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Abstract: Artificial intelligence (AI) refers to computer algorithms that replicate the cognitive function
of humans. Machine learning is widely applicable using structured and unstructured data, while
deep learning is derived from the neural networks of the human brain that process and interpret
information. During the last decades, AI has been introduced in several aspects of healthcare. In
this review, we aim to present the current application of AI in the neonatal intensive care unit.
AI-based models have been applied to neurocritical care, including automated seizure detection
algorithms and electroencephalogram-based hypoxic-ischemic encephalopathy severity grading
systems. Moreover, AI models evaluating magnetic resonance imaging contributed to the progress of
the evaluation of the neonatal developing brain and the understanding of how prenatal events affect
both structural and functional network topologies. Furthermore, AI algorithms have been applied
to predict the development of bronchopulmonary dysplasia and assess the extubation readiness
of preterm neonates. Automated models have been also used for the detection of retinopathy of
prematurity and the need for treatment. Among others, AI algorithms have been utilized for the
detection of sepsis, the need for patent ductus arteriosus treatment, the evaluation of jaundice, and
the detection of gastrointestinal morbidities. Finally, AI prediction models have been constructed for
the evaluation of the neurodevelopmental outcome and the overall mortality of neonates. Although
the application of AI in neonatology is encouraging, further research in AI models is warranted
in the future including retraining clinical trials, validating the outcomes, and addressing serious
ethics issues.
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1. Introduction

AI (artificial intelligence) refers to computer algorithms that replicate the cognitive
function of humans, using specified operational models produced from the statistical assess-
ments of big data sets [1]. During the last decades, AI has been applied in several aspects
of human life, including the healthcare industry [2]. This accomplishment has been made
possible by updated hardware technologies and ever-more-complex computer algorithms
for processing and storing massive datasets [3–6]. Across healthcare fields, however, there
seems to be varying degrees of enthusiasm for the topic of AI research. Nearly half of the
evidence arises from published studies in the adult medical sciences (pathology, oncology,
neurology, cardiology, gastroenterology, dermatology, pulmonology, endocrinology, emer-
gency medicine), followed by imaging sciences (cell imaging, radiology), and by studies in
surgery, ophthalmology, psychiatry, and pediatrics (Figure 1) [3,6,7].
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Figure 1. Studies on artificial intelligence by medical specialty. Based on evidence from references 
[6,7]. 

Although AI has enormous potential, its use in neonatology is still in its early stages. 
Since the pioneer studies of AI application to neonatal neuromonitoring during the decade 
of 1990s [8,9], AI-based systems have been gradually expanded to the diagnosis and man-
agement of common neonatal morbidities including but not limited to respiratory distress 
syndrome (RDS) [10,11], bronchopulmonary dysplasia (BPD) [12–17], patent ductus arte-
riosus (PDA) [18,19], neonatal sepsis [20,21], and retinopathy of prematurity (ROP) [22–
30]. Furthermore, AI-based algorithms are on a daily basis used for the prediction of long-
term neonatal outcomes and mortality [31–45]. Despite this evolution, however, there are 
concerns about how AI will be incorporated into the healthcare system because there is a 
growing demand for early detection, alarm systems, and diagnostic testing [46]. Com-
pared to earlier, there are now higher expectations for AI in their daily practices; besides, 
evidence from previous studies underscores the limitations and risks of AI applications 
including several ethical concerns. 

Reviews of AI application to neonatal monitoring are scarce and the aim of this re-
view is to cover this very important issue. Moreover, as several novel practices, as AI, are 
first applied to adult or pediatric populations, this review also aims to motivate neonatol-
ogists to seek further information and co-operation with other scientists to explore the 
perspectives of AI in this very crucial period of life. In this narrative review, we evaluate 
AI’s current applications and advantages in the neonatal intensive care unit (NICU) and 
explore the perspectives of AI on neonatal care in the future. We, therefore, examined the 
existing evidence of AI-based monitoring and diagnostic tools that could support the care 
and follow-up of neonatologists. We explore several AI designs for image, signal, and elec-
tronic health record processing, evaluate the benefits and drawbacks of recently 
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Although AI has enormous potential, its use in neonatology is still in its early stages.
Since the pioneer studies of AI application to neonatal neuromonitoring during the decade
of 1990s [8,9], AI-based systems have been gradually expanded to the diagnosis and
management of common neonatal morbidities including but not limited to respiratory
distress syndrome (RDS) [10,11], bronchopulmonary dysplasia (BPD) [12–17], patent
ductus arteriosus (PDA) [18,19], neonatal sepsis [20,21], and retinopathy of prematurity
(ROP) [22–30]. Furthermore, AI-based algorithms are on a daily basis used for the pre-
diction of long-term neonatal outcomes and mortality [31–45]. Despite this evolution,
however, there are concerns about how AI will be incorporated into the healthcare system
because there is a growing demand for early detection, alarm systems, and diagnostic
testing [46]. Compared to earlier, there are now higher expectations for AI in their daily
practices; besides, evidence from previous studies underscores the limitations and risks of
AI applications including several ethical concerns.

Reviews of AI application to neonatal monitoring are scarce and the aim of this
review is to cover this very important issue. Moreover, as several novel practices, as
AI, are first applied to adult or pediatric populations, this review also aims to motivate
neonatologists to seek further information and co-operation with other scientists to explore
the perspectives of AI in this very crucial period of life. In this narrative review, we evaluate
AI’s current applications and advantages in the neonatal intensive care unit (NICU) and
explore the perspectives of AI on neonatal care in the future. We, therefore, examined
the existing evidence of AI-based monitoring and diagnostic tools that could support the
care and follow-up of neonatologists. We explore several AI designs for image, signal,
and electronic health record processing, evaluate the benefits and drawbacks of recently
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developed decision support systems, and shed light on potential future applications for
physicians and neonatologists in their routine diagnostic work.

Our study is organized into (1) presenting the basic AI models applied in neonatal care,
(2) grouping AI applications that pertain to neonatology into domains, elucidating their
sub-domains, and highlighting the key components of the relevant AI models, (3) reviewing
and providing a thorough summary of the latest research with a focus on applying AL to
all areas of neonatology, and (4) examining and discussing the existing challenges related
to AI in neonatology, as well as directions for future study (Figure 2).

BioMedInformatics 2024, 4, FOR PEER REVIEW 3 
 

 

developed decision support systems, and shed light on potential future applications for 
physicians and neonatologists in their routine diagnostic work. 

Our study is organized into (1) presenting the basic AI models applied in neonatal 
care, (2) grouping AI applications that pertain to neonatology into domains, elucidating 
their sub-domains, and highlighting the key components of the relevant AI models, (3) 
reviewing and providing a thorough summary of the latest research with a focus on ap-
plying AL to all areas of neonatology, and (4) examining and discussing the existing chal-
lenges related to AI in neonatology, as well as directions for future study (Figure 2). 

 
Figure 2. Overview of the study organization. 

2. Basic Models of Artificial Intelligence 
The AI framework is based on machine learning (ML) and deep learning (DL), two 

subsets of AI that have been widely applied to the healthcare industry [47]. To create mod-
els based on datasets that enable the algorithm to generate predictions and make judg-
ments without programming, ML refers to the automatic improvement of AI algorithms 
through experience and vast amounts of historical data. ML uses both unstructured data 
that are difficult to arrange using predetermined structures (e.g., clinical notes), as well as 
structured data that are easily organized into predefined structures. Furthermore, ML 
models generate software algorithms to develop AI decision-support systems [47]. The 
majority of these systems are created using standard algorithms, which consistently pro-
duce the same outcome for a given input, and thus, decision-support systems help 
healthcare professionals analyze enormous amounts of information [48–50]. 

Unlike this broader definition of ML, the fundamental idea behind DL is derived 
from the neural networks of the human brain that process and interpret information. To 
simulate this process, DL is based on representation learning and artificial neural net-
works (ANNs), and when the number of layers is large (i.e., deep) simulates more intricate 
links between input and output [51,52]. The ANN is a mathematical model that mimics 
the composition and operation of biological neural networks. The quantity and configu-
ration of an ANN’s neural layers as well as the training set determine its performance [53]. 
The main subtypes of DL networks are convolutional neural networks (CNNs), recurrent 

Figure 2. Overview of the study organization.

2. Basic Models of Artificial Intelligence

The AI framework is based on machine learning (ML) and deep learning (DL), two
subsets of AI that have been widely applied to the healthcare industry [47]. To create models
based on datasets that enable the algorithm to generate predictions and make judgments
without programming, ML refers to the automatic improvement of AI algorithms through
experience and vast amounts of historical data. ML uses both unstructured data that
are difficult to arrange using predetermined structures (e.g., clinical notes), as well as
structured data that are easily organized into predefined structures. Furthermore, ML
models generate software algorithms to develop AI decision-support systems [47]. The
majority of these systems are created using standard algorithms, which consistently produce
the same outcome for a given input, and thus, decision-support systems help healthcare
professionals analyze enormous amounts of information [48–50].

Unlike this broader definition of ML, the fundamental idea behind DL is derived from
the neural networks of the human brain that process and interpret information. To simulate
this process, DL is based on representation learning and artificial neural networks (ANNs),
and when the number of layers is large (i.e., deep) simulates more intricate links between
input and output [51,52]. The ANN is a mathematical model that mimics the composition
and operation of biological neural networks. The quantity and configuration of an ANN’s
neural layers as well as the training set determine its performance [53]. The main subtypes
of DL networks are convolutional neural networks (CNNs), recurrent neural networks
(RNNs), and generative adversarial neural networks (GANs) [54]. CNNs are mostly utilized
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in computer vision and signal processing applications. The CNN architecture consists
of a series of stages, or layers, that make it easier to obtain hierarchical characteristics.
Later phases extract more global characteristics, while initial phases extract more local
features, like corners, edges, and lines. As features spread from one layer to another, the
representation of those features is richer [55]. In medicine, CNNs are most commonly
employed for image processing and detection, especially in radiology, pathology, and
dermatology [55]. RNNs are more effective when handling time-series data, such as clinical
data or electronic health records (EHRs), and sequential data, such as text and speech [56].
GANs are a subtype of the DL model that can be used to create new data that is similar
to existing data [57]. Finally, natural language processing (NLP) is an AI technology that
aids computers in comprehending and interpreting human language, organizing clinical
notes and unstructured data, and thus, enabling better decision-making [58,59]. Figure 3
presents the basic models of AI.
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3. Domains of Artificial Intelligence’s Applications in Neonatal Care
3.1. Neuromonitoring

The previous decades have seen increased research on the neuromonitoring of crit-
ically ill neonates, thanks to the advancements in AI (Table 1). AI, and especially ML,
has made it possible for computer systems to examine and analyze massive amounts of
data, including medical patterns, mainly applied to the electroencephalogram (EEG) and
magnetic resonance imaging (MRI) [60].

3.1.1. Electroencephalography

Seizures are the most common neurological emergency in the neonatal population,
and most likely occur during the first days of life [61]. Seizures are more common in
neonates born at less than 30 and more than 36 weeks of gestation, with the frequency of
seizures in neonates estimated to be around 8% [61]. Additionally, evidence suggests that
treating seizures early on enhances the patient’s response to medication [62], while it is
well known that recurrent seizures are linked to worse long-term neurodevelopmental
outcomes, regardless of the underlying cause [63,64]. Seizures are particularly difficult
to diagnose in the neonatal population because they can be difficult to distinguish from
normal infant movements even when they do occur, or they can be limited to electrographic
episodes [65]. Although neonatal seizures need to be treated right away, it can be extremely
challenging to recognize, since up to 85% of neonatal seizures may not have any clear
clinical symptoms.

In the NICU, EEG has emerged as a crucial component of neurocritical care, as it is
crucial to identify neonatal seizures and allows the distinction between epileptic seizures
and nonepileptic episodes [66]. Additionally, EEG monitoring helps uncouple clinical
and EEG seizures after antiseizure treatment [67], detecting the electrical discharge that
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may persist after therapy, while the clinical manifestation of the seizure that may have
existed before treatment disappeared. EEG records non-invasively the electrical activity of
the cerebral cortex allowing for the real-time evaluation of cortical background function;
however, real-time review and implementation of EEG can be challenging. Moreover,
continuous EEG (cEEG) increases the diagnostic and prognostic potential, since it allows
the evaluation of the background activity over time [68]. Thus, cEEG monitoring is the
recommended standard of care for identifying and treating all seizures quickly [69,70].
Due to the challenges in acquiring traditional EEG, NICUs have currently adopted a less
precise but more straightforward method of EEG monitoring, the amplitude-integrated
EEG (aEEG). As opposed to cEEG monitoring, aEEG is a bedside device that shows one
or two channels of filtered, smoothed, and quantitatively converted EEG data, while the
cortical electrical activity is compressed in duration and converted in a semi-logarithmic
chart [71,72]. However, aEEG does not have an ideal sensitivity, specificity, and interob-
server agreement for identifying seizures [73], and thus, it is recommended to serve as an
adjunct to cEEG monitoring [68,74].

During the past few decades, research in AI, and particularly DL, has evolved in the
field of the creation of automatic seizure detection algorithms [75]. These algorithms exhibit
remarkable seizure detection accuracy, comparable to that of human specialists [76]. In 1992,
Liu et al. proposed a computerized detection system for neonatal seizures, and thereafter,
numerous methods have been documented, refined, and verified [8]. The performance of
the initial automatic seizure detection algorithms was suboptimal for therapeutic use as
they had been created by modifying algorithms intended for adult users [8,9]; however,
to date many seizure detection algorithms have been developed mainly for full-term but
also preterm neonates [77]. The development of these algorithms requires the labeling
of seizures by several specialists as well as obtaining enough data for testing, training,
and validation.

In 2020, a randomized clinical trial assessing the effect of ML on the real-time identifi-
cation of neonatal seizures in a NICU was published [78]. According to that report, more
seizures were recognized in real-time, when AI algorithms were applied in the NICU [78].
Following extensive training and offline analysis, the accuracy of the recognition of electro-
graphic seizures both with and without the automatic seizure detection algorithms was
tested in a multicenter clinical trial, suggesting that the algorithm could serve as a bedside
tool in clinical practice [79,80]. The model greatly enhanced the recognition of seizure hours,
even though the set aim of improving the detection of specific neonates with seizures was
not fulfilled.

