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Abstract: This paper addresses the classification of images depicting the eruptive activity of Mount
Etna, captured by a network of ground-based thermal cameras. The proposed approach utilizes
Convolutional Neural Networks (CNNs), focusing on pretrained models. Eight popular pretrained
neural networks underwent systematic evaluation, revealing their effectiveness in addressing the
classification problem. The experimental results demonstrated that, following a retraining phase
with a limited dataset, specific networks such as VGG-16 and AlexNet, achieved an impressive
total accuracy of approximately 90%. Notably, VGG-16 and AlexNet emerged as practical choices,
exhibiting individual class accuracies exceeding 90%. The case study emphasized the pivotal role
of transfer learning, as attempts to solve the classification problem without pretrained networks
resulted in unsatisfactory outcomes.
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1. Introduction

Understanding and monitoring eruptive events through the analysis of volcanic ac-
tivity images play a pivotal role in prompt hazard assessment, especially at open-vent
volcanoes that frequently erupt, such as Mount Etna in Italy [1–3]. The proliferation of
visual data from remote sensors, drones, and spatial-based techniques demands advanced
methodologies for extracting detailed information. Neural networks, particularly Convo-
lutional Neural Networks (CNNs), have emerged as powerful tools for image analysis,
being capable of learning complex patterns and spatial relationships. However, classifying
volcanic images poses unique challenges due to the diverse and dynamic nature of volcanic
phenomena. This is particularly difficult when considering the gradual transition from one
eruptive activity to another, or when the same eruptive class exhibits peculiar behaviors.

This study delved into thermal image classification, focusing on applying CNNs to
distinguish various states of Mount Etna. The volcano’s activity is monitored using a
variety of geophysical sensors, including thermal cameras installed on the ground [1] or on
special satellites [2].

Thermal image classification is a common application of machine learning algorithms,
with some immune-based machine learning algorithms demonstrating efficacy in this
regard, as highlighted in [4–7]. However, while immune-based machine learning algo-
rithms offer valuable reference points, our study focused on evaluating the effectiveness
of pretrained Convolutional Neural Networks (CNNs) in addressing the classification
problem within the context of volcanic activity monitoring. This research contributes to the
early detection and assessment of eruptive events, facilitating timely responses for hazard
mitigation and risk management. Furthermore, our study underscores the importance of
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transfer learning. By considering pretrained neural networks and retraining them with a
limited dataset specific to volcanic activity, we demonstrate the practical effectiveness of
transfer learning in environmental monitoring applications.

A valuable application of CNNs to detect subtle to intense anomalies exploiting
the spatial relationships of volcanic features on a labeled dataset of ASTER TIR images
from five different volcanoes, namely, Etna (Italy), Popocatepetl (Mexico), Lascar (Chile),
Fuego (Guatemala), and Klyuchevskoy (Russia), was proposed by [3]. The detection and
segmentation of volcanic ash plumes using the segNet and U-Net CNN architectures at Mt.
Etna was proposed by [8]. The classification of video observation data for volcanic activity
on Klyuchevskoy Volcano by using neural networks was also proposed by [9].

Traditionally, training a CNN for image classification involves random weight initial-
ization and optimization on a specific dataset. However, the advent of pretrained CNN
models on large image datasets provides new opportunities for applying knowledge ac-
quired from other domains, as highlighted by [10], who achieved a remarkable overall
accuracy of 98.3% in recognizing eruptive activity from satellite images at seven different
volcanoes. The authors developed a monitoring system aimed at automatically detecting
thermal anomalies associated with volcanic eruptions across different volcanoes worldwide,
including locations such as La Palma (Spain), Etna (Italy), and Kilauea (Hawaii, USA).
The study primarily focused on leveraging the pretrained SqueezeNet model to discern
high-temperature volcanic features in thermal infrared satellite data. This approach signifi-
cantly reduces training time by fine-tuning the model with a novel dataset comprising both
thermal anomalies and non-anomalous volcanic features. The training dataset was crafted
with two classes, one containing volcanic thermal anomalies (erupting volcanoes) and the
other containing no thermal anomalies (non-erupting volcanoes), to differentiate between
volcanic scenes with eruptive and non-eruptive activity. Satellite imagery acquired via ESA
Sentinel-2 MSI and NASA and USGS Landsat 8 OLI/TIRS instruments, specifically in the
infrared bands, served as the primary data source for analysis.

