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Abstract: Background: Subtask segmentation can provide useful information from clinical tests,
allowing clinicians to better assess a patient’s mobility status. A new smartphone-based algorithm
was developed to segment the L Test of functional mobility into stand-up, sit-down, and turn subtasks.
Methods: Twenty-one able-bodied participants each completed five L Test trials, with a smartphone
attached to their posterior pelvis. The smartphone used a custom-designed application that collected
linear acceleration, gyroscope, and magnetometer data, which were then put into a threshold-based
algorithm for subtask segmentation. Results: The algorithm produced good results (>97% accuracy,
>98% specificity, >74% sensitivity) for all subtasks. Conclusions: These results were a substantial
improvement compared with previously published results for the L Test, as well as similar functional
mobility tests. This smartphone-based approach is an accessible method for providing useful metrics
from the L Test that can lead to better clinical decision-making.
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1. Introduction

Functional mobility tests are used in rehabilitation to monitor patient progress and
assess their ability to move and ambulate safely [1]. Common functional mobility tests
include the timed up-and-go test (TUG) and L Test of functional mobility (L Test) [1].
Although similar in movement, Deathe and Miller [1] reported advantages of the L Test
over the TUG, emphasizing that the L Test includes turns in both directions, increases the
distance walked, and decreases the ceiling effect often associated with TUG [1].

The L Test begins with the person sitting in a chair. The person then stands up and
walks forward three meters to a marker, turns 90◦, walks seven meters to a second marker,
turns 180◦, walks back to the first marker, turns 90◦, walks back to the chair, turns 180◦, and
sits down [1] (Figure 1). Each movement is referred to as a subtask (i.e., stand-up, walk, turn,
sit-down). Individual assessment of these subtasks has been useful in predictive recovery
measures [2]. For example, fall risk has been correlated with stand-up and sit-down task
durations, as well as 180◦ turns [2]. However, current data collection methods are limited
to a clinician’s stopwatch to measure total test time [3]; hence, the opportunity to gain extra
information is lost. Additionally, clinicians do not have the time to calculate subtask timing
from a secondary data collection source within a typical clinical environment. Hence,
automating the segmentation and postprocessing of these tests should enable clinicians to
obtain and use subtask information within clinical encounters for decision-making, thereby
creating a more effective clinical experience.

A variety of data collection methods have been proposed for subtask segmentation.
These include 2D video recordings, wearable sensors, and ambient sensors [3]. These
approaches can also decrease manual error and variance between clinicians compared to
using a stopwatch [3]. Wearable sensors are one of the best options due to their accessibility,
minimal space requirements, and affordability [3]. An inertial measurement unit (IMU) is
an inexpensive and accessible type of wearable sensor that can measure parameters such
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as acceleration, angular velocity, and turn angle. Figure 2 shows a physical representation
of these parameters, which follow the same labeling convention as [4]: anteroposterior
acceleration (APa), angular velocity (APω), and rotation (APR); mediolateral acceleration
(MLa), angular velocity (MLω), and rotation (MLR); and vertical acceleration (Va), angular
velocity (Vω), and rotation (VR). Additionally, the azimuth signal provides the horizontal
angle from true north.
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Figure 1. Route for the L test. The participant can choose the direction for 180° turns. 
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TUG subtask segmentation using IMU sensors is a valid approach [2–27], and can
be completed using smartphone sensor data [16,18,25]. A smartphone approach does not
require additional equipment and has good statistical agreement with movement analysis
devices [28]. It was noted that prior smartphone-based studies did not have a primary
aim to test the algorithms themselves but rather aimed to establish the validity of using a
smartphone IMU for subtask segmentation.
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To date, there is no validated approach for segmenting the L Test. In this paper,
we report research to develop and evaluate an approach for fully segmenting the stand-
up, sit-down, and turn subtasks of the L Test using data acquired from a single pelvis-
worn smartphone. Preliminary results were presented in a conference paper [29]. A
successful segmentation approach will provide additional movement information for the
clinician while requiring equivalent time to complete an L Test trial, accommodating clinical
appointment duration. Appropriate subtask segmentation will also enable further analysis
and research with AI-based modeling (i.e., fall risk, movement quality, etc.).

