies is inserted

[66,67]

TMA

A. tumefaciens carries two vectors
(the binary vector with the DNA
of interest between the left and
right repeats and the T vector

containing the virulence region
important for DNA transfer).

During the co-cultivation of A.
tumefaciens with the fungus, they

achieve DNA transfer.

Spores, spores in the process
of germination, and hyphae

are usable.
Low copy number of

inserted DNA improves
targeted integration.

Several parameters during
the co-cultivation of A.

tumefaciens and the
filamentous fungus to be

transformed affect the
transformation rate.

Time-consuming technique

[68]

EP

DNA transfer is mediated by
reversible permeabilization of the

membrane induced by local
application of electrical pulses.

Spores, spores in the process
of germination, and hyphae

are usable.
A simple and

inexpensive technique

The formation of
protoplasts is often

necessary to perform
the technique

[69]

TB

The DNA is coated with tungsten
or gold and inserted into the cell to

be transformed using a
microparticle accelerator.

No pre-treatment of
recipient cells

Special equipment
is necessary. [70]

https://app.biorender.com/biorender-templates/figures/all/t-5f873df466346900a43c6db1-crisprcas9-gene-editing
https://app.biorender.com/biorender-templates/figures/all/t-5f873df466346900a43c6db1-crisprcas9-gene-editing


Appl. Microbiol. 2024, 4 803

Table 2. Cont.

Method Principle Advantages Disadvantages Reference

CRISPR
(RNPs)

Cas9 and guide RNAs can be
delivered in form of DNA,

RNA/mRNA, or
ribonucleoprotein (RNP). The
delivery methods are usually

divided into physical
(electroporation and

microinjection), viral (lentiviral,
adenoviral, and AAV vectors), and

non-viral (plasmids, lipid and
polymeric nanoparticles, and
extracellular vesicles) ones.

The delivery of CRISPR
ribonucleoproteins (RNPs)
for genome editing in vitro
and in vivo has important

advantages over other
delivery methods, including

reduced off-target and
immunogenic effects

Effective delivery of RNPs
remains challenging in
certain cell types due to

low efficiency and
cell toxicity

[71–73]

Adapted from [59], (TMP) Transformation mediated by protoplasts, (TMA) Transformation mediated by Agrobac-
terium, (EP) Electroporation, (TB) Transformation by Biobalistic, (PEG) Polyethylene glycol, (RNPs) Ribonucleo-
protein particles.

In recent years, researchers have introduced the CRISPR/Cas9 system into filamentous
fungi to leverage its potential for modulating the production of secondary metabolites.
For species such as Aspergillus oryzae, Trichoderma reesei, Aspergillus niger, and Aspergillus
nidulans, CRISPR/Cas9-based systems have emerged as versatile platforms for precise
genome editing, leading to significant advancements in the production of valuable sec-
ondary metabolites [74]. A pioneering study demonstrated the modification of Trichoderma
harzianum using the CRISPR/Cas9 marker-free system, targeting the albA (pks4) and ku70
genes. The study successfully developed two strains of T. harzianum using a recyclable
CRISPR/Cas9 marker-free system based on the AMA1 plasmid vector. This achievement
marks the first successful application of this recyclable system for constructing fungal
strains with agricultural applications [33].

The first reports on CRISPR/Cas9-mediated genome editing in filamentous fungi were
published in 2015 [75–78]. Subsequently, researchers have rapidly adopted this technology,
establishing genome manipulation capabilities in over 60 fungal species, including those
where such manipulation was previously unattainable [74]. This swift progress underscores
the adaptability and robustness of the CRISPR/Cas9 system, laying a solid foundation for
the development of genetic engineering systems in numerous other species in the future.

5. Protein Secretion Pathways in Filamentous fungi

The conventional secretory pathway, also known as the endoplasmic reticulum (ER)
secretory pathway, represents the classic protein secretion pathway in filamentous fungi.
This pathway is like the protein secretion pathway in other eukaryotes, such as animals
and plants. In this pathway, ER-associated ribosomes synthesize proteins, which are then
translocated into the ER lumen. Afterward, cells transport them to the Golgi complex,
where they undergo processing, modification, and selection for transport to other organelles
or outside the cell. The secretory transport vesicle (STV) transports proteins from the Golgi
complex to the plasma membrane, where they will undergo the process of exocytosis and
released into the extracellular environment [79].

However, besides the conventional secretory pathway, filamentous fungi also have al-
ternative secretion pathways that play important roles in specific conditions. These include
the septal secretion pathway [80,81], the Golgi-independent pathway, the multivesicular
body (MVB) secretion pathway [82] and autophagy or phagocytosis [83].

The classical protein secretion pathway in filamentous fungi involves three main steps,
including: (1) Polypeptide transfer from the ribosome to the endoplasmic reticulum (ER),
(2) Protein folding and modification in the ER, (3) Transport of protein vesicles to the
Golgi apparatus and extracellular environment [4]. Figure 6 shows the protein secretion
pathways of a hypothetical filamentous fungus in a representative way.
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In the first stage of the conventional protein secretion pathway, the co- or post-
translational transport pathway handles polypeptide transfer from the ribosome to the
Endoplasmic Reticulum (ER). In the co-translational transport pathway, the signal peptide
recognition particle (SRP) initially binds to the signal peptide sequence, which serves to
block translation [85]. The SRP then directs the nascent ribosome-mRNA-peptide complex
to reach the ER membrane and binds to the SRP receptor. Subsequently, the SRP is released
from the complex, translation recovered, and the nascent polypeptide enters the ER lumen
via the Sec61p transport complex [79].

