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Abstract: Background: There has been a trend to transit reprocessing of flexible endoscopes from
a high-level disinfectant (HLD) centralized manner to sterilization performed by nursing staff in
some Ear, Nose, and Throat (ENT) clinics. In doing so, the clinic nursing staff are responsible for
predicting and managing clinical demand for flexible endoscopes. The HLD disinfection process is
time-consuming and requires specialized training and competency to be performed safely. Solely
depending on human expertise for predicting the flexible endoscope demands is unreliable and
produced a concern of an inadequate supply of devices available for diagnostic purposes. Method:
The demand for flexible endoscopes for future patient visits has not been well studied but can be
modeled based on patients’ historical information, provider, and other visit-related factors. Such
factors are available to the clinic before the visit. Binary classifiers can be used to help inform the
sterile processing department of reprocessing needs days or weeks earlier for each patient. Results:
Among all our trained models, Logistic Regression reports an average AUC ROC score of 89%
and accuracy of 80%. Conclusion: The proposed framework not only significantly reduces the
reprocessing efforts in terms of time spent on communication, cleaning, scheduling, and transferring
scopes, but also helps to improve patient safety by reducing the exposure risk to potential infections.

Keywords: binary classification; high-level disinfection; predictive analytics; scope reprocessing;
sterile processing

1. Introduction

Efficient endoscope (scope) reprocessing is crucial in healthcare, safeguarding patient
safety by preventing infections and ensuring the reliability of diagnostic and therapeutic
procedures. It underscores the commitment of healthcare facilities to deliver safe and
effective care. Flexible endoscope procedures, particularly Nasopharyngoscopy, are com-
monly conducted in clinics using reusable medical devices (RMD) categorized as such
by manufacturers. These scopes necessitate high-level disinfection or sterilization after
each use, as outlined in the manufacturer’s instructions. A crucial step involves immediate
manual pre-cleaning post-procedure at the point of use to eliminate organic material and
prevent the formation of bacterial biofilm, which could resist subsequent disinfection and
sterilization. Reprocessing decisions are facility-driven, influenced by factors such as space
availability, processing time, staff competency, overall cost, and the remaining useful life
of the device. High-level disinfection is favored for its cost-effectiveness compared to
sterilization, which demands more intricate equipment, materials, and time. Estimated
between $22 k to $40 k, the cost of one scope aligns with its useful life of 100 cleaning
and disinfecting cycles under high-level disinfection or sterilization conditions, subject to
variations based on handling and maintenance practices [1].

Several factors influence the selection of disinfection processes for scopes, encompass-
ing considerations such as the scope’s design and its resilience to disinfectant chemicals
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or sterilization, the assessment of associated reprocessing risks, and the potential for dis-
ease transmission. Additionally, operational demands may play a role in determining the
appropriate reprocessing procedure.

Tasking clinic nurses with non-direct patient care activities and provider support
could have adverse effects on the clinic’s overall performance. Nursing leadership has
identified the reprocessing of RMD as a significant contributor to non-value-added time,
with the industry average for scope reprocessing being 76 min [1]. The typical in-clinic
scope reprocessing procedure follows a dirty-to-clean workflow, where scopes undergo pre-
cleaning with a solution at the point of use before being transported to a soiled utility room
for reprocessing. Upon arrival in the utility room, adherence to manufacturers’ instructions
necessitates completing the reprocessing within 60 min, involving 33 steps. This process
includes nurses donning specific personal protective equipment (PPE), such as specialized
gloves, gowns, face and eye protection, and footwear.

While utilizing a centralized shared service, such as a Sterile Processing department,
to reprocess scopes for the ENT clinic could be a potential solution, these services typically
prioritize high-reprocess demands like Surgical services. Transitioning the reprocessing
responsibility to the clinics ensures that scope reprocessing receives prioritized attention,
enhancing patient access, a crucial metric for outpatient clinics. Patient access directly
influences the flow and effectiveness of outpatient ENT clinics, with proper equipment
availability in examination rooms playing a pivotal role. The “Choice” act of 2014, enacted
in response to a healthcare wait time scandal, highlights the imperative for prompt access
to care. The Centers for Medicare & Medicaid Services (CMS) also underscores the critical
nature of healthcare access, emphasizing its role in preventing unmet health needs, delays
in care, financial burdens, and avoidable hospitalizations [2,3].