2. Materials and Methods
2.1. Participants

Data were collected from a convenience sample of 6 male and 15 female able-bodied
participants, between the ages of 19 and 68 (average age: 36 ± 19 years). Exclusion
criteria included individuals with cognitive issues that affected their ability to follow
instructions. Participants provided informed consent prior to participating. The study was
approved by the University of Ottawa’s Office of Research Ethics and Integrity (H-09-22-
8351). Participant characteristics are shown in Table 1.

Table 1. Participant characteristics.

Age Group Sex Number of Participants

18–29
Male 3

Female 9

30–39
Male 0

Female 1

40–49
Male 0

Female 0

50–59
Male 2

Female 4

60–69
Male 1

Female 1

2.2. Data Collection

A custom belt was fastened around the waist of each participant, which held a Sam-
sung Galaxy S10+ smartphone in a posterior pocket (Figure 3). This posterior-pelvis
position was chosen for its approximation of center of mass, as well as its demonstrated
efficacity in other algorithms [30]. A custom app written by our group [31] recorded IMU
data at 60 Hz; including, raw and linear accelerations in the mediolateral, anteroposterior,
and vertical directions; rotation angle in the mediolateral, anteroposterior, and vertical
direction; azimuth angle; and angular velocity in the mediolateral, anteroposterior, and
vertical directions. Participants were instructed to complete the L Test at a walking speed
that was fast but safe according to their own capabilities. Five trials were completed for
each participant. The app provided an auditory cue to indicate that it had begun recording.
Participants were then informed that they could begin the first trial. Once each trial was
completed, the participant was given an opportunity to rest before beginning the next trial.

2.3. Ground Truth

An Apple iPhone XR was used to video-record participants at 30 Hz while they
completed the tests. Ground truth times of events of interest were determined from the
video using Kinovea [32]. The beginning of the stand-up task was defined as the beginning
of trunk flexion and the end corresponded to maximal trunk extension, whether this
occurred before or after the first step. Turn initiation was the beginning of pelvis rotation
and turn completion was the end of this rotation. The beginning of the sit-down subtask
was defined as the beginning of trunk flexion and the end was the end of trunk extension.
Timestamps of three foot strikes from the first walkway were also recorded, and then used
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to align the ground truth times with the inertial data, since foot strikes provided clear
acceleration peaks.
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2.4. Preprocessing

Raw data were imported into a custom-built Python program. The algorithm corrected
jumps in the azimuth signal that occurred when a participant turned past 360◦ or 0◦ [30]. A
threshold technique identified changes in azimuth magnitude greater than 10◦ between
data points and, if true, added or subtracted this magnitude change from the signal [30].
An example of these jumps can be seen in the azimuth plot in Figure 4a. Acceleration and
angular velocity data were filtered using a fourth-order zero-lag Butterworth low pass
filter with a 4 Hz cut-off frequency [30], a commonly used approach for filtering data for
segmentation [4,20,30].

2.5. Algorithm
2.5.1. Algorithm Overview

The algorithm classified stand-up, first 90◦ turn, first 180◦ turn, second 90◦ turn, second
180◦ turn, and sit-down task. Each subtask was found using the algorithm described in
Section 2.5.3. After a subtask was found, data up to the end of the identified subtask were
removed and the classifier resumed classifying subsequent tasks. The only exception was
the last 180◦ turn and the sit-down task, since these two tasks happen simultaneously for
some participants.

2.5.2. Threshold Selection

When completing tasks within the L Test, participants maintained a relatively con-
sistent torso posture during straight walking, but more torso motion during standing-up,
turning, and sitting-down. Therefore, a threshold approach was adopted to differentiate
between walking and these other subtasks. To calculate these thresholds, four steps (two
strides) from the initial seven-meter walking section were segmented for each participant.
A 0.33 s sliding window (20 data points at 60 Hz, overlapping, and advancing by one data
point within the given range) was used to calculate both standard deviation (SD) and mag-
nitude change within each window, for medial–lateral angular velocity and medial–lateral
rotation angle, for each participant. The mean of these values across all participants was
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then calculated to provide a final mean and standard deviation for these signals while
walking. The thresholds for stand-up and sit-down were set to the mean plus a required
number of standard deviations, depending on the signal and subtask (Section 2.5.3). Turn-
ing thresholds were initially gathered from [30] and updated to provide sufficient values
for 90◦ turns.
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The 0.33 s sliding window was chosen as an appropriate window size for subtasks,
since for healthy individuals, the average step takes about 0.47 to 0.59 s during moderate-
to-vigorous walking [33] and a 0.33 s window was found to give sufficient time to observe
signals for a subtask without missing a change in magnitude or standard deviation. If the
window was too small, insufficient changes in the signals for proper classification may
occur for people who walked slowly. If the window was too large, data from a previous
stride may interfere with the classification of the current task.