In addition to monitoring and treating newborn seizures, EEG is also a valuable diag-
nostic tool for neonatal encephalopathy, namely hypoxic-ischemic encephalopathy (HIE).
AI research is being conducted to create algorithms, many of which use DL techniques,
that can evaluate brain maturation, estimate sleep stages [81], and grade background EEG
patterns in HIE [82]. Automated EEG interpretation based on ML technology has recently
shown good performance in detecting HIE severity and can be helpful in the early severity
grading of neonatal HIE [83,84]. Such an example of advanced signal processing included
the convolutional neural network structures, which can self-extract convolutional features
from raw EEGs [82]. Besides, the possible application of AI in predictive modeling for
electrographic seizures in newborns with HIE was examined by Pavel et al., with the goal
of early detection of infants most at risk of recurrent seizures [85]. ML algorithms were
created for clinical and both qualitative and quantitative EEG characteristics. Notably, both
the automated quantitative EEG analysis and the analysis carried out by a skilled neuro-
physiologist (qualitative) increased the predictive value of these models by incorporating
clinical data. These studies highlight the possibility of using ML in evaluating the EEG
background of neonates with HIE.
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3.1.2. Magnetic Resonance Imaging

The application of AI to enhance the utility and inference from brain MRI has ad-
vanced significantly during the last few years. Technical advancements in AI techniques
include methods to reduce movement artifact effects and boost information yield, as well
as advancements in tissue classification [86]. These have made it possible for a deeper
evaluation of the developing brain, and a new understanding of the effects of prenatal
events on structural and functional network topologies [87].

One of the regions in the neonatal brain where myelination starts is the posterior limb
of the internal capsule (PLIC). Crucially, both term and preterm newborns’ neurological
outcomes depend on the proper and timely maturation of the PLIC. Abnormalities in the
PLIC detected on MRI have been linked to hemiplegia, and worse neurodevelopmental
outcomes [88]. Over the past few decades, there has been a noticeable rise in the prevalence
of cerebral palsy to over 2.0 per 1000 live births, which is inversely proportional to the
gestational age and carries significant lifetime burdens [89,90]. An ML algorithm for the
automated segmentation and quantification of the PLIC in preterm newborns undergoing
MRI was proposed in a recent work [91], where authors demonstrated good accuracy for
the ML model when compared to expert analysis, indicating the successful application of
their algorithm to a large dataset. Although promising, it is necessary to evaluate how well
this approach will work in clinical settings.

Identifying neuroanatomic phenotypes and predicting the outcome are the major
areas in the clinical domain where AI is facilitating innovation. Preterms are characterized
by a specific phenotype including abnormal brain development, cerebral palsy, autism
spectrum disorder, attention deficit hyperactivity disorder, psychiatric illness, and issues
with language, behavior, and socioemotional functions [92]. Abnormalities of structural
and functional networks are frequent in preterm neonates as they have been obtained
from structural, diffusion, and functional MRI [93]. Models that combine data from two or
more imaging modalities into a single framework, can reveal previously unknown patterns
of neuroanatomic variants in preterm neonates that are related to cognitive and motor
outcomes [94]. Diffusion tensor metrics, neurite orientation dispersion, regional volumes,
and density imaging measurements are among the several forms of MRI data that are
integrated into a single model to compute morphometric similarity networks [95]. This
kind of research helps identify the neural roots of cognition and behavior, identify the
networks that most contribute to atypical brain development, and examine the drivers of
brain dysmaturation and resilience.

Current research also aims to compare traditional computer vision approaches with
efficient networks that generate reliable and accurate segmentation. To evaluate methods
for segmenting newborn tissue, T1W, and T2W pictures were provided with manually
segmented structures; segmenting myelinated from unmyelinated white matter is, never-
theless, still challenging [96]. The limited number of high-quality labeled data must also
be acknowledged as a key limitation when comparing earlier attempts on newborn brain
segmentation [97].

Table 1. Examples of the current evidence of artificial intelligence application in neuromonitoring
in neonatology.

Aim References Artificial Intelligence
Model Data-Set Analyzed Outcome

Electroencephalography

Automated seizures
detection O’Shea et al. [76]

DL detection models based
on SVM system and
AUROC

Continuous EEG recordings

The system achieved a 56% relative improvement,
reaching an AUROC of 98.5%; this compared
favourably both in terms of performance and
run-time

Liu et al. [8] SAM analysis Continuous EEG recordings

SAM analysis demonstrated a sensitivity of 84%
and a specificity of 98% in effectively
differentiating between EEG epochs containing
seizures and those without
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Table 1. Cont.

Aim References Artificial Intelligence
Model Data-Set Analyzed Outcome

Gotman et al. [9] Spectral analysis
Continuous EEG recordings
(281 h of recordings
containing 679 seizures)

71% of the seizures and 78% of seizure clusters
were detected, with a false detection rate of 1.7/h

O’Shea et al. [77] DL detection models based
on SVM system Continuous EEG recordings

The algorithm had an AUROC of 88.3% when
tested on preterm as compared to 96.6% when
tested on term EEG. When re-trained on preterm
EEG, the performance increased to 89.7%. An
alternative DL approach showed a more stable
trend when tested on the preterm cohort, starting
with an AUROC of 93.3% for the term-trained
algorithm and reaching 95.0% by transfer
learning from the term model using available
preterm data

Pavel et al. [78] Algorithm for automated
neonatal seizure recognition Continuous EEG recordings

Sensitivity and specificity were 81.3% and 84.4%
in the algorithm group compared to 89.5% and
89.1% in the non-algorithm group, respectively;
the false detection rate was 36.6% in the
algorithm group and 22.7% in the non-algorithm
group. The percentage of seizure hours correctly
identified was higher in the algorithm group than
in the non-algorithm group (difference 20.8%)

Mathieson et al. [80] SDA Continuous EEG recordings

SDA achieved seizure detection rates of
52.6–75.0%, with false detection rates of
0.04–0.36 FD/h. Time based comparison of expert
and SDA annotations using Cohen’s Kappa Index
revealed a best performing SDA threshold of 0.4
(Kappa 0.630)

Severity grading of
neonatal HIE Stevenson et al. [79]

ML classifier models of
AGS based on a multi-class
linear analysis and AUROC

Continuous EEG and
clinical data

The 4 grade AGS had a classification accuracy of
83% compared to human annotation of the EEG.
EEG-only measures were shown to be less
effective in grading the EEG than features
estimated on the created sub-signals, and
performance was further enhanced by adding
more sub-grades based on EEG states to the AGS

Raurale et al. [82] Quadratic time-frequency
distribution with a CNN EEG data

The proposed EEG HIE-grading system achieved
an accuracy of 88.9% and kappa of 0.84 on the
development dataset. Accuracy for the large
unseen test dataset was 69.5% and kappa of 0.54,
which is a significant (p < 0.001) improvement
over a state-of-the-art feature-based method with
an accuracy of 56.8% and kappa of 0.39

Moghadam et al. [83]
SVM, multilayer
feedforward neural
network or RNN

EEG data (13,200 5-min
EEG epochs)

The optimal solution had a 97% classification
accuracy overall, ranging from 81 to 100% across
the subjects

Matic et al. [84]
Automated algorithm to
quantify background EEG
abnormalities

Continuous EEG recordings
of 1 h

Effective parameterization of continuous EEG
data has been achieved resulting in high
classification accuracy (89%) to grade
background EEG abnormalities

Pavel et al. [85]

ML models (random forest
and gradient boosting
algorithms) using MCC and
AUROC

Clinical and EEG
parameters at <12 h of birth

Low Apgar, need for ventilation, high lactate, low
base excess, absent sleep-wake cycle, low EEG
power, and increased EEG discontinuity were
associated with seizures. The following
predictive models were developed: clinical (MCC
0.368, AUC 0.681), qualitative EEG (MCC 0.467,
AUC 0.729), quantitative EEG (MCC 0.473, AUC
0.730), clinical and qualitative EEG (MCC 0.470,
AUC 0.721), and clinical and quantitative EEG
(MCC 0.513, AUC 0.746). The clinical model by
itself performed much worse than the clinical and
qualitative-EEG model (MCC 0.470 vs. 0.368,
p-value 0.037). With a p-value of 0.012, the clinical
model was significantly surpassed by the
quantitative-EEG model and clinical model
(MCC 0.513 vs. 0.368). Performance for
quantitative aEEG was MCC 0.381, AUC 0.696
and clinical and quantitative amplitude EEG was
MCC 0.384, AUC 0.720

Sleep stage
classification Ansari et al. [81] CNN inception block EEG data

The model significantly outperforms
state-of-the-art neonatal quiet sleep detection
algorithms, with mean Kappa 0.77 ± 0.01 (with
8-channel EEG) and 0.75 ± 0.01 (with a single
bipolar channel EEG)

Magnetic Resonance Imaging

Automated
segmentation and
quantification of the
PLIC

Gruber et al. [91]

CNN-based pipeline
comprised of slice-selection
modules and a multi-view
segmentation model

MRI volume data The proposed method was capable of identifying
a specific desired slice from the MRI volume
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Table 1. Cont.

Aim References Artificial Intelligence
Model Data-Set Analyzed Outcome

Combination of
structural and
functional networks

Ball et al. [94]
A data-driven, multivariate
approach that integrated
several imaging modalities

Clinical factors and MRI
data

Five independent patterns of neuroanatomical
variation that related to clinical factors included
age, prematurity, sex, intrauterine complications,
and postnatal adversity. It was established that
there was a connection between poor cognitive
and motor outcomes at two years old and
imaging indicators of neuroanatomical
abnormalities

Galdi et al. [95] Morphometric similarity
networks

MRI data, such as density
imaging metrics, neurite
orientation dispersion,
regional volumes, and
diffusion tensor metrics

The regression model predicted post-menstrual
age at scan with a mean absolute error of
0.70 ± 0.56 weeks; the classification model
achieved 92% accuracy

Generate reliable and
accurate segmentation Makropoulos et al. [96]

A system for precisely
segmenting the developing
neonatal brain based
on intensity

MRI data

Across a broad range of gestational ages, from
24 weeks gestational age to term-equivalent age,
the suggested approach produced extremely
accurate results

Ding et al. [97] DSC for each tissue type
against eight test subjects MRI data

The best test mean DSC values that were
statistically significant were obtained by the
dual-modality HyperDense-Net. For all tissue
types, T2-weighted image processing performed
better by the single-modality LiviaNET than
T1-weighted image processing. Both neural
networks achieved previously
reported performance

DL, deep learning; AUROC, area under the receiver operating characteristic curve; EEG, Electroencephalogram;
SAM, Scored autocorrelation moment; SVM, support vector machine; SDA, seizure detection algorithm; HIE,
hypoxic-ischemic encephalopathy; ML, machine learning; AGS, automated grading systems; CNN, convolutional
neural network; RNN, recurrent neural network; MCC, Matthews correlation coefficient; PLIC, posterior limb of
internal capsule; MRI, magnetic resonance imaging; DSC, dice similarity coefficient.

3.2. Neurodevelopmental Outcome

ML techniques have been widely used for the neurodevelopmental evaluation and
follow-up of preterm neonates (Table 2). Numerous studies used ML techniques to examine
brain connections [40,98–100], brain structure analysis, and brain segmentation in preterm
neonates [45,101]. Evidence suggests an association between lower brain volume, cortical
folding, axonal integrity, and microstructural connectivity with preterm birth [41,102].
Additional effects of prematurity on the developing connectome have been found in
studies examining functional markers of brain maturation [40,103].

Neurocognitive assessments are among the most significant domains of neurode-
velopment outcomes at two years of age. Previous studies assessed how the brain’s
morphological alterations relate to neurocognitive outcomes [39,43,44] and the prediction
of brain age [104]. It has been demonstrated that multivariate models combining near-term
structural MRI findings and white matter microstructure on diffusion tensor imaging may
help identify preterm neonates at risk for language impairment and guide early interven-
tion [43,44]. Moreover, to predict neurodevelopmental impairment at two years of age, a
self-training deep neural network model has been suggested, using MRI data obtained
in very preterm neonates at term-equivalent age [31]. Besides, according to a study that
used ML techniques to assess the impact of PPAR gene activity on brain development,
a significant correlation was found between aberrant brain connectivity and PPAR gene
signaling’s role in aberrant white matter development [105].

ML models have been used to evaluate the association of the developmental outcome
regarding language skills with the near-term MRI findings in previous studies. By ex-
amining MRI characteristics and perinatal clinical data, Valavani et al. employed ML to
predict language skills at two years of corrected age in preterm neonates [42]. Language
delay could be accurately predicted by delayed myelination patterns and specific clinical
characteristics. The authors concluded that ML models could be useful for healthcare
services and enhance the long-term outcomes of preterm neonates. Furthermore, in a
recent study, Balta et al. proposed an AI-based automated monitoring of newborns’ general
motions, a crucial screening test for detecting neuromotor problems in children [33]. The
authors created an automated model to analyze infants’ overall motions, by processing
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videos taken with a simple camera at home. Certain patterns of spontaneous movements,
such as the absence of fidgety movements or the presence of predominately contracted
coordinated movements, were particularly indicative in predicting cerebral palsy in infants
between the ages of 3 and 5 months of age [33].

Table 2. Examples of the current evidence of artificial intelligence application in neonatal neurodevel-
opmental outcome.

Aim References Artificial Intelligence
Model Data-Set Analyzed Outcome

Detection of neonates with
cognitive impairment Wee et al. [44]

Clustering coefficients of
individual structures were
computed. SVM and
canonical correlation
analysis

Diffusion tensor imaging
tractography and
neurodevelopmental scales

At 24 months of age, the right amygdala’s
clustering coefficient was linked to both
internalising and externalising behaviours;
at 48 months of age, the right inferior frontal
cortex and insula’s clustering coefficients
were linked to externalising behaviours

Krishnan et al. [105] ML using Sparse Reduced
Rank Regression

Whole-brain diffusion
tractography together with
genomewide, SNP-based
genotypes and
neurodevelopmental scales

SNPs with expected effects such as protein
coding and nonsense-mediated decay were
found predominantly in introns or
regulatory regions of PPARG, where they
were significantly overrepresented. The
PPARG signaling has a previously
unrecognized role in cerebral development

Ali et al. [31] Self-training deep
neural network

Brain functional
connectome and cognitive
assesment data

The proposed model achieved an accuracy
of 71.0%, a specificity of 71.5%, a sensitivity
of 70.4% and AUROC of 0.75, significantly
outperforming transfer learning models
through pre-training approaches

Detection of neonates at risk
of language impairment Vassar et al. [43]

Multivariate models with
leave-one-out
cross-validation and
exhaustive feature selection

MRI and white matter
microstructure assessed on
diffusion tensor imaging
and neurodevelopmental
scales

Based on regional white matter architecture
on diffusion tensor imaging, infants at high
risk for language impairments were
predicted with good accuracy (sensitivity,
specificity) for expressive (100%, 90%),
receptive language (100%, 90%), and
composite (89%, 86%) language

Valavani et al. [42] Feature selection and a
random forests classifier

MRI data and
neurodevelopmental scales

The model achieved balanced accuracy 91%,
sensitivity 86%, and specificity 96%. As the
values of the radial diffusivity, axial
diffusivity, and peak width of skeletonized
fractional anisotropy determined from
diffusion MRI increased, the likelihood of
language delay at two years of corrected age
increased as well

Detection of neuromotor
problems and risk of
cerebral palsy

Balta et al. [33]
Tracking software of
DeepLabCut using a
k-means algorithm

Single commercial videos of
six PoIs on the infant’s
upper body: left and right
shoulders, elbows,
and wrists

The results demonstrated that gross motor
metrics may be meaningfully estimated and
potentially used for early identification of
movement disorders

ML, machine learning; SNP, single-nucleotide polymorphism; AUROC, area under the receiver operating charac-
teristic curve; MRI, magnetic resonance imaging.