In this study, we considered various popular pretrained CNNs to classify images
acquired by the INGV-OE (Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio
Etneo) thermal camera network, classifying the eruptive states of Mount Etna into six
categories. Video files of Mount Etna activity are recorded by fixed, continuously operating
thermal cameras on the volcano’s flanks, transmitting real-time images to the INGV-OE
Operative Room. Operators aim to recognize eruptive events promptly, especially any
sudden changes in the volcano’s state, emphasizing, once more, the importance of the
accurate classification of eruptive activity.

2. Material and Methods

Of the five units comprising the network of thermal cameras monitoring Etna’s activity
(EMOT, ESR, EMCT, EBT, and ENT), we considered all the images recorded by the EMOT
camera. This decision was based on the potential variations in classification arising from
different locations and cameras simultaneously capturing images, as highlighted by [2].
It is worth noting that training a classifier for each camera is necessary when considering
images from more than one camera.

For details regarding the geographical coordinates and technical features of the indi-
vidual cameras installed on Etna, interested readers can refer to the paper [2].

The dataset analyzed in this study consisted of 476 images extracted from the original
.avi files in [481, 601, 3] RGB format, recorded between 2011 and 2023. These images were
labeled into six classes: (1) No activity, (2) Strombolian, (3) Lava Fountain, (4) Lava flow or
cooling spatter, (5) Degassing or ash emission, and (6) Cloudy. Typical images belonging to
these classes are shown in Figure 1. The images were organized into a Matlab datastore. A
short description of the considered classes is provided below:
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Figure 1. Typical images representing the six classes: (a) Class 1: No activity, (b) Class 2: Strombolian,
(c) Class 3: Lava Fountain, (d) Class 4: Lava flow or cooling products, (e) Class 5: Degassing or light
ash emission, (f) Class 6: Cloudy.

Class 1 No activity:

• The absence of any observable volcanic activity.

Class 2 Strombolian:

• Strombolian activity is a type of mildly explosive volcanic activity. From a
geophysical perspective, Strombolian activity is characterized by a medium
amplitude of seismic tremor, a shallower source of seismic tremor, the pres-
ence of clustered infrasonic events, no eruption column or ash emissions,
and discrete bursts with an ejection of hot material. However, geophysical
signals are not relevant for classifying activity from images, which is instead
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based on the low height of the ejected matter and on the pulsating behavior
typical of Strombolian activity.

Class 3 Lava Fountain:

• Characteristics associated with Lava Fountain eruptions include a high
amplitude of seismic tremor RMS (Root Mean Square), the presence of clus-
tered infrasonic events, and a shallower source of seismic tremor. However,
these features are not relevant for classifying activity from images, which is
instead based on the steady ejection of spatter at a medium or high height.

Class 4 Lava flow or cooling products (spatter, flow, or tephra):

• This class refers to volcanic activity related to the output of lava flow or to
the cooling of previously erupted lava, spatter, or tephra, forming a static
hot deposit slowly cooling down. It may involve the movement of molten
rock on the Earth’s surface or the solidification of previously erupted lava
or pyroclastic material.

Class 5 Degassing or ash emission:

• Degassing is a volcanic process involving the release of hot gases, such
as water vapor, carbon dioxide, sulfur dioxide, and/or little dilute ash,
from the summit craters of a volcano. The emitted ash forms a transparent
plume, easily distinguished from the thick and dense ash plume formed
during Lava Fountains (Class 3). This activity may occur without significant
eruptive events. Dilute ash emissions can be released during small bursts
or even intra-crater landslides.