2.5.3. Subtask Identification

A sliding window approach was used to identify the beginning and end of each
subtask. Pseudocode depicting the sliding window approach for the stand-up task is in
Appendix A. To determine the beginning of the subtask, two steps were required. First, a
sliding window (length of 0.33 s, overlapping, advancing by one data point) with signals
relevant to the subtask was used to determine if a magnitude threshold was crossed. If the
window moves beyond the search area (i.e., each subtask has specific start and end search
times, Table 2) without the threshold being crossed, then the threshold was decreased by
10% and the sliding window repeated the search from the beginning of the search area.
Secondly, the window continued forward from the location of the magnitude threshold
crossing but using a standard deviation threshold. The subtask beginning was set to the
end of the window where the standard deviation threshold was crossed.

The end of each subtask was identified by moving from the subtask beginning until
the standard deviation crossed the threshold again. If the window could not identify a
location where the standard deviation passed the threshold, the threshold was increased by
10% and the sliding window repeated the search from the subtask beginning. The direction
of search for the sit-down subtask was reversed to minimize the movement effects during
the 180◦ turn that occurs before sitting down. Sliding window and subtask identification
parameters are listed in Table 2.

Additionally, some participants had a slower trunk angular velocity but greater range;
therefore, MLω did not pass the threshold during stand-up and sit-down subtasks. For
these cases, lower thresholds were introduced for MLω and higher thresholds for MLR.
This is shown in Table 2.

Table 2. Subtask identification parameters.

Subtask Signal Beginning
of Search End of Search Direction of Search Magnitude Change

Threshold

Standard
Deviation
Threshold

Stand-Up
MLR

1

MLω
2

[2,3,6–9,11–23,27]
Start of data array End of data array Start to end of array 3 SD above mean 3

5 SD above mean 3

or
6 SD above mean
(MLR) and 3 SD

above mean (MLω)

First 90◦ Turn Azimuth [30] One second after
end of stand-up End of data array Start to end of array 35◦ 5◦

First 180◦ Turn Azimuth One second after
end of first 90◦ turn End of data array Start to end of array 35◦ 5◦

Second 90◦ Turn Azimuth One second after
end of first 180◦ turn End of data array Start to end of array 35◦ 5◦

Second 180◦ Turn Azimuth
One second after

end of second
90◦ turn

End of data array Start to end of array 35◦ 5◦

Sit-Down MLR
1

MLω
2

One second after
end of second

90◦ turn
End of data array End to beginning

of array 3 SD above mean 3

5 SD above mean 3

or
6 SD above mean
(MLR) and 3 SD

above mean (MLω)
1 Mediolateral rotation angle; 2 mediolateral angular velocity; 3 standard deviations and means are calculated for
respective signals for each subtask (Section 2.5.2).
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3. Results

A total of 105 trials with 21 participants were classified by the algorithm. Figure 5
shows an example of the output of one trial. Table 3 shows ground truth and algorithm-
identified means and standard deviations of subtasks for each participant. Table 4 shows
the accuracy, specificity, and sensitivity for stand-up, sit-down, and turning subtask classifi-
cation. The performance metrics were calculated using Python’s SciKitLearn library, with a
0.06 s (2 video frames) error allowance.
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Table 3. Algorithm and ground truth (GT) mean and standard deviation for subtask durations for all
participants.