3.3. Respiratory System

One of the main causes of infant mortality and morbidity in preterm deliveries is BPD.
Although several biomarkers have been associated with the emergence of RDS, there are
currently no meaningful prenatal diagnostic tests for BPD [16]. In a previous study, Ahmed
et al. evaluated an ML technique also suitable for the analysis of other biological materials
and created a helpful bedside point-of-care test approach for neonatal RDS [10]. According
to the authors’ findings, following clinical validation, the use of ML-guided devices that can
measure RDS biomarkers in real time may be used to direct therapies for preterm infants
exhibiting respiratory symptoms. Moreover, Raimondi et al. concentrated on AI-assisted
analysis of lung ultrasonography and its capacity to correlate with respiratory status in
critically ill neonates with RDS [11]. The authors constructed a dataset of scans for texturing
and a correlation between the oxygenation status, the ultrasound findings, and the mean
grayscale intensity was established by an ML model. They enrolled a cohort of neonates
of different origins and varying degrees of respiratory distress, and they demonstrated
a significant correlation between blood gas indices and the grayscale ML analysis [11];
however, the relatively small sample size, the heterogeneous etiology of the respiratory
distress, and the variable postnatal age suggested that further research on this topic with
larger datasets is warranted.
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Regarding BPD, Dai et al. investigated the combination of genetic and clinical factors,
where exome sequencing was carried out for preterm neonates and integrated with clinical
aspects [12]. The authors demonstrated that by using ML for the genomic analysis they
could predict the development of BPD with an accuracy of 90% [12]. Also, the combination
of gastric aspirate after birth and clinical information analysis could predict BPD devel-
opment with a sensitivity of 88% [16]. Besides, Leigh et al., in a retrospective analysis of
the perinatal and the respiratory factors in a sample of preterm neonates, created an ML
algorithm that, after testing and training, could predict BPD-free survival well in terms
of accuracy [14]. An AI approach has been proposed using DL and image segmentation,
that can predict the severity of BPD by analyzing the segmentation of the lungs in chest
X-rays taken on the 28th day of oxygen delivery [17]. The benefits of the aforementioned
algorithm included non-invasiveness, speed, and independence from the experience of
neonatologists, whereas demonstrated strong prediction performance.

Moreover, research on BPD with ML predictive models has shown that long-term
invasive ventilation is one of the most significant risk factors for BPD and longer hospital
stays. ML models using long-term invasive ventilation data could predict extubation
failure with significant accuracy [106–108]. The risk stratification for BPD is a specific
area of interest, aiming to identify infants who may benefit from preventive measures
like corticosteroids or treatment for specific morbidities such as PDA. The BPD Outcome
Estimator is a predictive tool approved by the US National Institute of Child Health and
Human Development useful in directing steroid treatment and family counseling [13].
The estimator was initially limited to White, Black, or Hispanic neonates, however, Patel
et al. recently created a a web application based on an ML system for extremely preterm
neonates of Asian descent [15]. Nonetheless, the study’s conclusions were limited because
the method was tested on a small dataset, requiring further comprehensive and prospective
validation before being used in clinical practice.

Apnea of prematurity, another common morbidity in preterm neonates, is either ob-
structive (caused by airway obstruction), central (caused by cessation of respiratory drive),
or mixed (a combination of both). Bedside monitors are programmed to sound an alarm
when detect a decreased respiratory effort due to a decrease in thoracic motion [109]. A
substantial number of false positive episodes have been observed in clinical tests indicating
that this approach can identify central apneas with suboptimal accuracy [110]. Varisco et al.
created an ML-based improved apnea detection model to automatically identify real apnea
using data from the electrocardiographic monitoring of neonates [111]. The authors con-
cluded that the AI algorithm resulted in better detection of apneas compared to traditional
approaches with fewer false alarms, and they also showed that breathing patterns were
altered more often in neonates with more frequent central apneas [111]. Although AI may
drastically alter routine clinical practice, given that alarm fatigue is a growing problem in
NICUs putting neonates in danger of missing alarms, the lack of external validation, along
with the small sample size represents serious flaws in the suggested methodology. Table 3
presents examples of the application of AI in neonatal respiratory diseases.

3.4. Ophthalmology

ML models have been also applied in ROP, which is a severe complication of pre-
maturity and a major cause of childhood blindness in high- and middle-income coun-
tries (Table 4). ROP affects mainly extremely preterm (less than 28 weeks), very preterm
(28–32 weeks), or very low-birthweight (1500 g) neonates [23]. Telemedicine and AI are
being considered as potential diagnostic tools for ROP, given the dearth of ophthalmolo-
gists who can treat neonates with ROP. Gaussian mixture models are among several ML
techniques, to diagnose and categorize ROP from retinal fundus pictures [22,23]. In a
previous study, the i-ROP system was shown to have a 95% accuracy in classifying pre-plus
and plus illness. This performance was significantly better than the performance achieved
by nonexperts (81%) and comparable to that achieved by experts (92% to 96%) [22].
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Table 3. Examples of the current evidence of artificial intelligence application in neonatal respiratory diseases.

Aim References Artificial Intelligence
Method Data-Set Analyzed Outcome

RDS severity Ahmed et al. [10]

Attenuated total reflectance
Fourier transform infrared
spectroscopy combined
with ML, performing
callibration of principal
component and partial least
squares regression model

Two RDS biomarkers,
lecithin and
sphingomyelin
(L/S ratio)

A three-factor model of second derivative spectra
best predicted L/S ratios across the full range (R2:
0.967; MSE: 0.014). The L/S ratios from 1.0 to 3.4
were predicted with a prediction interval of +0.29,
−0.37 when using a second derivative spectra
model and had a mean prediction interval of +0.26,
−0.34 around the L/S 2.2 region

Raimondi et al. [11] SVM regressor

Lung ultrasonography
using grayscale analysis
supported by both visual
and computer aids

Visual assessment correlated significantly with
respiratory indexes with a strong interobserver
agreement. The use of regions of interest in the
grayscale analysis of lung ultrasonography scans
revealed a strong connection with
oxygenation indexes

Prediction of BPD Verder et al. [16] SVM Clinical and laboratory
data

An algorithm combining birth weight, gestational
age, and the sectral analysis of the gastric aspirates
resulted to a sensitivity of 88% and a specificity of
91% for early diagnosis of BPD

Dai et al. [12] Predictive models
evaluated using AUROC

Clinical and genetic
features

The predictive model for BPD, which combined the
BPD rsik score and basic clinical risk factors,
showed better discrimination than the model that
was only based on basic clinical features (AUROC,
0.915 vs. AUROC, 0.814, p = 0.013, respectively).
The severe BPD predictive model had AUROC,
0.907 vs. AUROC, 0.826; p = 0.016

Leigh et al. [14]
A final ensemble model
using logistic regression
and the AUROC

Perinatal factors and
early postnatal
respiratory support

The performance of the model showed AUROC
0.921 and 0.899 for the training and the validation
datasets, respectively

Xing et al. [17]

XSEG-Net model
combining digital image
processing and
human-computer
interaction

Chest X-ray images

During the XSEG-Net network’s training, the dice
and cross-entropy loss values were 0.9794 and
0.0146, respectively. The deep CNN model based on
VGGNet had the promising prediction performance,
with the accuracy, precision, sensitivity, and
specificity reaching 95.58%, 95.61%, 95.67%, and
96.98%, respectively

Laughon et al. [13] Models using a C statistic
and AUROC

Gestational age, birth
weight, race, ethnicity,
sex, respiratory support,
and FiO2

Prediction improved with advancing postnatal age,
increasing from a C statistic of 0.793 on Day 1 to a
maximum of 0.854 on Day 28

Patel et al. [15] Random forest algorithm
with AUROC

Three racial/ethnic
options

Model had AUROC of 0.934, 0.850, and 0.757 for
respiratory outcomes at post-menstrual age 36, 37,
and 40 weeks, respectively. An interrelationship
among racial/ethnic groups and the feasibility of
extending the use of the Estimator to the Asian
population was shown

Extubation readiness Mueller et al. [106]
A ML approach using
ANNs, multivariate logistic
regression and the AUROC

51 variables

The optimal ANN model used 13 parameters and
achieved an AUROC of 0.87, comparing favorably
with multivariate logistic regression. It compared
well with the clinician’s expertise

Precup et al. [107] ML method of SVM
Measures of
cardiorespiratory
variability

The predictor correctly identified infants who
would not survive extubation, according to
the results

Mikhno et al. [108] ML approach Clinical and laboratory
factors

Algorithm performance had AUROC of 0.871,
sensitivity 70.1%, and specificity 90%

Automated detection
of apneas Varisco et al. [111]

Optimized algorithm for
automated detection using
logistic regression and the
AUROC

47 characteristics were
taken out of the oxygen
saturation and ECG
signals

The apnea detection model returned the highest
mean AUROC, both using leave-one-patient-out
and 10-fold cross-validation (mean AUROC of 0.88
and 0.90, respectively)

RDS, respiratory distress syndrome; ML, machine learning; L/S, lecithin/sphingomyelin; SVM, support vector
machine; BPD, bronchopulmonary dysplasia; AUROC, area under the receiver operating characteristic curve;
CNN, convolutional neural network; ANN, artificial neural networks; ECG, electrocardiography.

Furthermore, a DL automated score model was generated in a recent multicenter
trial, to identify one of the features of the affected retina [28]. This study showed how a
DL comprehensive screening platform may enhance screening accessibility and objective
ROP diagnosis. In another large-scale multicenter trial, a different group of scientists
created a DL method for predicting ROP and its severity [30]. Retinal images from the
initial ROP screening and neonatal clinical risk variables were obtained to develop an AI
predictive algorithm. When compared to the traditional ROP score, the DL-based system
demonstrated comparable accuracy, while it was found more effective in identifying and
interpreting abnormal signs than the classical ophthalmoscopy.
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Table 4. Examples of the current evidence of artificial intelligence application in neonatal ophthalmology.

Aim References Artificial Intelligence
Model Data-Set Analyzed Outcome

Automated diagnosis
of ROP

Ataer-Cansizoglu
et al. [22]

Computer-based image
analysis system (i-ROP) Retina image

When compared to the reference standard, the i-ROP
system classified preplus and plus illness with 95%
accuracy. This was comparable to the performance of
the 3 individual experts (96%, 94%, 92%), and
significantly higher than the mean performance of
31 nonexperts (81%)

Redd et al. [28] A DL system (i-ROP plus
score) on a 1–9 scale Retina image

The AUROC of 0.960 was found for the i-ROP severity
score in identifying type 1 ROP. Establishing a
threshold i-ROP score of 3 conferred 94% sensitivity,
79% specificity, 13% positive predictive value and
99.7% negative predictive value for type 1 ROP. The
i-ROP DL vascular severity score and expert rank
ordering of overall ROP severity revealed a strong
correlation (r = 0.93; p < 0.0001)

Wu et al. [30]

Two models, OC-Net and
SE-Net of ROP. AUROC,
accuracy, sensitivity, and
specificity

Retina image

AUROC, accuracy, sensitivity, and specificity were
0.90, 52.8%, 100%, and 37.8%, respectively, for OC-Net
and 0.87, 68.0%, 100%, and 46.6%, respectively, for
SE-Net. In external validation, the AUROC, accuracy,
sensitivity, and specificity were 0.94, 33.3%, 100%, and
7.5%, respectively, for OC-Net, and 0.88, 56.0%, 100%,
and 35.3% for SE-Net, respectively

Biten et al. [24] Telemedicine diagnoses of
all 3 image readers Retina image

Ophthalmoscopy and telemedicine each had similar
sensitivity for zone I disease (78% vs. 78%), plus
disease (74% vs. 79%), and type 2 ROP (stage 3, zone I,
or plus disease: 86% vs. 79%), but ophthalmoscopy
was slightly more sensitive in identifying stage 3
disease (85% vs. 73%; p = 0.004)

Brown et al. [25]

Deep CNN algorithm based
on deep learning. Receiver
operating characteristic
analysis was performed

Retina image

The diagnosis of plus disease (as opposed to pre-plus
disease or normal) had an average AUROC of 0.98,
whereas the diagnosis of normal (as opposed to
pre-plus disease or normal) was 0.94. The method
achieved 93% sensitivity and 94% specificity for +
illness detection. The sensitivity and specificity for
identifying pre-plus illness or worse were 100% and
94%, respectively

Taylor et al. [29]

An algorithm assessing plus
illness and its usefulness for
impartially tracking the
advancement of ROP

Retina image
The median severity scores for each category were 1.1
(no ROP), 1.5 (mild ROP), 4.6 (type 2 and pre-plus),
and 7.5 (treatment-requiring ROP) (p <0.001)

Campbell et al. [26]
AI-based quantitative
severity scale for ROP
and AUROC

Retina image
The AUROC for detection of treatment-requiring
retinopathy of prematurity was 0.98, with 100%
sensitivity and 78% specificity

ROP, retinopathy of prematurity; DL, deep learning; AUROC, area under the receiver operating characteristic
curve; OC-Net, occurrence network; SE-Net, severity network; CNN, convolutional neural network.

Moreover, in previous studies, telemedicine has been compared with Binocular Indirect
Ophthalmoscope, demonstrating that both techniques are equally sensitive in detecting
zone disease, plus disease, and ROP, although Binocular Indirect Ophthalmoscope was
more accurate in recognizing zone III and stage 3 ROP [24,27]. Besides, using DL algorithms,
the accuracy of ROP examination was 94% for normal diagnosis and 98% for illness and
diagnosis, outperforming ROP experts [25]. Finally, in previous studies, DL algorithms
were constructed to estimate the clinical progression of the ROP by assigning vascular
severity scores [29] or to detect disease requiring therapy with an accuracy of 98% [26].
Overall, introducing AI into ROP screening programs might improve access to care for
secondary ROP prevention [26]; however, despite the encouraging results, more extensive
external validation using additional multicenter datasets is necessary. Additionally, the
development of more advanced ML algorithms may be able to provide more significant
prognostic information regarding the accurate staging, zone, and disease.