Class 6 Cloudy:

• This term does not necessarily indicate specific volcanic events but instead
describes the presence of atmospheric clouds that obstruct observations.

It should be noted that these classes are not mutually exclusive for obvious reasons
due to the possibility of intermediate types of activity between classes. For example, if an
image exhibits Lava Fountain activity, it may also feature gas or ash emission, possibly
accompanied by clouds, as shown in Figure 2. Additionally, since the summit of Etna
comprises four active craters, it is possible for them to erupt simultaneously, exhibiting
different behaviors, although such events are rare but not impossible [11]. In such cases,
we expect the classifier to report the class to which the image predominantly belongs.

One of the challenges in classifying images of volcanic activity arises from the inherent
complexities introduced by environmental factors, even when captured by fixed cameras.
The dynamic nature of volcanic landscapes, combined with diverse atmospheric conditions
and varying insolation, contributes to the difficulty of achieving accurate and consistent
classification results. In Figure 2, various images attributed to the Lava Fountain class are
presented to highlight the variability.

Similarly, degassing or ash emission can vary significantly, as illustrated in Figure 3.
This problem applies to all the other classes considered, and for brevity and space,

they are not extensively shown. In summary, fixed cameras, while providing continuous
surveillance, are susceptible to disturbances stemming from changing lighting conditions
throughout the day and night.

In addition to the challenges posed by lighting and thermal considerations, images
of volcanic areas are also significantly impacted by the unpredictable and highly variable
meteorological conditions inherent in volcanic regions. The interplay of these elements
introduces additional sources of noise and variability, making it challenging to develop a
one-size-fits-all classification model. To tackle these difficulties, we opted to utilize Convo-
lutional Neural Networks (CNNs), given their proven effectiveness in handling complex
classification tasks under diverse conditions, as demonstrated by their performance in
competitions like the one described by [12].
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Figure 2. Images depicting Lava Fountain activity at different times and under various meteorological
conditions. In particular, the significant growth of the cinder cone (New South-East Crater) from (a)
in 2012 to (d) in 2023 can be observed, as well as the possibility of eruptive vents located at different
points of the cone.

Figure 3. Degassing or ash emission activity at different times and meteorological conditions, released
by one or more of Etna’s summit craters. (a,b) Gas emissions from Bocca Nuova crater (left of the
image) and from the New South-East Crater (cone on the right), whereas (c) displays an ash plume
from Voragine crater and (d) several pulses of hot and dense ash emissions from Bocca Nuova crater.
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2.1. Overview of CNN Architecture

This section provides an overview of the fundamental components that constitute the
architecture of a CNN, avoiding detailed discussions that interested readers can find in
specific papers [13,14] and/or textbooks [15]. In contrast to traditional neural networks,
CNNs are specifically designed to efficiently handle grid-like data, such as images. Broadly
speaking, a CNN consists of three different kinds of layers: Convolutional Layers, Pooling
Layers, and Fully Connected Layers, as schematically shown in Figure 4.

Figure 4. Architecture of a typical Convolutional Neural Network.

The cornerstone of CNNs is the convolutional layers. These layers apply convolution
operations to input data using filters or kernels, enabling the network to capture spatial
hierarchies and learn local patterns. The convolutional operation involves sliding the filter
across the input, performing element-wise multiplications, and aggregating the results to
create feature maps.

Pooling layers are essential for reducing the spatial dimensions of the input volume,
thereby decreasing the computational complexity of the network. Common techniques
like max pooling and average pooling downsample feature maps, retaining the most
important information while discarding less relevant details. The last layer of the CNN
is the output layer, producing the final predictions. The choice of activation function in
this layer depends on the nature of the task, such as softmax for classification problems or
linear activation for regression tasks.

2.2. Pretrained vs. Non Pretrained CNN

Pretrained Convolutional Neural Networks (CNNs) are trained on large datasets such
as ImageNet [12], learning hierarchical features useful for a wide range of computer vision
tasks. Leveraging a pretrained CNN for a specific task brings the advantage of utilizing
these learned features, known as transfer learning. Advantages include the following:

• Feature Transfer: Early layers of a CNN learn basic features like edges and textures,
which are relatively generic and transfer well to various tasks.