This study introduces a binary classification framework designed to predict the neces-
sity of endoscope usage during a medical visit. Implementing this framework empowers
reprocessing staff at medical centers to anticipate scope requirements, ensuring timely
availability for providers, streamlining patient care in outpatient clinics, and mitigating ac-
cess barriers to clinic services. The remainder of the paper is organized as follows: Section 2
reviews existing literature on utilizing data science for decision support tools in healthcare
and ENT. Section 3 details our proposed framework, while Section 4 presents our findings.
Finally, Section 5 concludes the study.

2. Literature Review

In the healthcare sector, Machine Learning (ML) finds application across diverse areas,
encompassing disease diagnosis [4–7], patient management [8–11], and administrative
tasks [12–15]. In the realm of diagnosis, ML contributes to the analysis of medical images,
including X-rays [16,17], MRIs [18–20], and CT scans [21,22], facilitating early disease
detection. Predictive analytics by ML extends to forecasting health risks [23], readmission
probabilities [24], and anticipating disease outbreaks [25]. ML also aids in electronic health
records management through data mining [26] and natural language processing, enhancing
overall patient care [27]. In drug discovery, ML identifies potential drug candidates and
optimizes clinical trial processes [28,29]. Its applications extend to personalizing treatments
and ensuring medication adherence [30], improving telemedicine and remote patient
monitoring [31], and detecting healthcare fraud [32]. Specifically, ML plays a crucial role in
predicting equipment demand, optimizing resource allocation, and ensuring the efficient
availability of medical equipment, thereby enhancing healthcare operational efficiency.

In the healthcare domain, the increasing prevalence of Machine Learning (ML) in
diagnostic applications and as a clinical decision support tool for healthcare providers is
noteworthy [33]. Traditional decision support tools often rely on intuition or deduction,
where intuitive approaches draw on clinical knowledge or patterns for quicker decisions but
carry a higher risk of errors. Deduction-based methods are more methodical but demand
significant intellectual input, time, and cost for reasoned outcomes [33,34]. ML models offer
a balanced approach by closely mimicking clinical patterns, utilizing expert knowledge,
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and incorporating impactful factors in their analysis. Consequently, the healthcare literature
abounds with ML applications, yet limited attention has been directed toward predicting
demand for instruments such as endoscopes and other reusable medical equipment (RME).

Flexible Nasopharyngoscopy has been a common practice in ENT clinics since the
1950s [35], offering a highly precise diagnostic tool for assessing head and neck complaints
with remarkable accuracy. A study by [4], focusing primarily on adult subjects (with
only 6% below 20 years), demonstrated the effectiveness of flexible Nasopharyngoscopy
as a diagnostic procedure for patients with upper airway-related symptoms. Beyond
identifying abnormalities, it serves to rule out issues that might otherwise necessitate
evaluation in the operating room under sedation. According to [36], 59% of flexible Na-
sopharyngoscopy examinations resulted in a “normal” outcome. For patients, this low-risk
procedure provides accurate diagnostic information, making it a valuable tool in routine
clinic examinations for concerns related to voice changes, swallowing problems, throat
sensations, sleep apnea evaluation, or symptoms suggestive of head-neck cancers [35].

From the perspective of RME reprocessing, flexible endoscopes present the most
intricate challenges for reuse [37]. As of now, inadequate reprocessing of endoscopes ranks
among the top 10 health hazards in the US, underscoring the urgency and relevance of
the proposed framework for medical centers. The authors of [37] outline the Spaulding
Classification as determining the “appropriate level of disinfection for medical devices
according to their intended use.” The classification designates procedures using flexible
endoscopes as semi-critical, recommending HLD. However, recent infection control issues
have prompted experts to contemplate revisions to the Spaulding Classification, advocating
for the sterilization of flexible endoscopes due to safety concerns.

3. Materials and Methods

This paper introduces a classification framework designed to assist clinicians and
hospital administrators in determining whether incoming patients will require the use of
an endoscope. Illustrated in Figure 1, the proposed framework initiates with data process-
ing and statistical analysis. The first phase emphasizes data collection, exploration, and
processing, while the subsequent phase focuses on developing and evaluating predictive
models, including logistic regression, gradient boosting, and light gradient boosting. The
classification models are assessed for performance on test datasets through 10-fold cross-
validation, employing metrics such as accuracy, precision, recall, Area Under the Receiver
Operating Characteristic Curve (AUCROC), and F1 score.
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3.1. Data Preprocessing