3.5. Gastrointestinal System

Recently, an AI algorithm was created based on a large dataset about the clinical
characteristics of neonates who developed intestinal perforation [112] (Table 5). The sug-
gested algorithm evaluated various clinical data, including vital signs, radiologic findings,
biomarkers, and laboratory results, and led to a more accurate and early prediction of
intestinal perforation of preterm neonates compared to all other traditional ML meth-
ods [112]. Furthermore, regarding nutrition, a previous study in England demonstrated
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that ML techniques can be used to evaluate nutritional practices that were found to be asso-
ciated with body weight on discharge and the development of BPD [113]. Finally, Han et al.
recently examined the potential application of AI to predict postnatal growth failure. Using
a large dataset of very low birth weight neonates from several NICUs, ML models were
created using a variety of methodologies, showing a strong predictive performance [114].
Nevertheless, the study’s findings were limited since it lacked crucial information about
enteral and parenteral feeding.

Table 5. Examples of the current evidence of artificial intelligence application in neonatal gastroin-
testinal diseases, sepsis, and patent ductus arteriosus.

Aim References Artificial Intelligence
Model Data-Set Analyzed Outcome

Gastrointestinal System

Prediction of spontaneous
intestinal perforation Son et al. [112] ANNs and AUROC Clinical data

The ANN models showed AUROC of 0.8832 for
predicting intestinal perforation associated with
necrotizing enterocolitis and 0.8797 for
spontaneous perforation

Prediction of postnatal
growth failure Han et al. [114]

ML models were built using
four different techniques
XGB, random forest, SVM,
and CNN to compare
against the multiple logistic
regression model

Clinical data

When compared with multiple logistic regression,
XGB showed a significantly higher AUROC
(p = 0.03) for Day 7, which was the primary
performance metric. Using optimal cut-off points,
for Day 7, XGB showed better performances in
terms of AUROC (0.74), accuracy (0.68)

Sepsis

Prediction of EOS Adam et al. [20] ML in form of a random
forest classifier

Risk factors, clinical
signs and biomarkers

The full model achieved an area under the
receiver operating characteristic curve (AUROC)
of 83.41% and an area under the precision recall
curve 28.42%. The predictive performance of the
model with risk factors alone was comparable
with random

Prediction of LOS Cabrera-Quiros
et al. [21]

Three popular ML
techniques (naive Bayes,
closest mean classifier, and
logistic regression)

ECG and respiration
data (heart rate
variability, respiration,
body motion)

Using a combination of all features, classification
of LOS and C showed a mean accuracy of 0.79 ±
0.12 and mean precision rate of 0.82 ± 0.18 3 h
before the onset of sepsis

Patent ductus arteriosus

Detection of PDA Na et al. [19]

Algorithms including
random forest, decision
tree-based theory, L-GBM,
low-bias model,
feedforward ANN, SVM,
using multiple logistic
regression

Database of risk factors

L-GBM achieved the highest accuracy at
predicting PDA (0.77), AUROC (0.82) and
specificity (0.84), and logistic regression
performed best with sensitivity (0.85). The
random forest model achieved the best accuracy
(0.85), AUROC (0.82) and sensitivity (0.97) in
determining PDA therapy

Gomez-Quintana
et al. [18]

Clinical decision support
tool based on ML Heart sounds

The developed system reached an AUROC of
77% at detecting PDA. The obtained results for
PDA detection compare favourably with the level
of accuracy achieved by an experienced
neonatologist when assessed on the same cohort

ANN, artificial neural networks; AUROC, area under the receiver operating characteristic curve; ML, machine
learning; XGB, extreme gradient boosting; SVM, support vector machine; CNN, convolutional neural network;
EOS, early-onset sepsis; LOS, late-onset sepsis; PDA, patent ductus arteriosus; L-GBM, light gradient boosting
machine; ANN, artificial neural networks.

3.6. Sepsis

Early and late-onset neonatal sepsis is a major cause of infant mortality and mor-
bidity [115]. Diagnosing neonatal sepsis and starting antibiotics is challenging in clinical
practice, which emphasizes the need for a comprehensive approach. Previous studies have
explored the role of heart rate variability in predicting early-onset sepsis with an accuracy
of 64–94% [20]. Also, regarding the detection of late-onset sepsis, ML decision algorithms
have utilized clinical and laboratory biomarkers obtaining an optimal accuracy and a mean
precision rate of 0.82 3 h before the onset of sepsis [21] (Table 5).

3.7. Patent Ductus Arteriosus

The ductus arteriosus which is patent during the intrauterine life may have significant
hemodynamic consequences in preterm neonates and is associated with higher rates of
morbidity and mortality. Therefore, it should be assessed whether closing the PDA could
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increase survival chances relative to the risk of side effects [116]. ML techniques have been
developed for the detection of PDA from electronic health records [19] and auscultation
records [18] (Table 5). This resulted in an accuracy of 76% for the prediction of PDA in very
low birth weight infants based on the analysis of 47 perinatal factors using 5 different ML
techniques [19] and 74% for the analysis of 250 auscultation records [18].

3.8. Dermatology

Infantile hemangiomas (IH) may present at birth and usually grow quickly between
the ages of one and three months, so it’s critical to diagnose the condition at an early age to
avoid complications [117]. In a recent work by Zhang et al., a CNN was used to identify IH
using clinical photos, reporting a diagnostic accuracy rate of 91.7%, which was even higher
when restricting the analysis to the facial region [118]. This study showed that AI algorithms
may be used for non-standardized photos, indicating their relevance to the real-world
clinical context [118]. Future research on IH diagnosis will need to develop algorithms that
can distinguish between different diseases instead of using a binary classifier, in addition
to the capacity to categorize IH risk.

Although there is limited research on AI’s application for pediatric dermatology
issues, studies have examined adult illnesses that frequently affect pediatric patients.
Atopic dermatitis is a recurrent condition that usually starts early in life [119]. A CNN was
recently created by Guimaraes et al. to examine multiphoton tomography data for atopic
dermatitis, with a diagnostic accuracy of 97% [120]. Furthermore, for the diagnosis of atopic
dermatitis, De Guzman et al. created a multi-model, multi-level approach that produced
a higher average confidence level (68.37% vs. 63.01%, respectively) than a single-model
method [121]. Gustafson et al. used a phenotypic method based on ML to identify patients
with atopic dermatitis in 2017. The system achieved a high positive prediction value and
sensitivity by combining code information with the electronic health record collection.
These findings show how ML and natural language processing can be used for EHR-based
phenotyping [122]. The majority of current research uses adult database photos, where
patient age is not clearly distinguished. This may cause biases in algorithms that are used
for purposes other than clearly stating the ages for whom they are intended. Besides, a
method based on deep neural networks was used by Han et al. to classify extremely rare
skin lesions and distinguish between eczema and other infectious skin disorders. The
authors also demonstrated that distinguishing between inflammatory and infectious causes
could help with treatment options [123]. Moreover, a support-vector-machine-based image
processing technique was developed for hand eczema segmentation and reported better
results compared to other sophisticated approaches that were also tested [124] (Table 6).

Table 6. Examples of the current evidence of artificial intelligence application in neonatal dermatology.

Aim References Artificial
Intelligence Model Data-Set Analyzed Outcome

Infantile hemangiomas Zhang et al. [118] Artificial intelligence
algorithm Clinical images The algorithm achieved a 91.7% overall accuracy in

the diagnosis of facial infantile hemangiomas

Atopic dermatitis Guimaraes et al. [120] CNN
Images combining both
morphological and
metabolic information

The algorithm correctly diagnosed atopic dermatitis in
97.0 ± 0.2% of all images presenting living cells. For
diagnosis sensitivity was 0.966 ± 0.003 and specificity
0.977 ± 0.003

De Guzman et al. [121]

A multi-model,
multi-level system
using the ANN
architecture

When evaluating eczema against non-eczema
instances, the system’s average confidence level was
68.37%, compared to 63.01% for the single level, or
single model system
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Table 6. Cont.

Aim References Artificial
Intelligence Model Data-Set Analyzed Outcome

Gustafson et al. [122]

ML-based
phenotype
algorithm, using the
electronic health
record, combined in
a lasso logistic
regression

Coded information
extracted from encounter
notes

The algorithm achieved high positive predictive value
and sensitivity. These results demonstrate the utility
of natural language processing and ML for electronic
health record-based phenotyping

Eczema Han et al. [123] Artificial intelligence
algorithm Images of 174 disorders

The AUROC for malignancy detection were 0.928 ±
0.002 and 0.937 ± 0.004. The AUROC of primary
treatment suggestion were 0.828 ± 0.012, 0.885 ±
0.006, 0.885 ± 0.006, and 0.918 ± 0.006 for steroids,
antibiotics, antivirals, and antifungals, respectively.
With the assistance of our algorithm, the sensitivity
and specificity of clinicians for malignancy prediction
were improved by 12.1% (p < 0.0001) and 1.1%
(p <0.0001), respectively

Koller et al. [124]

An automatic image
processing method
for hand eczema
segmentation based
on SVM

Several experiments with
different feature sets

The system achieved an F1 score of 58.6% for front
sides of hands and 43.8% for back sides, which
outperforms methods that were tested on the gold
standard data set

CNN, convolutional neural network; ANN, artificial neural networks; AUROC, area under the receiver operating
characteristic curve; SVM, support vector machine.

3.9. Miscellaneous
3.9.1. Vital Signs Monitoring

In previous studies, ML analysis has been developed to analyze physiologic data that
are electronically captured as signal data to identify artifact patterns [125], predict neonatal
morbidity [126], or identify late-onset sepsis [21]. An ML algorithm using electronically
recorded vital signs within the first three hours of life, including heart rate and respiration
rate of preterm neonates with a birth weight ≤2000 g and gestational age ≤34 weeks pre-
dicted overall morbidity with an accuracy of 91% [126]. Furthermore, Lyra et al. developed
DL-based techniques that could result in a reliable, real-time assessment of crucial indica-
tors, such as changes in body temperature [127]. Although the analysis proved difficult
for several factors during the recording, the authors demonstrated the viability of using
inexpensive, embedded graphics processing units to monitor neonates’ temperatures in
real-time, although more research is warranted to broaden the application of this technique
in clinical settings [127] (Table 7).

Table 7. Examples of the current evidence of artificial intelligence application in neonatal miscella-
neous domains.

Aim References Artificial
Intelligence Model Data-Set Analyzed Outcome

Vital Signs Monitoring

Detect artifacts Tsien et al. [125] Decision tree
induction

Multiple physiologic
data signals

Finding artefacts was possible by the
integration of many signals by using
a classification system on sets of
values obtained from physiologic
data streams

Predict overall
mortality Saria et al. [126]

Prediction algorithm
(PhysiScore) based on
a physiological
assessment score for
preterm newborns

Apgar score and
standard signals
recorded
noninvasively on
admission

PhysiScore provided higher
accuracy prediction of overall
morbidity (86% sensitive at 96%
specificity) than other neonatal
scoring systems. PhysiScore was
particularly accurate at identifying
infants with high morbidity related
to specific complications (infection:
90% to 100%; cardiopulmonary: 96%
to 100%)
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Table 7. Cont.

Aim References Artificial
Intelligence Model Data-Set Analyzed Outcome

Temperature
detection Lyra et al. [127]

A combination of
DL–based algorithms
and camera
modalities

Thermographic
recordings

The keypoint detector’s validation
revealed a mean average precision
of 0.82. The evaluation of the
temperature extraction revealed a
mean absolute error of 0.55 ◦C

Neonatal Jaundice

Detection of
jaundice

Althnian
et al. [128] DL approach Eye, skin, and

fused images

Traditional models outperformed
DL models with eyes and fused
features, but DL model did better
with skin photos

Guedalia
et al. [129]

ML using a combined
data analysis
approach with
AUROC

Clinical data without
serum bilirubin
evaluation

The ML diagnostic ability to
evaluate the risk for neonatal
jaundice was 0.748 (AUROC).
Important factors were maternal
blood type, maternal age,
gestational age, estimated birth
weight, parity, full blood count, and
maternal blood pressure

DL, deep learning; ML, machine learning; AUROC, area under the receiver operating characteristic curve.

3.9.2. Neonatal Jaundice

The application of ML and DL models was explored in a previous study investigating
the potential of using a dataset made up of photos taken using a smartphone camera for
the identification of neonatal jaundice in term and late preterm neonates. The authors used
data from pictures of the skin and eyes to train a neural network to identify jaundice [128].
Furthermore, Guardalia et al. used an ML approach to analyze clinical data for a large
neonatal population to develop a risk assessment tool for neonatal jaundice that did not
rely on bilirubin readings, that performed well in the risk categorization of newborn
jaundice [129] (Table 7).

3.10. Mortality

Even with the recent advances in neonatal care, preterm neonates are still very vul-
nerable to death because of their immature organ systems [130]. ML models have been
developed for the prediction of neonatal mortality by exploring causative factors [32,38]
(Table 8). A recent review including term and preterm neonates between the gestational
ages of 22 and 40 weeks reported that neural networks, random forests, and logistic re-
gression were common models developed by the investigators [131]. Among the included
studies, only two studies finished external validation, five studies published calibration
plots, five studies reported sensitivity and specificity of their models that ranged from 63
to 80% and 78 to 98% respectively, and eight reported accuracy that ranged from 58.3 to
97.0% [131]. Despite having 17 features, the best model overall was linear regression analy-
sis [131]. Recent studies exploring the application of AI models in severely low birthweight
and preterm neonatal populations reported an accuracy of 68.9–93.3% [34,35]. Among the
several limitations of these studies was the lack of inclusion of vital parameters to depict
dynamic changes, while gestational age, birth weight, and Apgar scores were the most
significant variables in the models [36,37]. These limitations suggest that further implemen-
tation, calibration, and external validation of AI healthcare applications is warranted in
future studies.
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Table 8. Examples of the current evidence of artificial intelligence application in neonatal mortality.