Participant
ID

Stand-
Up

GT
Stand-

Up

Sit-
Down

GT
Sit-

Down

First 90◦
Turn

GT
First 90◦

Turn

First
180◦
Turn

GT
First
180◦
Turn

Second
90◦ Turn

GT
Second

90◦ Turn

Second
180◦
Turn

GT
Second

180◦
Turn

LT_001 1.08
± 0.12

0.85
± 0.08

0.61
± 0.11

1.23
± 0.44

0.74
± 0.25

0.97
± 0.08

1.04
± 0.14

1.21
± 0.14

0.57
± 0.08

0.75
± 0.07

0.71
± 0.08

0.75
± 0.11

LT_002 1.47
± 0.32

0.79
± 0.44

1.54
± 0.33

1.05
± 0.52

0.71
± 0.42

0.63
± 0.34

0.89
± 0.45

1.01
± 0.51

0.53
± 0.07

0.61
± 0.30

0.78
± 0.18

0.49
± 0.35

LT_003 1.15
± 0.12

0.69
± 0.11

1.6
± 0.09

1.18
± 0.19

0.57
± 0.10

0.69
± 0.29

0.79
± 0.07

1.02
± 0.16

0.52
± 0.02

0.66
± 0.17

0.68
± 0.08

0.72
± 0.13

LT_004 1.03
± 0.07

1.07
± 0.15

1.25
± 0.08

1.20
± 0.09

0.60
± 0.11

0.73
± 0.08

0.94
± 0.09

1.10
± 0.07

0.53
± 0.03

0.66
± 0.11

0.82
0.04

1.01
± 0.06

LT_005 1.35
± 0.48

0.85
± 0.32

0.85
± 0.28

0.74
± 0.34

0.55
± 0.02

0.73
± 0.12

0.88
± 0.03

1.08
± 0.08

0.62
± 0.13

0.87
± 0.07

0.91
± 0.13

0.69
± 0.06

LT_006 1.16
± 0.10

1.03
± 0.08

0.57
± 0.15

1.19
± 0.10

0.66
± 0.09

0.95
± 0.07

1.19
± 0.11

1.42
± 0.18

0.59
± 0.08

0.81
± 0.14

1.04
± 0.12

1.02
± 0.06

LT_007 1.04
± 0.05

0.89
± 0.18

1.25
± 0.29

1.32
± 0.19

0.60
± 0.08

0.78
± 0.16

0.87
± 0.10

0.98
± 0.21

0.59
± 0.08

0.59
± 0.11

0.77
± 0.12

0.85
± 0.12

LT_008 1.02
± 0.03

1.06
± 0.12

0.72
± 0.14

1.43
± 0.19

0.53
± 0.04

0.94
± 0.16

1.28
± 0.24

1.41
± 0.13

0.71
± 0.13

0.88
± 0.21

0.84
± 0.17

1.07
± 0.09

LT_009 1.26
± 0.15

1.01
± 0.25

1.5
± 0.14

1.19
± 0.14

0.52
± 0.05

0.70
± 0.08

0.82
± 0.10

1.07
± 0.05

0.5
± 0.00

0.78
± 0.16

0.81
± 0.04

0.96
± 0.05

LT_010 1.03
± 0.06

0.82
± 0.11

1.16
± 0.43

1.16
± 0.18

0.66
± 0.7

0.84
± 0.09

0.86
± 0.07

1.15
± 0.07

0.64
± 0.07

0.87
± 0.09

0.83
± 0.04

1.09
± 0.09

LT_011 1.00
± 0.00

0.91
± 0.07

0.85
± 0.15

1.14
± 0.19

0.75
± 0.12

1.06
± 0.08

0.94
± 0.14

1.51
± 0.20

0.63
± 0.07

0.89
± 0.10

0.97
± 0.12

1.23
± 0.09

LT_012 1.08
± 0.09

0.87
± 0.09

0.96
± 0.41

1.31
± 0.20

0.59
± 0.07

0.62
± 0.05

0.93
± 0.10

1.05
± 0.09

0.78
± 0.16

0.81
± 0.10

0.78
± 0.12

1.01
± 0.13

LT_013 1.26
± 0.23

0.96
± 0.14

1.55
± 0.38

1.42
± 0.12

0.61
± 0.08

0.74
± 0.12

1.05
± 0.11

1.11
± 0.10

0.73
± 0.11

0.93
± 0.18

0.78
± 0.11

0.90
± 0.08

LT_014 1.25
± 0.06

0.78
± 0.06

1.54
± 0.18

1.14
± 0.09

0.6
± 0.12

0.71
± 0.12

0.99
± 0.11

1.11
± 0.05

0.62
± 0.10

0.82
± 0.10

0.95
± 0.15

1.08
± 0.09

LT_015 1.24
± 0.14

0.98
± 0.04

1.53
± 0.13

1.43
± 0.24

0.70
± 0.04

0.86
± 0.17

1.05
± 0.18

1.44
± 0.04

0.72
± 0.03

1.12
± 0.04

0.99
± 0.03

1.30
± 0.03

LT_016 1.65
± 0.42

1.55
± 0.36

1.48
± 0.36

1.76
± 0.24

0.84
± 0.15

0.93
± 0.10

1.15
± 0.21

1.39
± 0.26

0.90
± 0.19

0.99
± 0.12

1.16
± 0.21

1.47
± 0.27

LT_017 1.31
± 0.16

0.91
± 0.12

1.71
± 0.08

1.43
± 0.08