The dataset was sourced from a predefined clinic report utilized by clinic leadership
to assess visit types and procedures conducted through Current Procedural Terminology
(CPT) at a 100-bed healthcare facility in the Midwest catering to the Veteran population.
Visits often encompassed multiple CPTs, resulting in multiple instances associated with
a single CPT per data record on the report. Preparing this report for model utilization
involved transforming the “many-to-one” relationship into a “one-to-one” mapping of
CPT to visit occurrences. This process also included generating the scope used label using
CPT information, deidentifying Personally Identifiable Information (PII) from the data,
coding data by creating age groupings, breaking down ICD codes by alpha characters
(categories) from the rest of the code, and conducting Exploratory Data Analysis (EDA),
which involved addressing missing values through imputation.
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The initial report was organized by sorting patient names, visit dates, and visit times,
grouping rows with multiple CPT codes associated with a single visit together. Each
individual CPT code provided information about the visit encounter, including visit type
(new patient, follow-up patient, or consultation), with additional CPT codes detailing
procedures conducted during the visit, such as the use of endoscopes. To label visits as
either utilizing scopes or not, rows related to this information were extracted, leaving
only the CPT row indicating visit type in the dataset. For HIPAA compliance, personally
identifiable information such as name, date of birth, and social security number was
removed during the deidentification process. The next step involved consolidating visit-
level data by diagnosis into a single row. During this consolidation, binary labels of 0
and 1 were assigned based on post-visit CPT code information, designating the presence or
absence of endoscope use in each visit. Post-visit CPTs, crucial for medical documentation,
classify visit types (e.g., new patient or consult) and medical procedures performed during
the visit, including diagnostic laryngoscopy, indicating the use of endoscopes.

Lastly, EDA was employed to enhance comprehension of the data. The initial raw
data encompassed 24 features, including continuous and categorical visit-related CPT
codes, patient identifiable information, and provider details. During the initial exploratory
phase, several features were eliminated either due to lack of relevance or to prevent
label leakage. For the retained features, one-hot and ordinal encoding techniques were
applied. Subsequently, missing values were imputed, and to address dataset imbalance,
oversampling was implemented. Lastly, dimension reduction techniques were applied to
streamline and reduce the number of features in the dataset.

3.2. Predictive Analytics

The predictive analytics phase concentrates on training and evaluating binary clas-
sifiers. In this phase, various classification algorithms were employed, including logistic
regression (LR), gradient boosting (GB), light gradient boosting (LGB), random forest,
extra tree classifier, ridge classifier, linear discriminant analysis, AdaBoost classifier, and
support vector machines. However, for the purpose of this study, the results of the top three
models—logistic regression (LR), light gradient boosting (LGB), and gradient boosting
(GB)—are discussed.

Ensemble learning methods amalgamate classification outcomes from multiple learn-
ing algorithms. In comparison to conventional binary classifiers like LR, these models not
only pledge superior performance but also ensure a more resilient classification. This study
incorporates two boosting ensemble models within the proposed framework. Boosting is a
specific technique within ensemble learning that emphasizes sequentially training models
to correct errors, giving more importance to misclassified instances. While GB generates a
classification model comprising an ensemble of weak prediction models like decision trees,
LGB is built upon a more efficient boosting decision tree algorithm, leveraging histogram-
based trees to enhance training speed and reduce memory usage. Both boosting models
are contrasted with a LR model trained on the same dataset.

Ten-fold cross-validation is utilized to provide robust performance metrics. In this
process, the dataset undergoes ten random 2/3–1/3 splits, designating 2/3 for training and
1/3 for testing in each split. At every split, multiple models are generated using the training
set and assessed using the corresponding test set. The performance metrics reported are the
average scores across all ten folds for the specified metrics of interest. This approach ensures
a comprehensive evaluation of the model’s performance by considering various subsets of
the data for training and testing, promoting generalizability and reliability of the reported
metrics. Performance metrics such as accuracy (Equation (1)), recall (Equation (2)), precision
(Equation (3)), F1 score (Equation (4)), and area AUCROC are reported for all models.