Aim References Artificial Intelligence Model Data-Set Analyzed Outcome

Prediction of mortality Podda et al. [38]
ML methods including ANN,
using logistic regression
models

Twelve easily collected
perinatal variables

ANN had a slightly better discrimination
than logistic regression. Using a cutoff of
death probability of 0.5, logistic regression
misclassified 1.2 percent more than ANN

Ambalavanan et al. [32] Logistic regression and neural
network models

Twenty-eight routinely
collected variables
were selected and
multiple scenarios
were created

The prediction was best with scenario C
(AUROC: 0.85 for regression; 0.84 for neural
networks), compared with scenarios A and B

Hsu et al. [35]

ML of RF, bagged
classification, and regression
tree model with AUROC
compared with the
conventional neonatal illness
severity scoring systems

Clinical and laboratory
data

RF model showed the highest AUROC
(0.939) for the prediction of neonates with
respiratory failure, and the bagged
classification and regression tree model
demonstrated the next best results (0.915).
The AUCs of both models were significantly
better than the traditional severity
scoring systems

Do et al. [34] ML methodsincluding ANN,
RF, and SVM

Neonatal and maternal
factors

The model performances of AUROC equaled
Logistic regression 0.841, ANN 0.845, and RF
0.826. The exception was SVM 0.631

Moreira et al. [36] Model performance was
assessed via AUROC

Accessible clinical
variables, gathered in
the first hour following
delivery

The model consisted of three variables: birth
weight, Apgar score at 5 min of age, and
gestational age. This model had an AUROC
of 76.9%, while birth weight and gestational
age had an AUROC of 73.1% and 71.3%

Nascimento et al. [37]
A linguistic fuzzy model with
minimum of Mamdani
inference method

Neonatal birth weight
and gestational age at
delivery

The results were compared with experts’
opinions and the Fuzzy model was able to
capture the expert knowledge with a strong
correlation (r = 0.96)

ML, machine learning; ANN, artificial neural networks; AUROC, area under the receiver operating characteristic
curve; RF, random forest; SVM, support vector machine.

4. Challenges, Limitations, and Future Perspectives of Artificial Intelligence in
Neonatology

AI has been currently established as a useful component in several parts of neonatal
care, to help physicians to provide improved, more effective, and safer care (Table 9). How-
ever, specific issues need to be addressed before the wide application of AI models. At first,
healthcare providers need to improve their digital literacy, so that they can comprehend
the fundamental principles and limitations of AI. That would help healthcare providers
evaluate recently created AI tools and focus on their appropriate and safe application in
clinical settings. Also, to develop and implement AI tools, cross-disciplinary, worldwide
collaborations involving data scientists, computer scientists, healthcare providers, attor-
neys, and legislators are required. Additional drawbacks of AI include the lack of larger
datasets to train the models, the heterogeneity of the data, generalizability problems, the
lack of evidence-based guidelines for some diseases affecting neonates, and the cost. Ap-
plying AI to newborn care also involves addressing critical challenges such as the model’s
interpretability, the necessity of external validation to improve generalizability, and the
necessity of appropriate evaluation of performance (Table 2).

Finally, there are serious ethical issues to be considered. Important decisions in
neonatology are often accompanied by a complex and difficult ethical component, and
multidisciplinary methods are necessary for advancement [132]. Informed consent, bias,
safety, privacy of the patients, and allocation are among the ethical issues with AI applica-
tions in healthcare [133]. The use of AI in neonatology has become more challenging due
to the necessary transparency, viability limitations, life-sustaining therapies, and various
international restrictions [134]. To date, there hasn’t been any reporting on how an ethics
framework would be applied in neonatology yet.
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Table 9. Challenges of artificial intelligence in neonatology.

Challenges of AI Areas of Improvement

Quality of the dataset
AI tools require high-quality data to be trained. Studies should address limitation including small sample
sizes, improper management of missing information, and heterogeneity evaluation in various
demographic subsets

Model performance evaluation
Model performance should be continually evaluated on the entire dataset. Apart from the AUROC,
additional performance metrics, such as the precision-recall curve, specificity/sensitivity, and calibration
metrics should be assessed

Clinical impact and external validation

External validation is crucial because, as in different dataset or in clinical practice, the tool’s performance
may degrade due to an over-modeling of the training data.Also, the effectiveness of AI should be
evaluated in terms of calibration and discrimination quality as well as patient outcomes and the
clinical workflow

Comprehending Bed-side models should enhance intelligence, interpretability, and transparency
Guidelines for critical evaluation, regulation,
and oversight

methodological, critical appraisal, medicolegal problems, and necessary monitoring is required to
guarantee the model’s safe and effective usage

Ethics

Informed consent, bias, patient privacy, and allocation are among the ethical issues with health AI, and
negotiating their solutions can be challenging. Important decisions in neonatology are often accompanied
by a complex and difficult ethical component, and multidisciplinary methods are necessary
for advancement

AI, artificial intelligence; AUROC, area under the receiver operating characteristic curve.

5. Conclusions

AI is becoming more and more important in healthcare services following our con-
temporary culture that moves toward automated decision support systems. The main
advantage of using AI in healthcare is its ability to evaluate large volumes of medical data
from multidisciplinary studies. This type of data is too complex for medical professionals to
study quickly enough to find the diagnosis and determine a treatment plan. When trained
with the right data, AI models function like human neurons and can quickly and accurately
solve problems. Finding the appropriate treatment strategy requires accuracy and time,
especially in intensive care units. When integrating AI models into NICU clinical practices
including treatment and transport, trust is a crucial component. AI-based solutions can be
used in NICUs mainly to confirm the current treatment plans rather than implement their
recommendations. The current evidence regarding the application of AI in neonatology is
encouraging, however, further research is warranted including retraining clinical trials and
validating the outcomes to make AI algorithms more useful in the future.

Author Contributions: Conceptualization, D.R. and V.G.; methodology, D.R.; investigation, D.R.;
resources, D.R.; data curation, D.R.; writing—original draft preparation, D.R.; writing—review
and editing, M.B., K.K. and V.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Helm, J.M.; Swiergosz, A.M.; Haeberle, H.S.; Karnuta, J.M.; Schaffer, J.L.; Krebs, V.E.; Spitzer, A.I.; Ramkumar, P.N. Ma-

chine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions. Curr. Rev. Musculoskelet Med.
2020, 13, 69–76. [CrossRef]

2. Price, W.N., 2nd; Gerke, S.; Cohen, I.G. Potential Liability for Physicians Using Artificial Intelligence. JAMA 2019, 322, 1765–1766.
[CrossRef]

3. Sujith, A.V.L.N.; Sajja, G.S.; Mahalakshmi, V.; Nuhmani, S.; Prasanalakshmi, B. Systematic review of smart health monitoring
using deep learning and Artificial intelligence. Neurosci. Inform. 2022, 2, 100028. [CrossRef]

4. Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to
deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [CrossRef] [PubMed]

5. Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions.
SN Comput. Sci. 2021, 2, 420. [CrossRef] [PubMed]

https://doi.org/10.1007/s12178-020-09600-8
https://doi.org/10.1001/jama.2019.15064
https://doi.org/10.1016/j.neuri.2021.100028
https://doi.org/10.1038/s41591-018-0316-z
https://www.ncbi.nlm.nih.gov/pubmed/30617335
https://doi.org/10.1007/s42979-021-00815-1
https://www.ncbi.nlm.nih.gov/pubmed/34426802


BioMedInformatics 2024, 4 1243

6. Rubinger, L.; Gazendam, A.; Ekhtiari, S.; Bhandari, M. Machine learning and artificial intelligence in research and healthcare.
Injury 2023, 54, S69–S73. [CrossRef]

7. Meskó, B.; Görög, M. A short guide for medical professionals in the era of artificial intelligence. NPJ Digit. Med. 2020, 3, 126.
[CrossRef]

8. Liu, A.; Hahn, J.S.; Heldt, G.P.; Coen, R.W. Detection of neonatal seizures through computerized EEG analysis. Electroencephalogr.
Clin. Neurophysiol. 1992, 82, 30–37. [CrossRef]

9. Gotman, J.; Flanagan, D.; Zhang, J.; Rosenblatt, B. Automatic seizure detection in the newborn: Methods and initial evaluation.
Electroencephalogr. Clin. Neurophysiol. 1997, 103, 356–362. [CrossRef]

10. Ahmed, W.; Veluthandath, A.V.; Rowe, D.J.; Madsen, J.; Clark, H.W.; Postle, A.D.; Wilkinson, J.S.; Murugan, G.S. Prediction of
Neonatal Respiratory Distress Biomarker Concentration by Application of Machine Learning to Mid-Infrared Spectra. Sensors
2022, 22, 1744. [CrossRef] [PubMed]

11. Raimondi, F.; Migliaro, F.; Verdoliva, L.; Gragnaniello, D.; Poggi, G.; Kosova, R.; Sansone, C.; Vallone, G.; Capasso, L. Visual
assessment versus computer-assisted gray scale analysis in the ultrasound evaluation of neonatal respiratory status. PLoS ONE
2018, 13, e0202397. [CrossRef] [PubMed]

12. Dai, D.; Chen, H.; Dong, X.; Chen, J.; Mei, M.; Lu, Y.; Yang, L.; Wu, B.; Cao, Y.; Wang, J.; et al. Bronchopulmonary Dysplasia
Predicted by Developing a Machine Learning Model of Genetic and Clinical Information. Front. Genet. 2021, 12, 689071. [CrossRef]
[PubMed]

13. Laughon, M.M.; Langer, J.C.; Bose, C.L.; Smith, P.B.; Ambalavanan, N.; Kennedy, K.A.; Stoll, B.J.; Buchter, S.; Laptook, A.R.;
Ehrenkranz, R.A.; et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am. J. Respir.
Crit. Care Med. 2011, 183, 1715–1722. [CrossRef] [PubMed]

14. Leigh, R.M.; Pham, A.; Rao, S.S.; Vora, F.M.; Hou, G.; Kent, C.; Rodriguez, A.; Narang, A.; Tan, J.B.C.; Chou, F.S. Machine learning
for prediction of bronchopulmonary dysplasia-free survival among very preterm infants. BMC Pediatr. 2022, 22, 542. [CrossRef]

15. Patel, M.; Sandhu, J.; Chou, F.S. Developing a machine learning-based tool to extend the usability of the NICHD BPD Outcome
Estimator to the Asian population. PLoS ONE 2022, 17, e0272709. [CrossRef] [PubMed]

16. Verder, H.; Heiring, C.; Ramanathan, R.; Scoutaris, N.; Verder, P.; Jessen, T.E.; Hoskuldsson, A.; Bender, L.; Dahl, M.; Eschen, C.;
et al. Bronchopulmonary dysplasia predicted at birth by artificial intelligence. Acta Paediatr. 2021, 110, 503–509. [CrossRef]

17. Xing, W.; He, W.; Li, X.; Chen, J.; Cao, Y.; Zhou, W.; Shen, Q.; Zhang, X.; Ta, D. Early severity prediction of BPD for premature
infants from chest X-ray images using deep learning: A study at the 28th day of oxygen inhalation. Comput. Methods Programs
Biomed. 2022, 221, 106869. [CrossRef]

18. Gomez-Quintana, S.; Schwarz, C.E.; Shelevytsky, I.; Shelevytska, V.; Semenova, O.; Factor, A.; Popovici, E.; Temko, A. A
Framework for AI-Assisted Detection of Patent Ductus Arteriosus from Neonatal Phonocardiogram. Healthcare 2021, 9, 169.
[CrossRef]

19. Na, J.Y.; Kim, D.; Kwon, A.M.; Jeon, J.Y.; Kim, H.; Kim, C.R.; Lee, H.J.; Lee, J.; Park, H.K. Artificial intelligence model comparison
for risk factor analysis of patent ductus arteriosus in nationwide very low birth weight infants cohort. Sci. Rep. 2021, 11, 22353.
[CrossRef]

20. Adam, J.; Rupprecht, S.; Kunstler, E.C.S.; Hoyer, D. Heart rate variability as a marker and predictor of inflammation, nosocomial
infection, and sepsis—A systematic review. Auton. Neurosci. 2023, 249, 103116. [CrossRef]

21. Cabrera-Quiros, L.; Kommers, D.; Wolvers, M.K.; Oosterwijk, L.; Arents, N.; van der Sluijs-Bens, J.; Cottaar, E.J.E.; Andriessen, P.;
van Pul, C. Prediction of Late-Onset Sepsis in Preterm Infants Using Monitoring Signals and Machine Learning. Crit. Care Explor.
2021, 3, e0302. [CrossRef] [PubMed]

22. Ataer-Cansizoglu, E.; Bolon-Canedo, V.; Campbell, J.P.; Bozkurt, A.; Erdogmus, D.; Kalpathy-Cramer, J.; Patel, S.; Jonas, K.; Chan,
R.V.; Ostmo, S.; et al. Computer-Based Image Analysis for Plus Disease Diagnosis in Retinopathy of Prematurity: Performance
of the “i-ROP” System and Image Features Associated With Expert Diagnosis. Transl. Vis. Sci. Technol. 2015, 4, 5. [CrossRef]
[PubMed]

23. Barrero-Castillero, A.; Corwin, B.K.; VanderVeen, D.K.; Wang, J.C. Workforce Shortage for Retinopathy of Prematurity Care and
Emerging Role of Telehealth and Artificial Intelligence. Pediatr. Clin. N. Am. 2020, 67, 725–733. [CrossRef] [PubMed]

24. Biten, H.; Redd, T.K.; Moleta, C.; Campbell, J.P.; Ostmo, S.; Jonas, K.; Chan, R.V.P.; Chiang, M.F. Diagnostic Accuracy of
Ophthalmoscopy vs. Telemedicine in Examinations for Retinopathy of Prematurity. JAMA Ophthalmol. 2018, 136, 498–504.
[CrossRef]

25. Brown, J.M.; Campbell, J.P.; Beers, A.; Chang, K.; Ostmo, S.; Chan, R.V.P.; Dy, J.; Erdogmus, D.; Ioannidis, S.; Kalpathy-Cramer,
J.; et al. Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks.
JAMA Ophthalmol. 2018, 136, 803–810. [CrossRef] [PubMed]

26. Campbell, J.P.; Singh, P.; Redd, T.K.; Brown, J.M.; Shah, P.K.; Subramanian, P.; Rajan, R.; Valikodath, N.; Cole, E.; Ostmo, S.; et al.
Applications of Artificial Intelligence for Retinopathy of Prematurity Screening. Pediatrics 2021, 147, e2020016618. [CrossRef]
[PubMed]