0.74
± 0.06

0.87
± 0.12

1.03
± 0.10

1.26
± 0.04

0.74
± 0.06

0.80
± 0.17

1.03
± 0.10

1.17
± 0.13

LT_018 1.12
± 0.10

0.74
± 0.36

1.44
± 0.29

1.07
± 0.53

0.63
± 0.10

0.77
± 0.38

0.71
± 0.36

0.97
± 0.48

0.68
± 0.04

0.88
± 0.43

0.72
± 0.35

1.06
± 0.52

LT_019 1.13
± 0.05

0.96
± 0.07

1.48
± 0.33

1.45
± 0.05

0.60
± 0.06

0.80
± 0.07

1.40
± 0.10

1.50
± 0.13

0.71
± 0.09

0.97
± 0.11

0.98
± 0.06

1.29
± 0.10

LT_020 1.04
± 0.06

0.88
± 0.05

1.50
± 0.20

1.25
± 0.16

0.50
± 0.00

0.66
± 0.12

1.14
± 0.39

1.47
± 0.23

0.56
± 0.08

0.67
± 0.05

0.65
± 0.03

0.80
± 0.07

LT_021 1.05
± 0.05

0.82
± 0.08

0.83
± 0.23

1.08
± 0.07

0.64
± 0.12

0.95
± 0.09

0.95
± 0.11

1.31
± 0.12

0.66
± 0.13

0.88
± 0.15

0.85
± 0.03

0.98
± 0.07

Table 4. Performance metrics for subtasks. Duration difference is the mean absolute difference and
standard deviation between the algorithm time and the ground truth time across all participants
and trials.

Metric Stand-Up Sit-Down First 90◦

Turn
First 180◦

Turn
Second 90◦

Turn
Second 180◦

Turn

Accuracy (%) 98.5 97.1 98.7 98.7 98.9 98.8
Specificity (%) 98.6 98.6 99.8 99.9 99.9 99.8
Sensitivity (%) 97.4 78.3 74.3 81.7 77.1 82.1

4. Discussion

The new threshold-based algorithm for segmenting the L Test provided excellent
outcomes, demonstrating that the proposed smartphone-based approach can provide
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viable subtask segmentation. All accuracy and specificity results were very high for all
subtasks, with over 97.1%. These results demonstrate that the algorithm can correctly
identify the tasks for almost all data windows. Sensitivity, or the true positive rate, had
lower results for all subtasks; however, for most tasks, the algorithm was able to correctly
identify the exact timestamps that the subtasks had taken place.

The sit-down subtask had lower metrics, notably sensitivity, than the other tasks, most
likely due to some participants beginning to drop their head and round their shoulders
to look down at the chair before and during the turn before sitting, which may have
caused the algorithm to occasionally detect some pelvis flexion and thus misclassify this
movement as the start of the sit-down task. As previously mentioned in Section 2.5.2,
some of this misclassification was addressed using a higher threshold for this part of the
algorithm. Additionally, at the end of the turn, participants would often fidget or fall into
the chair, causing them to move a bit after they finished the task. For the stand-up task,
participants were more commonly completely still, not introducing variable movements
into the signal and therefore having a clear distinction between the beginning and end of
the task. Reversing the array (as mentioned in Table 2) minimized the effect of variable
movements on sit-down task initiation identification.