Accuracy = (TP + TN)/(TP + FP + TN + FN) (1)

Recall = TP/(TP + F) (2)
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Precision = TP/(TP + FP) (3)

F1 Score = (2 × Pecision×Recall)/(Pecision + Recall) (4)

where TP, TN, FP, and FN stand for True Positive, True Negative, False Positive, and False
Negative, respectively. All these metrics accept values between 0.0 and 1.0, and higher
scores represent better performance. Accuracy gauges the overall correctness of a classi-
fication model by assessing the ratio of correctly predicted instances to the total number
of instances. While intuitive, accuracy is not sufficient when working with unbalanced
datasets as it fails to measure the performance of the model in correctly identifying the
minority class. When working with unbalanced datasets, using additional metrics such as
recall and precision become critical for evaluating the performance of the classifiers with
regards to the majority and minority labels. Precision measures the accuracy of positive
predictions, indicating the ratio of true positives to the sum of true positives and false
positives. Recall, also known as sensitivity, evaluates the model’s ability to identify all
relevant instances by calculating the ratio of true positives to the sum of true positives and
false negatives. While recall is a better metric when the cost associated with false negative
is high, precision is more reliable when the costs of false positive is high. The F1 score, the
harmonic mean of precision and recall, offers a balanced measure that considers both false
positives and false negatives, providing an overall assessment of a classification model’s
effectiveness. AUCROC quantifies a model’s performance across various threshold settings
in binary classification, illustrating the trade-off between sensitivity and specificity.

4. Results and Discussion

The data utilized in this study were gathered between August 2019 and February 2022
at a 100-bed medical facility in the Midwest, dedicated to serving the Veteran population.
The initial dataset comprised 9027 records, encompassing 24 features.

4.1. Data Preprocessing

Following the de-identification process, the original 9027 records were streamlined
to 4129 through consolidation, where each record signifies an individual visit and is
accompanied by a binary label. Of the initial 24 features, 19 were nominal, non-metric
values, four were defined as ratios, and one as an interval. Following the elimination of
non-relevant features and addressing label leakage (specifically, removal of post-visit CPT
codes), the features were reduced to 14. The EDA (Figure 2) reveals two key insights. Firstly,
certain age groups exhibit a higher propensity for visits, with the top three leading age
groups being 70s, 60s, and 50s. Given the facility’s focus on serving the Veteran population,
younger patients (20 years or below) are less likely to have met service requirements. The
level of service-connected disability may also influence the demographic seeking care at
the facility. Additionally, the prevalence of head and neck cancers tends to increase with
advancing age, particularly beyond 50 [17].

Further data analysis led to identifying the top 10 CPT codes corresponding to most
visits. These CPT codes are 99213, 99214, 99244, 99212, 99243, 99204, 99203, 99245, 99215,
and 99211 as displayed in Figure 3.

As displayed in Figure 3, these CPT codes correspond to the type of visit that the
patient will have, the patient type (new patient or established), and the anticipated duration
of the visit. Although CPT code 99213 is associated with the highest number of visits
(i.e., 28%), it is CPT code 99214 which is accountable for 10% of visits leading to utilization
of an endoscope. Description of CPT codes explain the severity of the underlying problems,
and whether the patient is new (i.e., 23%), established (i.e., 63%), or unknown (i.e., 24%).
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Figure 3. Top ten encounter types (described by the CPT code listed) by scope use during visit.

Following the EDA, feature encoding expanded the number of features to 18. To handle
missing values and address imbalances in the dataset, iterative imputation and SMOTE
techniques were applied, respectively. Subsequently, the dataset’s dimensionality was
reduced using PyCaret’s feature selection tool, which amalgamates various permutation
importance techniques like Random Forest, AdaBoost, and Linear correlation with the
target variable (i.e., scope used or not). Parts a and b in Figure 4 illustrate the effects of
balancing and dimension reduction in our dataset.

While Figure 4a displays the distribution of labels before and after balancing, Figure 4b
exhibits the top 10 features holding the highest feature importance scores. As shown
in Figure 4a, although both oversampling and under sampling can address the label
skewness, the size of the dataset reduces significantly when implementing undersampling.
Undersampling relies on deleting rows of data from the majority label to balance the
dataset, while oversampling addresses the gap but duplicates instances from the minority
class. The original dataset contained 4129 datapoints, undersampling reduced the size to
2448 while oversampling through SMOTE led to a dataset of size 5810. Given the small
size of the original dataset, SOMTE is implemented within the framework to address the
data imbalance.
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As shown in Figure 4b, most of the reported top ten features are ICD-10 codes.
ICD-10 stands for the International Classification of Diseases—Tenth Revision, which
is an international diagnosis system designed for representing conditions and diseases
and any health-related problems, abnormal findings, signs and symptoms, injuries, and
external causes of injuries and diseases [18]. The ICD-10 codes are a part of the patient’s
medical record and may require imaging, labs, or a clinical workup based on a patient’s
chief complaint(s) for the visit. These codes are generally available for returning patients to
ENT before a clinic visit. New patients to specialty clinics such as ENT may have pre-visit
ICD-10 codes included in their referral to the clinic which is then validated during the
visit. ICD-10 codes R49.9 (Unspecified voice and resonance disorder (hoarseness)), R13.10
(Dysphagia, unspecified), J38.3 (Other diseases of vocal cords), H92.01 (Otalgia, right ear),
and H92.02 (Otalgia, left ear) were all pre-visit diagnoses that may result in scope use
during the patient’s visit. J38.3 (Other diseases of vocal cords) and H92.02 (Otalgia, left ear)
were identified as important features by the model.