27. Chiang, M.F.; Melia, M.; Buffenn, A.N.; Lambert, S.R.; Recchia, F.M.; Simpson, J.L.; Yang, M.B. Detection of clinically significant
retinopathy of prematurity using wide-angle digital retinal photography: A report by the American Academy of Ophthalmology.
Ophthalmology 2012, 119, 1272–1280. [CrossRef] [PubMed]

https://doi.org/10.1016/j.injury.2022.01.046
https://doi.org/10.1038/s41746-020-00333-z
https://doi.org/10.1016/0013-4694(92)90179-l
https://doi.org/10.1016/s0013-4694(97)00003-9
https://doi.org/10.3390/s22051744
https://www.ncbi.nlm.nih.gov/pubmed/35270894
https://doi.org/10.1371/journal.pone.0202397
https://www.ncbi.nlm.nih.gov/pubmed/30335753
https://doi.org/10.3389/fgene.2021.689071
https://www.ncbi.nlm.nih.gov/pubmed/34276789
https://doi.org/10.1164/rccm.201101-0055OC
https://www.ncbi.nlm.nih.gov/pubmed/21471086
https://doi.org/10.1186/s12887-022-03602-w
https://doi.org/10.1371/journal.pone.0272709
https://www.ncbi.nlm.nih.gov/pubmed/36112600
https://doi.org/10.1111/apa.15438
https://doi.org/10.1016/j.cmpb.2022.106869
https://doi.org/10.3390/healthcare9020169
https://doi.org/10.1038/s41598-021-01640-5
https://doi.org/10.1016/j.autneu.2023.103116
https://doi.org/10.1097/CCE.0000000000000302
https://www.ncbi.nlm.nih.gov/pubmed/33532727
https://doi.org/10.1167/tvst.4.6.5
https://www.ncbi.nlm.nih.gov/pubmed/26644965
https://doi.org/10.1016/j.pcl.2020.04.012
https://www.ncbi.nlm.nih.gov/pubmed/32650869
https://doi.org/10.1001/jamaophthalmol.2018.0649
https://doi.org/10.1001/jamaophthalmol.2018.1934
https://www.ncbi.nlm.nih.gov/pubmed/29801159
https://doi.org/10.1542/peds.2020-016618
https://www.ncbi.nlm.nih.gov/pubmed/33637645
https://doi.org/10.1016/j.ophtha.2012.01.002
https://www.ncbi.nlm.nih.gov/pubmed/22541632


BioMedInformatics 2024, 4 1244

28. Redd, T.K.; Campbell, J.P.; Brown, J.M.; Kim, S.J.; Ostmo, S.; Chan, R.V.P.; Dy, J.; Erdogmus, D.; Ioannidis, S.; Kalpathy-Cramer, J.;
et al. Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity. Br. J. Ophthalmol.
2018, 103, 580–584. [CrossRef] [PubMed]

29. Taylor, S.; Brown, J.M.; Gupta, K.; Campbell, J.P.; Ostmo, S.; Chan, R.V.P.; Dy, J.; Erdogmus, D.; Ioannidis, S.; Kim, S.J.; et al.
Monitoring Disease Progression With a Quantitative Severity Scale for Retinopathy of Prematurity Using Deep Learning.
JAMA Ophthalmol. 2019, 137, 1022–1028. [CrossRef]

30. Wu, Q.; Hu, Y.; Mo, Z.; Wu, R.; Zhang, X.; Yang, Y.; Liu, B.; Xiao, Y.; Zeng, X.; Lin, Z.; et al. Development and Validation of a
Deep Learning Model to Predict the Occurrence and Severity of Retinopathy of Prematurity. JAMA Netw. Open 2022, 5, e2217447.
[CrossRef]

31. Ali, R.; Li, H.; Dillman, J.R.; Altaye, M.; Wang, H.; Parikh, N.A.; He, L. A self-training deep neural network for early prediction of
cognitive deficits in very preterm infants using brain functional connectome data. Pediatr. Radiol. 2022, 52, 2227–2240. [CrossRef]
[PubMed]

32. Ambalavanan, N.; Carlo, W.A.; Bobashev, G.; Mathias, E.; Liu, B.; Poole, K.; Fanaroff, A.A.; Stoll, B.J.; Ehrenkranz, R.; Wright, L.L.;
et al. Prediction of death for extremely low birth weight neonates. Pediatrics 2005, 116, 1367–1373. [CrossRef]

33. Balta, D.; Kuo, H.; Wang, J.; Porco, I.G.; Morozova, O.; Schladen, M.M.; Cereatti, A.; Lum, P.S.; Della Croce, U. Characterization of
Infants’ General Movements Using a Commercial RGB-Depth Sensor and a Deep Neural Network Tracking Processing Tool: An
Exploratory Study. Sensors 2022, 22, 7426. [CrossRef]

34. Do, H.J.; Moon, K.M.; Jin, H.S. Machine Learning Models for Predicting Mortality in 7472 Very Low Birth Weight Infants Using
Data from a Nationwide Neonatal Network. Diagnostics 2022, 12, 625. [CrossRef] [PubMed]

35. Hsu, J.F.; Yang, C.; Lin, C.Y.; Chu, S.M.; Huang, H.R.; Chiang, M.C.; Wang, H.C.; Liao, W.C.; Fu, R.H.; Tsai, M.H. Ma-
chine Learning Algorithms to Predict Mortality of Neonates on Mechanical Intubation for Respiratory Failure. Biomedicines
2021, 9, 1377. [CrossRef] [PubMed]

36. Moreira, A.; Benvenuto, D.; Fox-Good, C.; Alayli, Y.; Evans, M.; Jonsson, B.; Hakansson, S.; Harper, N.; Kim, J.; Norman, M.;
et al. Development and Validation of a Mortality Prediction Model in Extremely Low Gestational Age Neonates. Neonatology
2022, 119, 418–427. [CrossRef] [PubMed]

37. Nascimento, L.F.; Ortega, N.R. Fuzzy linguistic model for evaluating the risk of neonatal death. Rev. Saude Publica
2002, 36, 686–692. [CrossRef] [PubMed]

38. Podda, M.; Bacciu, D.; Micheli, A.; Bellu, R.; Placidi, G.; Gagliardi, L. A machine learning approach to estimating preterm infants
survival: Development of the Preterm Infants Survival Assessment (PISA) predictor. Sci. Rep. 2018, 8, 13743. [CrossRef]

39. Schadl, K.; Vassar, R.; Cahill-Rowley, K.; Yeom, K.W.; Stevenson, D.K.; Rose, J. Prediction of cognitive and motor development in
preterm children using exhaustive feature selection and cross-validation of near-term white matter microstructure. Neuroimage
Clin. 2018, 17, 667–679. [CrossRef]

40. Smyser, C.D.; Dosenbach, N.U.; Smyser, T.A.; Snyder, A.Z.; Rogers, C.E.; Inder, T.E.; Schlaggar, B.L.; Neil, J.J. Prediction of brain
maturity in infants using machine-learning algorithms. Neuroimage 2016, 136, 1–9. [CrossRef]

41. Sripada, K.; Bjuland, K.J.; Solsnes, A.E.; Haberg, A.K.; Grunewaldt, K.H.; Lohaugen, G.C.; Rimol, L.M.; Skranes, J. Trajectories of
brain development in school-age children born preterm with very low birth weight. Sci. Rep. 2018, 8, 15553. [CrossRef]

42. Valavani, E.; Blesa, M.; Galdi, P.; Sullivan, G.; Dean, B.; Cruickshank, H.; Sitko-Rudnicka, M.; Bastin, M.E.; Chin, R.F.M.;
MacIntyre, D.J.; et al. Language function following preterm birth: Prediction using machine learning. Pediatr. Res.
2022, 92, 480–489. [CrossRef] [PubMed]

43. Vassar, R.; Schadl, K.; Cahill-Rowley, K.; Yeom, K.; Stevenson, D.; Rose, J. Neonatal Brain Microstructure and Machine-Learning-
Based Prediction of Early Language Development in Children Born Very Preterm. Pediatr. Neurol. 2020, 108, 86–92. [CrossRef]
[PubMed]

44. Wee, C.Y.; Tuan, T.A.; Broekman, B.F.; Ong, M.Y.; Chong, Y.S.; Kwek, K.; Shek, L.P.; Saw, S.M.; Gluckman, P.D.; Fortier, M.V.; et al.
Neonatal neural networks predict children behavioral profiles later in life. Hum. Brain. Mapp. 2017, 38, 1362–1373. [CrossRef]

45. Zimmer, V.A.; Glocker, B.; Hahner, N.; Eixarch, E.; Sanroma, G.; Gratacos, E.; Rueckert, D.; Gonzalez Ballester, M.A.; Piella, G.
Learning and combining image neighborhoods using random forests for neonatal brain disease classification. Med. Image Anal.
2017, 42, 189–199. [CrossRef]

46. Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in health and medicine. Nat. Med. 2022, 28, 31–38. [CrossRef] [PubMed]
47. Adegboro, C.O.; Choudhury, A.; Asan, O.; Kelly, M.M. Artificial Intelligence to Improve Health Outcomes in the NICU and PICU:

A Systematic Review. Hosp. Pediatr. 2022, 12, 93–110. [CrossRef]
48. Choudhury, A.; Asan, O. Role of Artificial Intelligence in Patient Safety Outcomes: Systematic Literature Review. JMIR Med. Inf.

2020, 8, e18599. [CrossRef]
49. Choudhury, A.; Renjilian, E.; Asan, O. Use of machine learning in geriatric clinical care for chronic diseases: A systematic

literature review. JAMIA Open 2020, 3, 459–471. [CrossRef]
50. Olive, M.K.; Owens, G.E. Current monitoring and innovative predictive modeling to improve care in the pediatric cardiac

intensive care unit. Transl. Pediatr. 2018, 7, 120–128. [CrossRef]
51. Piccialli, F.; Somma, V.D.; Giampaolo, F.; Cuomo, S.; Fortino, G. A survey on deep learning in medicine: Why, how and when?

Inf. Fusion 2021, 66, 111–137. [CrossRef]

https://doi.org/10.1136/bjophthalmol-2018-313156
https://www.ncbi.nlm.nih.gov/pubmed/30470715
https://doi.org/10.1001/jamaophthalmol.2019.2433
https://doi.org/10.1001/jamanetworkopen.2022.17447
https://doi.org/10.1007/s00247-022-05510-8
https://www.ncbi.nlm.nih.gov/pubmed/36131030
https://doi.org/10.1542/peds.2004-2099
https://doi.org/10.3390/s22197426
https://doi.org/10.3390/diagnostics12030625
https://www.ncbi.nlm.nih.gov/pubmed/35328178
https://doi.org/10.3390/biomedicines9101377
https://www.ncbi.nlm.nih.gov/pubmed/34680497
https://doi.org/10.1159/000524729
https://www.ncbi.nlm.nih.gov/pubmed/35598593
https://doi.org/10.1590/s0034-89102002000700005
https://www.ncbi.nlm.nih.gov/pubmed/12488934
https://doi.org/10.1038/s41598-018-31920-6
https://doi.org/10.1016/j.nicl.2017.11.023
https://doi.org/10.1016/j.neuroimage.2016.05.029
https://doi.org/10.1038/s41598-018-33530-8
https://doi.org/10.1038/s41390-021-01779-x
https://www.ncbi.nlm.nih.gov/pubmed/34635792
https://doi.org/10.1016/j.pediatrneurol.2020.02.007
https://www.ncbi.nlm.nih.gov/pubmed/32279900
https://doi.org/10.1002/hbm.23459
https://doi.org/10.1016/j.media.2017.08.004
https://doi.org/10.1038/s41591-021-01614-0
https://www.ncbi.nlm.nih.gov/pubmed/35058619
https://doi.org/10.1542/hpeds.2021-006094
https://doi.org/10.2196/18599
https://doi.org/10.1093/jamiaopen/ooaa034
https://doi.org/10.21037/tp.2018.04.03
https://doi.org/10.1016/j.inffus.2020.09.006


BioMedInformatics 2024, 4 1245

52. Burt, J.R.; Torosdagli, N.; Khosravan, N.; RaviPrakash, H.; Mortazi, A.; Tissavirasingham, F.; Hussein, S.; Bagci, U. Deep learning
beyond cats and dogs: Recent advances in diagnosing breast cancer with deep neural networks. Br. J. Radiol. 2018, 91, 20170545.
[CrossRef] [PubMed]

53. Erickson, B.J.; Korfiatis, P.; Kline, T.L.; Akkus, Z.; Philbrick, K.; Weston, A.D. Deep Learning in Radiology: Does One Size Fit All?
J. Am. Coll. Radiol. 2018, 15, 521–526. [CrossRef] [PubMed]

54. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie,
M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data
2021, 8, 53. [CrossRef] [PubMed]

55. Ghosh, A.; Sufian, A.; Sultana, F.; Chakrabarti, A.; De, D. Fundamental Concepts of Convolutional Neural Network. In Recent
Trends and Advances in Artificial Intelligence and Internet of Things; Intelligent Systems Reference Library; Springer International
Publishing: Cham, Switzerland, 2020; pp. 519–567.

56. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
57. Ker, J.; Wang, L.; Rao, J.; Lim, T. Deep Learning Applications in Medical Image Analysis. IEEE Access 2018, 6, 9375–9389.

[CrossRef]
58. Kreimeyer, K.; Foster, M.; Pandey, A.; Arya, N.; Halford, G.; Jones, S.F.; Forshee, R.; Walderhaug, M.; Botsis, T. Natural language

processing systems for capturing and standardizing unstructured clinical information: A systematic review. J. Biomed. Inf.
2017, 73, 14–29. [CrossRef]

59. Nadkarni, P.M.; Ohno-Machado, L.; Chapman, W.W. Natural language processing: An introduction. J. Am. Med. Inf. Assoc.
2011, 18, 544–551. [CrossRef] [PubMed]

60. Brinkmann, B.H.; Bower, M.R.; Stengel, K.A.; Worrell, G.A.; Stead, M. Large-scale electrophysiology: Acquisition, compression,
encryption, and storage of big data. J. Neurosci. Methods 2009, 180, 185–192. [CrossRef] [PubMed]

61. Sheth, R.D.; Hobbs, G.R.; Mullett, M. Neonatal seizures: Incidence, onset, and etiology by gestational age. J. Perinatol.
1999, 19, 40–43. [CrossRef]

62. Williams, R.P.; Banwell, B.; Berg, R.A.; Dlugos, D.J.; Donnelly, M.; Ichord, R.; Kessler, S.K.; Lavelle, J.; Massey, S.L.; Hewlett, J.;
et al. Impact of an ICU EEG monitoring pathway on timeliness of therapeutic intervention and electrographic seizure termination.
Epilepsia 2016, 57, 786–795. [CrossRef]

63. Payne, E.T.; Zhao, X.Y.; Frndova, H.; McBain, K.; Sharma, R.; Hutchison, J.S.; Hahn, C.D. Seizure burden is independently
associated with short term outcome in critically ill children. Brain 2014, 137, 1429–1438. [CrossRef]

64. Chapman, K.E.; Specchio, N.; Shinnar, S.; Holmes, G.L. Seizing control of epileptic activity can improve outcome. Epilepsia
2015, 56, 1482–1485. [CrossRef]

65. Murray, D.M.; Boylan, G.B.; Ali, I.; Ryan, C.A.; Murphy, B.P.; Connolly, S. Defining the gap between electrographic seizure burden,
clinical expression and staff recognition of neonatal seizures. Arch. Dis. Child Fetal. Neonatal. Ed. 2008, 93, F187–F191. [CrossRef]
[PubMed]