The algorithm had lower performance results with participants who took longer to
fully extend their torso during the stand-up task. Similarly, those who took longer turns
also tended to have lower subtask identification metrics than those with shorter turn
duration. Currently, the thresholds used are global thresholds based on all participants.
These outliers were therefore not well labeled by the global thresholds. Future studies
could investigate participant-specific thresholds, tuned to their linear walking data. This
would allow the algorithm to be directly applied to different patient populations while still
ensuring sufficient performance.

The current approach improved upon the results from our preliminary study [29].
The results in [29] achieved 97.9% accuracy, 98.5% specificity, and 86.1% sensitivity for
stand-up; 94.6% accuracy, 96.2% specificity, and 72.1% sensitivity for sit-down; and 90.2%
accuracy, 95.7% sensitivity, and 70.5% specificity for all turns [29]. The most substantial
improvements occurred in sensitivity of the stand-up and turning tasks. The stand-up task
obtained an increase in sensitivity of 6.2%, with the turns obtaining increases ranging from
3.8% to 11.6% [29].

A study by Abdollah V. et al. [13] produced good results for stand-up and sit-down
tasks in the single-sensor TUG test; however, turns were not segmented. With a single
tri-axial accelerometer mounted on a participant’s head, they obtained 95% accuracy, 100%
specificity, and 90% sensitivity during the stand-up task, and 98% accuracy, 100% specificity,
and 98% sensitivity with the sit-down task, using a rule-based threshold algorithm [13].
Our results surpassed these accuracy measurements and were within 1.4% of the specificity
outcomes. The current algorithm also surpassed the stand-up subtask sensitivity by 7.4%,
but fell short by 19.7% for the sit-down subtask. Pew C. et al. [26] also published algorithms
for segmenting some parts of the L Test, which included results for walking and turning
subtasks. They used a variety of machine learning algorithms, with the highest accuracy
for turning being 96% with support vector machines (SVMs) [26]. The current algorithm
surpasses this for all turns.

A 0.07 s error allowance is lower than the commonly used L Test approach of using a
stopwatch, which has been reported to have a measurement error of 0.2 s. Yahalom et al. [25]
discussed that the measurement error using a stopwatch is estimated to be the same for
both stop and start times. However, with a stopwatch, this can vary between clinicians.
Additionally, a human-controlled approach can also be subjective and introduce further
variability in components such as when the clinician begins or ends recording (for example,
before or after the patient leans back in the chair during the sit-down task), and can also
be affected by distractions [25]. Therefore, even with error allowances, a more objective
method of measuring these subtasks should provide more consistent measurements.
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Limitations and Future Work

One limitation for the study is that the algorithm was only tested on able-bodied
individuals. Future work should include validation with people who have mobility deficits
since biomechanical signals can differ from able-bodied participants [34]. Additionally,
creating a database of L Test segment timings could help clinicians interpret outcomes from
data segmentation. The implementation of this algorithm into a smartphone app could
provide clinicians with these data in an efficient manner. Further signal analysis during the
L Test could also provide clinicians with additional details, and assist in future evaluations
of fall risk [35].

5. Conclusions

A novel method of subtask segmentation was developed and successfully evaluated
for the L Test. When compared to published segmentation results for TUG, the performance
metrics of the proposed algorithm generally surpassed previous outcomes, with >97%
accuracy, >98% specificity, >74% sensitivity, and >79% precision for all subtasks. The
smartphone-based approach was chosen due to its accessibility and ease of use, so that the
outcomes could be seamlessly integrated into a clinical setting. This technology should
allow for precise and useful metrics from functional mobility tests such as the L Test and
provide a basis for future AI-based outcome measures.
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Appendix A

This appendix contains pseudocode for the stand-up subtask segmentation algorithm.
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set of thresholds have been crossed. SD is the standard deviation of the signal under investigation 
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Figure A1. Pseudocode for the stand-up subtask. Here, i represents the starting index in the data
array for the window; i2 represents the starting index in the data array for the window once the first
set of thresholds have been crossed. SD is the standard deviation of the signal under investigation
within a given window. MLω is mediolateral angular velocity and MLR is mediolateral rotation.
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