In the post-translational transport pathway, the nascent polypeptide undergoes trans-
lation in the cytosol and remains unfolded through interaction with Hsp70 chaperones and
co-chaperones. This complex can reach the ER through interaction with the membrane
receptor Sec62p-Sec72p-Sec73p [79]. The immunoglobulin protein (BiP) binds to the lumi-
nal chaperone of the endoplasmic reticulum and the membrane protein Sec63p helps this
complex to enter the ER [86].

The second stage is the folding and modification of proteins in the ER, which requires
the help of a series of folding enzymes, including calnexin (ClxA), immunoglobulin (BiP)
and protein disulfide isomerase (PDI) [87]. Nascent peptides with correct folding undergo
modifications such as glycosylation, which is one of the most common and important
post-translational modifications and can significantly affect the stability, localization, and
secretion of proteins [88]. After properly folding and undergoing glycosylation, cells
transport secreted proteins extracellularly. The unfolded protein response (UPR) and ER-
associated protein degradation (ERAD) deal with misfolded nascent peptides [89,90]. The
UPR detects misfolded proteins in the ER and induces the biosynthesis of chaperones and
folding enzymes, while ERAD degrades misfolded proteins.

The third stage is to transport the coiled protein vesicles to the Golgi apparatus by
fusion with the target membrane and secrete them in the extracellular medium [91]. Apical
vesicle clusters in Spitzenkörper in filamentous fungi transmit Golgi-derived secretory
vesicles to the apical plasma membrane [85]. Vesicle formation, transport and fusion are
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mediated by several proteins, including GTP-binding proteins (e.g. Sar, ARF) for vesicle
binding and RabGTPases for fusion with the Golgi complex [92]. The specific fusion of
vesicles with the target membrane is the critical process, which is mediated by soluble
N-ethylmaleimide binding receptors (SNARE). Based on localization, researchers have
divided SNARE into two categories: vesicle SNARE (v-SNARE) and target membrane
SNARE (t-SNARE) [93]. In filamentous fungi, the v-SNARE protein SNC1 and the t-SNARE
proteins SSO1 and SSO2 are involved in vesicle fusion [94].

Increasing protein secretion in filamentous fungi by increasing intracellular protein
production by optimizing the transcription and codon of the target protein is an effective
strategy, as shown in some reviews [95–98]. However, researchers could use other genetic
engineering strategies, such as replacing the original signal peptide with a more efficient
one by regulating the UPR and ERAD, optimizing the intracellular transport process,
constructing a protease-deficient strain, regulating the morphology of the mycelium, and
optimizing the sterol regulatory element binding protein (SREBP). Table 3 shows some
examples of improved protein secretion in some filamentous fungi.

Table 3. Examples of genetic engineering of filamentous fungi to improve protein secretion.

Protein of Interest Species Strategy Improvements Method Reference

α-Galactosidase A. niger
Replacement of the original signal
peptide by a glucoamylase signal

peptide (GlaA) in A. niger

Approximately
9-fold increase TMA [99]

Chymosin A. oryzae
Fusion of a target protein with a

naturally secreted α-amylase
protein

2-fold increase TMP [100]

β-Glucuronidase A. niger

The regulation of UPR and ERAD
is achieved through the

overexpression of sttC and the
deletion of dorA.

Not measured HR [101]

Glucose oxidase T. reesei Regulation of UPR and ERAD via
overexpression of bip1 or hac1

1.5 to 1.8 times
increase

PEG-mediated
TMP [102]

Glucose oxidase T. reesei
Optimization of the intracellular

transport process by
overexpression of snc1

2.2-fold increase PEG-mediated
TMP [102]

Prochymosin A. niger

Optimizing the intracellular
transport process can be achieved
by deleting Aovip36 or Aoemp47,

as well as fusing the target
protein with α-amylase.

Approximately
2-fold increase TMP [103]

Cellulase T. reesei

Construction of a strain deficient
in protease production because of

the deletion of res-1, cre-1, gh-1
and alp-1

5-fold increase CREATE [104]

Laccase A. niger
Construction of a strain deficient

in protease production by
deletion of pepAa, pepAb or pepAd

1.21-to-1.42-fold
increase

PEG-mediated
TMP [105]

Glucoamylase A. niger Regulation of mycelium
morphology by racA deletion 4-fold increase TMP [81]

(TMP) Transformation mediated by protoplasts, (TMA) Transformation mediated by Agrobacterium, (PEG)
Polyethylene glycol, (CREATE) CRISPR-enabled trackable genome engineering, (HR) Homologous recombi-
nation. All technologies mentioned in the table above are fourth generation.
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6. Conclusions

Due to their robust protein secretion pathways, filamentous fungi serve as compelling
candidates as cell factories for protein secretion. This review highlights select examples of
filamentous fungi utilized for the production of industrially relevant enzymes; alongside
genetic engineering applications aimed at enhancing enzyme yields. Leveraging various
gene editing technologies such as the CRISPR-Cas system, genome engineering strategies
enable the introduction of deletions, insertions, and/or point mutations throughout the
genome, utilizing traceable techniques to expedite isolate modification.

As prospects, harnessing the substantial potential of genomic engineering holds
promise for further augmenting protein secretion in filamentous fungi, particularly those
exhibiting low efficiency in gene transformation and homologous recombination. Con-
sequently, researchers stand to advance protein secretion in filamentous fungi, including
those with limited genetic manipulation capabilities, thereby facilitating the development
of fourth-generation biological products derived from microorganisms subjected to genetic
engineering techniques.
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