66. Shellhaas, R.A.; Clancy, R.R. Characterization of neonatal seizures by conventional EEG and single-channel EEG. Clin. Neurophysiol.
2007, 118, 2156–2161. [CrossRef] [PubMed]

67. Scher, M.S.; Alvin, J.; Gaus, L.; Minnigh, B.; Painter, M.J. Uncoupling of EEG-clinical neonatal seizures after antiepileptic drug use.
Pediatr. Neurol. 2003, 28, 277–280. [CrossRef]

68. McCoy, B.; Hahn, C.D. Continuous EEG monitoring in the neonatal intensive care unit. J. Clin. Neurophysiol. 2013, 30, 106–114.
[CrossRef] [PubMed]

69. Shellhaas, R.A. Continuous long-term electroencephalography: The gold standard for neonatal seizure diagnosis. Semin. Fetal.
Neonatal. Med. 2015, 20, 149–153. [CrossRef]

70. Shellhaas, R.A.; Chang, T.; Tsuchida, T.; Scher, M.S.; Riviello, J.J.; Abend, N.S.; Nguyen, S.; Wusthoff, C.J.; Clancy, R.R. The
American Clinical Neurophysiology Society’s Guideline on Continuous Electroencephalography Monitoring in Neonates. J. Clin.
Neurophysiol. 2011, 28, 611–617. [CrossRef]

71. de Vries, L.S.; Toet, M.C. Amplitude integrated electroencephalography in the full-term newborn. Clin. Perinatol.
2006, 33, 619–632. [CrossRef]

72. de Vries, L.S.; Hellstrom-Westas, L. Role of cerebral function monitoring in the newborn. Arch. Dis. Child. Fetal. Neonatal. Ed.
2005, 90, F201–F207. [CrossRef] [PubMed]

73. Rakshasbhuvankar, A.; Rao, S.; Palumbo, L.; Ghosh, S.; Nagarajan, L. Amplitude Integrated Electroencephalography Compared
With Conventional Video EEG for Neonatal Seizure Detection: A Diagnostic Accuracy Study. J. Child. Neurol. 2017, 32, 815–822.
[CrossRef]

74. Appendino, J.P.; McNamara, P.J.; Keyzers, M.; Stephens, D.; Hahn, C.D. The impact of amplitude-integrated electroencephalogra-
phy on NICU practice. Can. J. Neurol. Sci. 2012, 39, 355–360. [CrossRef] [PubMed]

75. Temko, A.; Lightbody, G. Detecting Neonatal Seizures With Computer Algorithms. J. Clin. Neurophysiol. 2016, 33, 394–402.
[CrossRef]

76. O’Shea, A.; Lightbody, G.; Boylan, G.; Temko, A. Neonatal seizure detection from raw multi-channel EEG using a fully
convolutional architecture. Neural. Netw. 2020, 123, 12–25. [CrossRef]

77. O’Shea, A.; Ahmed, R.; Lightbody, G.; Pavlidis, E.; Lloyd, R.; Pisani, F.; Marnane, W.; Mathieson, S.; Boylan, G.; Temko, A. Deep
Learning for EEG Seizure Detection in Preterm Infants. Int. J. Neural. Syst. 2021, 31, 2150008. [CrossRef] [PubMed]

https://doi.org/10.1259/bjr.20170545
https://www.ncbi.nlm.nih.gov/pubmed/29565644
https://doi.org/10.1016/j.jacr.2017.12.027
https://www.ncbi.nlm.nih.gov/pubmed/29396120
https://doi.org/10.1186/s40537-021-00444-8
https://www.ncbi.nlm.nih.gov/pubmed/33816053
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1109/access.2017.2788044
https://doi.org/10.1016/j.jbi.2017.07.012
https://doi.org/10.1136/amiajnl-2011-000464
https://www.ncbi.nlm.nih.gov/pubmed/21846786
https://doi.org/10.1016/j.jneumeth.2009.03.022
https://www.ncbi.nlm.nih.gov/pubmed/19427545
https://doi.org/10.1038/sj.jp.7200107
https://doi.org/10.1111/epi.13354
https://doi.org/10.1093/brain/awu042
https://doi.org/10.1111/epi.13109
https://doi.org/10.1136/adc.2005.086314
https://www.ncbi.nlm.nih.gov/pubmed/17626147
https://doi.org/10.1016/j.clinph.2007.06.061
https://www.ncbi.nlm.nih.gov/pubmed/17765607
https://doi.org/10.1016/s0887-8994(02)00621-5
https://doi.org/10.1097/WNP.0b013e3182872919
https://www.ncbi.nlm.nih.gov/pubmed/23545760
https://doi.org/10.1016/j.siny.2015.01.005
https://doi.org/10.1097/WNP.0b013e31823e96d7
https://doi.org/10.1016/j.clp.2006.06.002
https://doi.org/10.1136/adc.2004.062745
https://www.ncbi.nlm.nih.gov/pubmed/15846008
https://doi.org/10.1177/0883073817707411
https://doi.org/10.1017/s0317167100013512
https://www.ncbi.nlm.nih.gov/pubmed/22547518
https://doi.org/10.1097/WNP.0000000000000295
https://doi.org/10.1016/j.neunet.2019.11.023
https://doi.org/10.1142/S0129065721500088
https://www.ncbi.nlm.nih.gov/pubmed/33522460


BioMedInformatics 2024, 4 1246

78. Pavel, A.M.; Rennie, J.M.; de Vries, L.S.; Blennow, M.; Foran, A.; Shah, D.K.; Pressler, R.M.; Kapellou, O.; Dempsey, E.M.;
Mathieson, S.R.; et al. A machine-learning algorithm for neonatal seizure recognition: A multicentre, randomised, controlled trial.
Lancet Child Adolesc. Health 2020, 4, 740–749. [CrossRef]

79. Stevenson, N.J.; Korotchikova, I.; Temko, A.; Lightbody, G.; Marnane, W.P.; Boylan, G.B. An automated system for grading EEG
abnormality in term neonates with hypoxic-ischaemic encephalopathy. Ann. Biomed. Eng. 2013, 41, 775–785. [CrossRef] [PubMed]

80. Mathieson, S.R.; Stevenson, N.J.; Low, E.; Marnane, W.P.; Rennie, J.M.; Temko, A.; Lightbody, G.; Boylan, G.B. Validation of an
automated seizure detection algorithm for term neonates. Clin. Neurophysiol. 2016, 127, 156–168. [CrossRef]

81. Ansari, A.H.; Pillay, K.; Dereymaeker, A.; Jansen, K.; Van Huffel, S.; Naulaers, G.; De Vos, M. A Deep Shared Multi-Scale
Inception Network Enables Accurate Neonatal Quiet Sleep Detection With Limited EEG Channels. IEEE J. Biomed. Health Inf.
2022, 26, 1023–1033. [CrossRef]

82. Raurale, S.A.; Boylan, G.B.; Mathieson, S.R.; Marnane, W.P.; Lightbody, G.; O’Toole, J.M. Grading hypoxic-ischemic en-
cephalopathy in neonatal EEG with convolutional neural networks and quadratic time-frequency distributions. J. Neural. Eng.
2021, 18, 046007. [CrossRef]

83. Moghadam, S.M.; Pinchefsky, E.; Tse, I.; Marchi, V.; Kohonen, J.; Kauppila, M.; Airaksinen, M.; Tapani, K.; Nevalainen, P.; Hahn,
C.; et al. Building an Open Source Classifier for the Neonatal EEG Background: A Systematic Feature-Based Approach From
Expert Scoring to Clinical Visualization. Front. Hum. Neurosci. 2021, 15, 675154. [CrossRef]

84. Matic, V.; Cherian, P.J.; Koolen, N.; Naulaers, G.; Swarte, R.M.; Govaert, P.; Van Huffel, S.; De Vos, M. Holistic approach for
automated background EEG assessment in asphyxiated full-term infants. J. Neural. Eng. 2014, 11, 066007. [CrossRef] [PubMed]

85. Pavel, A.M.; O’Toole, J.M.; Proietti, J.; Livingstone, V.; Mitra, S.; Marnane, W.P.; Finder, M.; Dempsey, E.M.; Murray, D.M.;
Boylan, G.B.; et al. Machine learning for the early prediction of infants with electrographic seizures in neonatal hypoxic-ischemic
encephalopathy. Epilepsia 2023, 64, 456–468. [CrossRef] [PubMed]

86. Serag, A.; Blesa, M.; Moore, E.J.; Pataky, R.; Sparrow, S.A.; Wilkinson, A.G.; Macnaught, G.; Semple, S.I.; Boardman, J.P. Accurate
Learning with Few Atlases (ALFA): An algorithm for MRI neonatal brain extraction and comparison with 11 publicly available
methods. Sci. Rep. 2016, 6, 23470. [CrossRef]

87. Blesa, M.; Galdi, P.; Cox, S.R.; Sullivan, G.; Stoye, D.Q.; Lamb, G.J.; Quigley, A.J.; Thrippleton, M.J.; Escudero, J.; Bastin, M.E.; et al.
Hierarchical Complexity of the Macro-Scale Neonatal Brain. Cereb. Cortex. 2021, 31, 2071–2084. [CrossRef]

88. De Vries, L.S.; Groenendaal, F.; van Haastert, I.C.; Eken, P.; Rademaker, K.J.; Meiners, L.C. Asymmetrical myelination of the
posterior limb of the internal capsule in infants with periventricular haemorrhagic infarction: An early predictor of hemiplegia.
Neuropediatrics 1999, 30, 314–319. [CrossRef]

89. Odding, E.; Roebroeck, M.E.; Stam, H.J. The epidemiology of cerebral palsy: Incidence, impairments and risk factors.
Disabil. Rehabil. 2006, 28, 183–191. [CrossRef] [PubMed]

90. Drougia, A.; Giapros, V.; Krallis, N.; Theocharis, P.; Nikaki, A.; Tzoufi, M.; Andronikou, S. Incidence and risk factors for cerebral
palsy in infants with perinatal problems: A 15-year review. Early Hum. Dev. 2007, 83, 541–547. [CrossRef]

91. Gruber, N.; Galijasevic, M.; Regodic, M.; Grams, A.E.; Siedentopf, C.; Steiger, R.; Hammerl, M.; Haltmeier, M.; Gizewski, E.R.;
Janjic, T. A deep learning pipeline for the automated segmentation of posterior limb of internal capsule in preterm neonates.
Artif. Intell. Med. 2022, 132, 102384. [CrossRef]

92. Dean, B.; Ginnell, L.; Boardman, J.P.; Fletcher-Watson, S. Social cognition following preterm birth: A systematic review. Neurosci.
Biobehav. Rev. 2021, 124, 151–167. [CrossRef] [PubMed]

93. Batalle, D.; Edwards, A.D.; O’Muircheartaigh, J. Annual Research Review: Not just a small adult brain: Understanding later
neurodevelopment through imaging the neonatal brain. J. Child Psychol. Psychiatry 2018, 59, 350–371. [CrossRef] [PubMed]

94. Ball, G.; Aljabar, P.; Nongena, P.; Kennea, N.; Gonzalez-Cinca, N.; Falconer, S.; Chew, A.T.M.; Harper, N.; Wurie, J.; Rutherford,
M.A.; et al. Multimodal image analysis of clinical influences on preterm brain development. Ann. Neurol. 2017, 82, 233–246.
[CrossRef]

95. Galdi, P.; Blesa, M.; Stoye, D.Q.; Sullivan, G.; Lamb, G.J.; Quigley, A.J.; Thrippleton, M.J.; Bastin, M.E.; Boardman, J.P. Neonatal
morphometric similarity mapping for predicting brain age and characterizing neuroanatomic variation associated with preterm
birth. Neuroimage Clin. 2020, 25, 102195. [CrossRef] [PubMed]

96. Makropoulos, A.; Gousias, I.S.; Ledig, C.; Aljabar, P.; Serag, A.; Hajnal, J.V.; Edwards, A.D.; Counsell, S.J.; Rueckert, D. Automatic
whole brain MRI segmentation of the developing neonatal brain. IEEE Trans. Med. Imaging 2014, 33, 1818–1831. [CrossRef]
[PubMed]

97. Ding, Y.; Acosta, R.; Enguix, V.; Suffren, S.; Ortmann, J.; Luck, D.; Dolz, J.; Lodygensky, G.A. Using Deep Convolutional Neural
Networks for Neonatal Brain Image Segmentation. Front. Neurosci. 2020, 14, 207. [CrossRef] [PubMed]

98. Shang, J.; Fisher, P.; Bauml, J.G.; Daamen, M.; Baumann, N.; Zimmer, C.; Bartmann, P.; Boecker, H.; Wolke, D.; Sorg, C.; et al.
A machine learning investigation of volumetric and functional MRI abnormalities in adults born preterm. Hum. Brain Mapp.
2019, 40, 4239–4252. [CrossRef] [PubMed]

99. Chiarelli, A.M.; Sestieri, C.; Navarra, R.; Wise, R.G.; Caulo, M. Distinct effects of prematurity on MRI metrics of brain functional
connectivity, activity, and structure: Univariate and multivariate analyses. Hum. Brain Mapp. 2021, 42, 3593–3607. [CrossRef]
[PubMed]

100. Ball, G.; Aljabar, P.; Arichi, T.; Tusor, N.; Cox, D.; Merchant, N.; Nongena, P.; Hajnal, J.V.; Edwards, A.D.; Counsell, S.J.
Machine-learning to characterise neonatal functional connectivity in the preterm brain. Neuroimage 2016, 124, 267–275. [CrossRef]

https://doi.org/10.1016/S2352-4642(20)30239-X
https://doi.org/10.1007/s10439-012-0710-5
https://www.ncbi.nlm.nih.gov/pubmed/23519533
https://doi.org/10.1016/j.clinph.2015.04.075
https://doi.org/10.1109/JBHI.2021.3101117
https://doi.org/10.1088/1741-2552/abe8ae
https://doi.org/10.3389/fnhum.2021.675154
https://doi.org/10.1088/1741-2560/11/6/066007
https://www.ncbi.nlm.nih.gov/pubmed/25358441
https://doi.org/10.1111/epi.17468
https://www.ncbi.nlm.nih.gov/pubmed/36398397
https://doi.org/10.1038/srep23470
https://doi.org/10.1093/cercor/bhaa345
https://doi.org/10.1055/s-2007-973511
https://doi.org/10.1080/09638280500158422
https://www.ncbi.nlm.nih.gov/pubmed/16467053
https://doi.org/10.1016/j.earlhumdev.2006.10.004
https://doi.org/10.1016/j.artmed.2022.102384
https://doi.org/10.1016/j.neubiorev.2021.01.006
https://www.ncbi.nlm.nih.gov/pubmed/33524414
https://doi.org/10.1111/jcpp.12838
https://www.ncbi.nlm.nih.gov/pubmed/29105061
https://doi.org/10.1002/ana.24995
https://doi.org/10.1016/j.nicl.2020.102195
https://www.ncbi.nlm.nih.gov/pubmed/32044713
https://doi.org/10.1109/TMI.2014.2322280
https://www.ncbi.nlm.nih.gov/pubmed/24816548
https://doi.org/10.3389/fnins.2020.00207
https://www.ncbi.nlm.nih.gov/pubmed/32273836
https://doi.org/10.1002/hbm.24698
https://www.ncbi.nlm.nih.gov/pubmed/31228329
https://doi.org/10.1002/hbm.25456
https://www.ncbi.nlm.nih.gov/pubmed/33955622
https://doi.org/10.1016/j.neuroimage.2015.08.055