Revisiting the original dataset, the presence of those ICD-10 codes such as J38.3 and
R49.9 resulted in lack of scope usage in a majority of visits. Figure 5 displays the distribution
of usage of five ICD codes (i.e., H92.01, H92.02, J38.3, R13.10, and R49.0) across 15 different
clinicians over 140 visits. As displayed, although some ICD codes such as R49.9 seem to
bias against using scopes in the visits, we had physicians that used scopes for 100%, 50%,
or 33% of their patients presenting with R49.9.
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Figure 5. The distribution of ICD codes on scopes’ usage in visits, where H92.01, H92.02, J38.3, R13.10,
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But by having a closer look at R49.9, where 94% of the code resulted in not using
scopes, the distribution is vastly different across different clinicians as illustrated in Figure 5.
Figure 6 displays the top ten reported ICD-10 codes in our dataset.



BioMedInformatics 2024, 4 728

BioMedInformatics 2024, 4, FOR PEER REVIEW 8 
 

 

 
Figure 5. The distribution of ICD codes on scopes’ usage in visits, where H92.01, H92.02, J38.3, 
R13.10, and R49.9 stand for Otalgia-right ear, Otalgia-left ear, other diseases of vocal cords, Dys-
phagia-unspecified, Unspecified voice resonance disorder, respectively. 

But by having a closer look at R49.9, where 94% of the code resulted in not using 
scopes, the distribution is vastly different across different clinicians as illustrated in Figure 
5. Figure 6 displays the top ten reported ICD-10 codes in our dataset. 

(a) (b) 

Figure 6. Top ten primary ICD-10 codes (a) with descriptions (b) for each unique patient visit ag-
nostic of scope use during visit. 

4.2. Predictive Analytics 
The data preprocessing phase is followed by training and evaluating predictive mod-

els. The predictive analytics starts by implementing 10-fold cross validation, where da-
tasets are divided into training and testing sets (2/3 and 1/3, respectively) in each fold. 
Evaluating the performance of models trained over 10 folds, GB, LGB, and LR have the 
best performance among all the trained models. Figure 7 displays the ROC curves for the 
trained GB (Figure 7a), LGB (Figure 7b), and LR (Figure 7c) models. These curves demon-
strate the performance of the mentioned classification models for both classes in addition 
to the micro- and macro-averages across different thresholds. The developed GB, LGB, 
and LR models presented ROCAUC scores of 96%, 98%, and 99%, respectively. The diag-
onal line in ROC curves represents the behavior of a random classifier which has no better 
chance of detecting positive/negative labels than flipping a fair coin. The distance among 
the trained models’ ROC curve from the 45-degree diagonal of the ROC space demon-
strates the high performance of these models. 

Figure 6. Top ten primary ICD-10 codes (a) with descriptions (b) for each unique patient visit agnostic
of scope use during visit.

4.2. Predictive Analytics

The data preprocessing phase is followed by training and evaluating predictive models.
The predictive analytics starts by implementing 10-fold cross validation, where datasets are
divided into training and testing sets (2/3 and 1/3, respectively) in each fold. Evaluating the
performance of models trained over 10 folds, GB, LGB, and LR have the best performance
among all the trained models. Figure 7 displays the ROC curves for the trained GB
(Figure 7a), LGB (Figure 7b), and LR (Figure 7c) models. These curves demonstrate the
performance of the mentioned classification models for both classes in addition to the
micro- and macro-averages across different thresholds. The developed GB, LGB, and LR
models presented ROCAUC scores of 96%, 98%, and 99%, respectively. The diagonal line
in ROC curves represents the behavior of a random classifier which has no better chance of
detecting positive/negative labels than flipping a fair coin. The distance among the trained
models’ ROC curve from the 45-degree diagonal of the ROC space demonstrates the high
performance of these models.
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Table 1 reports performance metrics such as accuracy, AUCROC, recall, precision,
and F1 score for all three models over the training set. As shown in Table 1, while GB
outperformed LR and LGB models in accuracy (94%), recall (86%), precision (94%), and F1
score (90%), the LGB provided a better AUCROC score of 99% over the train dataset.