BioMedInformatics 2024, 4 1247

101. Song, Z.; Awate, S.P.; Licht, D.J.; Gee, J.C. Clinical neonatal brain MRI segmentation using adaptive nonparametric data models
and intensity-based Markov priors. Med. Image Comput. Comput. Assist. Interv. 2007, 10, 883–890. [CrossRef]

102. Keunen, K.; Counsell, S.J.; Benders, M. The emergence of functional architecture during early brain development. Neuroimage
2017, 160, 2–14. [CrossRef]

103. Gao, W.; Lin, W.; Grewen, K.; Gilmore, J.H. Functional Connectivity of the Infant Human Brain: Plastic and Modifiable.
Neuroscientist 2017, 23, 169–184. [CrossRef]

104. Li, Y.; Zhang, X.; Nie, J.; Zhang, G.; Fang, R.; Xu, X.; Wu, Z.; Hu, D.; Wang, L.; Zhang, H.; et al. Brain Connectivity Based Graph
Convolutional Networks and Its Application to Infant Age Prediction. IEEE Trans. Med. Imaging 2022, 41, 2764–2776. [CrossRef]
[PubMed]

105. Krishnan, M.L.; Wang, Z.; Aljabar, P.; Ball, G.; Mirza, G.; Saxena, A.; Counsell, S.J.; Hajnal, J.V.; Montana, G.; Edwards,
A.D. Machine learning shows association between genetic variability in PPARG and cerebral connectivity in preterm infants.
Proc. Natl. Acad. Sci. USA 2017, 114, 13744–13749. [CrossRef] [PubMed]

106. Mueller, M.; Wagner, C.L.; Annibale, D.J.; Hulsey, T.C.; Knapp, R.G.; Almeida, J.S. Predicting extubation outcome in preterm
newborns: A comparison of neural networks with clinical expertise and statistical modeling. Pediatr. Res. 2004, 56, 11–18.
[CrossRef] [PubMed]

107. Precup, D.; Robles-Rubio, C.A.; Brown, K.A.; Kanbar, L.; Kaczmarek, J.; Chawla, S.; Sant’Anna, G.M.; Kearney, R.E. Prediction of
extubation readiness in extreme preterm infants based on measures of cardiorespiratory variability. Annu. Int. Conf. IEEE Eng.
Med. Biol. Soc. 2012, 2012, 5630–5633. [CrossRef]

108. Mikhno, A.; Ennett, C.M. Prediction of extubation failure for neonates with respiratory distress syndrome using the MIMIC-II
clinical database. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, San Diego, CA, USA, 28 August–1 September 2012. [CrossRef]

109. Eichenwald, E.C.; Committee on Fetus and Newborn; Watterberg, K.L.; Aucott, S.; Benitz, W.E.; Cummings, J.J.; Goldsmith, J.;
Poindexter, B.B.; Puopolo, K.; Stewart, D.L.; et al. Apnea of Prematurity. Pediatrics 2016, 137, e20153757. [CrossRef]

110. Amin, S.B.; Burnell, E. Monitoring apnea of prematurity: Validity of nursing documentation and bedside cardiorespiratory
monitor. Am. J. Perinatol. 2013, 30, 643–648. [CrossRef] [PubMed]

111. Varisco, G.; Peng, Z.; Kommers, D.; Zhan, Z.; Cottaar, W.; Andriessen, P.; Long, X.; van Pul, C. Central apnea detection in
premature infants using machine learning. Comput Methods Programs Biomed. 2022, 226, 107155. [CrossRef]

112. Son, J.; Kim, D.; Na, J.Y.; Jung, D.; Ahn, J.H.; Kim, T.H.; Park, H.K. Development of artificial neural networks for early prediction
of intestinal perforation in preterm infants. Sci. Rep. 2022, 12, 12112. [CrossRef]

113. Greenbury, S.F.; Ougham, K.; Wu, J.; Battersby, C.; Gale, C.; Modi, N.; Angelini, E.D. Identification of variation in nutritional
practice in neonatal units in England and association with clinical outcomes using agnostic machine learning. Sci. Rep.
2021, 11, 7178. [CrossRef]

114. Han, J.H.; Yoon, S.J.; Lee, H.S.; Park, G.; Lim, J.; Shin, J.E.; Eun, H.S.; Park, M.S.; Lee, S.M. Application of Machine Learning
Approaches to Predict Postnatal Growth Failure in Very Low Birth Weight Infants. Yonsei Med. J. 2022, 63, 640–647. [CrossRef]

115. Shane, A.L.; Sanchez, P.J.; Stoll, B.J. Neonatal sepsis. Lancet 2017, 390, 1770–1780. [CrossRef] [PubMed]
116. El-Khuffash, A.; Bussmann, N.; Breatnach, C.R.; Smith, A.; Tully, E.; Griffin, J.; McCallion, N.; Corcoran, J.D.; Fernandez, E.; Looi,

C.; et al. A Pilot Randomized Controlled Trial of Early Targeted Patent Ductus Arteriosus Treatment Using a Risk Based Severity
Score (The PDA RCT). J. Pediatr. 2021, 229, 127–133. [CrossRef] [PubMed]

117. Krowchuk, D.P.; Frieden, I.J.; Mancini, A.J.; Darrow, D.H.; Blei, F.; Greene, A.K.; Annam, A.; Baker, C.N.; Frommelt, P.C.; Hodak,
A.; et al. Clinical Practice Guideline for the Management of Infantile Hemangiomas. Pediatrics 2019, 143, e20183475. [CrossRef]
[PubMed]

118. Zhang, A.J.; Lindberg, N.; Chamlin, S.L.; Haggstrom, A.N.; Mancini, A.J.; Siegel, D.H.; Drolet, B.A. Development of an artificial
intelligence algorithm for the diagnosis of infantile hemangiomas. Pediatr. Dermatol. 2022, 39, 934–936. [CrossRef] [PubMed]

119. Drucker, A.M.; Wang, A.R.; Li, W.-Q.; Sevetson, E.; Block, J.K.; Qureshi, A.A. The Burden of Atopic Dermatitis: Summary of a
Report for the National Eczema Association. J. Investig. Dermatol. 2017, 137, 26–30. [CrossRef] [PubMed]

120. Guimarães, P.; Batista, A.; Zieger, M.; Kaatz, M.; Koenig, K. Artificial Intelligence in Multiphoton Tomography: Atopic Dermatitis
Diagnosis. Sci. Rep. 2020, 10, 7968. [CrossRef] [PubMed]

121. De Guzman, L.C.; Maglaque, R.P.C.; Torres, V.M.B.; Zapido, S.P.A.; Cordel, M.O. Design and Evaluation of a Multi-model,
Multi-level Artificial Neural Network for Eczema Skin Lesion Detection. In Proceedings of the 2015 3rd International Conference
on Artificial Intelligence, Modelling and Simulation (AIMS), Kota Kinabalu, Malaysia, 2–4 December 2015; pp. 42–47.

122. Gustafson, E.; Pacheco, J.; Wehbe, F.; Silverberg, J.; Thompson, W. A Machine Learning Algorithm for Identifying Atopic
Dermatitis in Adults from Electronic Health Records. In Proceedings of the 2017 IEEE International Conference on Healthcare
Informatics (ICHI), Park City, UT, USA, 23–26 August 2017; pp. 83–90.

123. Han, S.S.; Park, I.; Eun Chang, S.; Lim, W.; Kim, M.S.; Park, G.H.; Chae, J.B.; Huh, C.H.; Na, J.-I. Augmented Intelligence
Dermatology: Deep Neural Networks Empower Medical Professionals in Diagnosing Skin Cancer and Predicting Treatment
Options for 134 Skin Disorders. J. Investig. Dermatol. 2020, 140, 1753–1761. [CrossRef]

124. Koller, T.; Navarini, A.; vor der Brück, T.; Pouly, M.; Schnürle, S. On using Support Vector Machines for the Detection and
Quantification of Hand Eczema. In Proceedings of the 9th International Conference on Agents and Artificial Intelligence, Porto,
Portugal, 24–26 February 2017; pp. 75–84.

https://doi.org/10.1007/978-3-540-75757-3_107
https://doi.org/10.1016/j.neuroimage.2017.01.047
https://doi.org/10.1177/1073858416635986
https://doi.org/10.1109/TMI.2022.3171778
https://www.ncbi.nlm.nih.gov/pubmed/35500083
https://doi.org/10.1073/pnas.1704907114
https://www.ncbi.nlm.nih.gov/pubmed/29229843
https://doi.org/10.1203/01.PDR.0000129658.55746.3C
https://www.ncbi.nlm.nih.gov/pubmed/15128922
https://doi.org/10.1109/EMBC.2012.6347271
https://doi.org/10.1109/EMBC.2012.6347139
https://doi.org/10.1542/peds.2015-3757
https://doi.org/10.1055/s-0032-1329694
https://www.ncbi.nlm.nih.gov/pubmed/23254381
https://doi.org/10.1016/j.cmpb.2022.107155
https://doi.org/10.1038/s41598-022-16273-5
https://doi.org/10.1038/s41598-021-85878-z
https://doi.org/10.3349/ymj.2022.63.7.640
https://doi.org/10.1016/S0140-6736(17)31002-4
https://www.ncbi.nlm.nih.gov/pubmed/28434651
https://doi.org/10.1016/j.jpeds.2020.10.024
https://www.ncbi.nlm.nih.gov/pubmed/33069668
https://doi.org/10.1542/peds.2018-3475
https://www.ncbi.nlm.nih.gov/pubmed/30584062
https://doi.org/10.1111/pde.15149
https://www.ncbi.nlm.nih.gov/pubmed/36164801
https://doi.org/10.1016/j.jid.2016.07.012
https://www.ncbi.nlm.nih.gov/pubmed/27616422
https://doi.org/10.1038/s41598-020-64937-x
https://www.ncbi.nlm.nih.gov/pubmed/32409755
https://doi.org/10.1016/j.jid.2020.01.019


BioMedInformatics 2024, 4 1248

125. Tsien, C.L.; Kohane, I.S.; McIntosh, N. Multiple signal integration by decision tree induction to detect artifacts in the neonatal
intensive care unit. Artif. Intell. Med. 2000, 19, 189–202. [CrossRef]

126. Saria, S.; Rajani, A.K.; Gould, J.; Koller, D.; Penn, A.A. Integration of early physiological responses predicts later illness severity in
preterm infants. Sci. Transl. Med. 2010, 2, 48ra65. [CrossRef]

127. Lyra, S.; Rixen, J.; Heimann, K.; Karthik, S.; Joseph, J.; Jayaraman, K.; Orlikowsky, T.; Sivaprakasam, M.; Leonhardt, S.; Hoog
Antink, C. Camera fusion for real-time temperature monitoring of neonates using deep learning. Med. Biol. Eng. Comput
2022, 60, 1787–1800. [CrossRef]

128. Althnian, A.; Almanea, N.; Aloboud, N. Neonatal Jaundice Diagnosis Using a Smartphone Camera Based on Eye, Skin, and
Fused Features with Transfer Learning. Sensors 2021, 21, 7038. [CrossRef]

129. Guedalia, J.; Farkash, R.; Wasserteil, N.; Kasirer, Y.; Rottenstreich, M.; Unger, R.; Grisaru Granovsky, S. Primary risk stratification
for neonatal jaundice among term neonates using machine learning algorithm. Early Hum. Dev. 2022, 165, 105538. [CrossRef]
[PubMed]

130. Pearlman, S.A. Advancements in neonatology through quality improvement. J. Perinatol. 2022, 42, 1277–1282. [CrossRef]
[PubMed]

131. Mangold, C.; Zoretic, S.; Thallapureddy, K.; Moreira, A.; Chorath, K.; Moreira, A. Machine Learning Models for Predicting
Neonatal Mortality: A Systematic Review. Neonatology 2021, 118, 394–405. [CrossRef]

132. Mercurio, M.R.; Cummings, C.L. Critical decision-making in neonatology and pediatrics: The I-P-O framework. J. Perinatol.
2021, 41, 173–178. [CrossRef] [PubMed]

133. Katznelson, G.; Gerke, S. The need for health AI ethics in medical school education. Adv. Health. Sci. Educ. Theory Pract.
2021, 26, 1447–1458. [CrossRef]

134. Lin, M.; Vitcov, G.G.; Cummings, C.L. Moral equivalence theory in neonatology. Semin. Perinatol. 2022, 46, 151525. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/s0933-3657(00)00045-2
https://doi.org/10.1126/scitranslmed.3001304
https://doi.org/10.1007/s11517-022-02561-9
https://doi.org/10.3390/s21217038
https://doi.org/10.1016/j.earlhumdev.2022.105538
https://www.ncbi.nlm.nih.gov/pubmed/35026695
https://doi.org/10.1038/s41372-022-01383-9
https://www.ncbi.nlm.nih.gov/pubmed/35368024
https://doi.org/10.1159/000516891
https://doi.org/10.1038/s41372-020-00841-6
https://www.ncbi.nlm.nih.gov/pubmed/32999448
https://doi.org/10.1007/s10459-021-10040-3
https://doi.org/10.1016/j.semperi.2021.151525

	Introduction 
	Basic Models of Artificial Intelligence 
	Domains of Artificial Intelligence’s Applications in Neonatal Care 
	Neuromonitoring 
	Electroencephalography 
	Magnetic Resonance Imaging 

	Neurodevelopmental Outcome 
	Respiratory System 
	Ophthalmology 
	Gastrointestinal System 
	Sepsis 
	Patent Ductus Arteriosus 
	Dermatology 
	Miscellaneous 
	Vital Signs Monitoring 
	Neonatal Jaundice 

	Mortality 

	Challenges, Limitations, and Future Perspectives of Artificial Intelligence in Neonatology 
	Conclusions 
	References