Figure 8 demonstrates the average performance of all trained models over the test
dataset compared to their averages on the training dataset. Over the test datasets, LGB
models have the best performance with an AUCROC score of 89% and accuracy of 80%.
Both GB and LR models are followed closely by AUCROC of 87% and 87% and accuracy
scores of 82% and 81%, respectively.
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Table 1. Performance of the models in terms of accuracy, AUC, precision, recall, and F1 score metrics.

Model Accuracy Area under the
Curve (AUC) Recall Precision F1 Score

Logistic
Regression (LR) 90% 96% 78% 86% 82%

Gradient
Boosting (GB) 94% 98% 86% 94% 90%

Light Gradient
Boosting (LGB) 93% 99% 85% 92% 89%
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Although the F1 scores are close, ranging across 64%, 68%, and 70% for GB, LGB,
and LR, respectively, the boosting algorithms have higher precision while LR models have
higher recall. This shows that the logistic regression produced more false positives while
the boosting models produced more false negatives. As false negatives (falsely predicting
scope will not be needed) are costlier for this application, the logistic regression model
provides marginally better recommendations for this application.

Providing this ability to predict scopes usage provides several benefits. For the ENT
clinic, a key benefit is the increased capacity for the nursing staff to be involved in more
direct patient care related activities. Secondly, this predictive framework can help to
avoid potential rescheduled appointments due to scope unavailability. Third, a smaller
number of scopes needs to be preprocessed on average as the proposed framework reduces
the uncertainty around the need for scopes in visits. This may significantly reduce the
reprocessing efforts as less time will be spent on negotiation, cleaning, scheduling, and
transferring scopes. Finally, this proposed framework helps to improve the service quality
for the patients.

Next steps include the deployment of the model for operational use at the medical
center. Web-based deployment would streamline the process, allowing the ENT staff to
upload the clinic appointment schedule including the additional elements needed for the
ML. The current scheduling template would require some transformation to fit the input
file structure needed for the model. This could be accomplished using an application native
to the nurses and clinic staff such as a macro enabled Excel file.

Model prediction performance would need to be reviewed periodically for accuracy
purposes. The medical center’s quality management office will develop the maintenance
schedule, develop test scenarios, and track accuracy throughout the life of the model. This
would address the concern of monitoring changes that could impact model performance
mentioned in the literature review. Changes could result from clinic operational changes
due to rotation of providers in residency programs, retirement, or promotion of attending
providers or nurse practitioners, or advancements in the ICD-10 or CPT coding documents.

There are some limitations that should be addressed here. Training our classifiers
on a dataset limited to a certain age range (i.e., 50s to 70s) introduces several limitations,
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primarily stemming from the restricted representation of the overall population. Our
models may struggle to generalize well to age groups outside the specified range. Any
patterns or relationships learned might not be applicable to individuals outside the trained
age range. Features that are crucial for predicting outcomes within the specified age range
might not hold the same significance or relevance for individuals in other age groups.
The models may miss age-specific patterns or nuances. To mitigate these limitations, we
will incorporate a more diverse age group in our training data to enhance the model’s
generalization across a broader population in our future work. In addition, we will be
looking at predictive models that would rely on augmented data beyond individual patients
to predict the demand for flexible endoscopes.

5. Conclusions

The ENT clinic within a 100-bed healthcare center in the Midwest, dedicated to serving
the Veteran population, has undergone a significant shift by centralizing the reprocessing of
scopes to a sterile processing department. Given the uncertainty surrounding the demand
for scopes during incoming patient visits, this work introduces a classification framework
designed to predict the utilization of endoscopes based on a range of factors, including
patient information, providers, and various visit-related parameters. Leveraging these
factors, which are accessible prior to the patient’s visit, the framework employs binary
classification models to predict whether a scope will be necessary for the upcoming visit.
The top-performing models demonstrated notable efficacy, reporting an average AUCROC
score of 89%, an accuracy of 80%, and an F1 score of 68%. The proposed framework extends
its utility beyond the ENT clinic, offering a valuable tool for healthcare systems facing
resource constraints. This predictive model can be implemented in areas where centralized
services depend on limited resources, aiding in the anticipation and prioritization of
workload, thereby optimizing operational efficiency throughout the broader health system.
By harnessing ML algorithms to analyze historical data and key parameters, healthcare
providers can proactively allocate resources where they are needed most, ensuring efficient
resource management, better patient care, and a more resilient healthcare system.
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