• Efficient Training: Training a CNN from scratch requires substantial labeled data and
computational resources. Pretrained models, trained on large datasets only require an
adjustment of the final layers for specific tasks.

• Performance Boost: Using a pretrained model can lead to better performance, espe-
cially when a limited amount of data is available.

The pretrained networks considered in this study are listed in Table 1, along with their
topological features (extracted from [16]).



Geomatics 2024, 4 130

Table 1. Neural network specifications.

Neural Net Depth Number of Parameters (×106) Input Dimension

SqueezeNet 18 1.24 227 × 227
GoogleNet 22 7.0 224 × 224
DenseNet201 201 20.0 224 × 224
ResNet18 18 11.7 224 × 224
ShuffleNet 50 1.4 224 × 224
DarkNet19 19 20.8 256 × 256
AlexNet 8 61.0 227 × 227
VGG-16 16 138 224 × 224

Here is a brief description of the considered models:

• SqueezeNet: A lightweight neural network architecture designed for efficient model
inference with a relatively small number of parameters [17].

• GoogleNet: Also known as Inception v1 [18], introduced the inception module, which
enables the network to capture features at multiple scales. It is known for its deep
architecture and efficient use of parameters.

• DenseNet201: The Dense Convolutional Network connects each layer to every other
layer in a feed-forward fashion [19]. DenseNet201 specifically has 201 layers and is
known for its parameter efficiency.

• ResNet18: The Residual Network introduced residual connections to address the
vanishing gradient problem [20]. ResNet18 has 18 layers and has been widely used in
various computer vision tasks.

• ShuffleNet: Designed for efficient channel shuffling and parameter reduction [21]. It
is known for its ability to achieve a good accuracy with fewer parameters.

• DarkNet19: The neural network framework behind the YOLO (You Only Look Once)
object detection system. Darknet19 has 19 layers [22].

• AlexNet: A pioneering Convolutional Neural Network architecture that gained promi-
nence for winning the ImageNet Large Scale Visual Recognition Challenge in 2012 [23].
It consists of five convolutional layers and three fully connected layers.

• VGG-16: VGG (Visual Geometry Group) architectures are known for their simplic-
ity and uniformity. VGG-16 has 16 layers, consisting of small 3 × 3 convolutional
filters [24].

For further details, interested readers can refer to [14] and references therein, and/or
to the Matlab Deep Learning Toolbox [16].

3. Experimental Setup and Evaluation Metrics

The software development environment used for the classification of the images in
this work was Matlab. In this framework, pretrained CNN models could be imported. To
prepare for the retraining of these networks, RGB images from the datastore, originally
of size [481, 601, 3], were resized according to the dimensions expected by each network
(see the Input Dimension column in Table 1 [16]). Additionally, for each network, the
classification layer was modified to accommodate the number of classes considered in this
application, i.e., 6.

Images from the datastore were randomly divided into a training set and a validation
set, with equal proportions. The optional training parameters, such as activation functions,
mini-batch size, and initial learning rate, were kept the same for all the CNNs considered.
For each network, training was halted when the accuracy had visually reached a plateau,
and there was no longer appreciable improvement. At the conclusion of the training,
accuracy was calculated on the validation set. The classifier accuracy was assessed as
described in the following section, Section Evaluation Metrics.
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Evaluation Metrics

In a classification experiment, let P(i) and N(i) denote the number of actual positive
and actual negative cases in the i-th class, respectively. Moreover, let TP(i), TN(i), FP(i),
and FN(i) represent the number of true positive, true negative, false positive, and false
negative cases, respectively, recognized by the classifier, for the i-th class. Based on these
quantities, the following rates can be defined:

TPR(i) =
TP(i)
P(i)

=
TP(i)

TP(i) + FN(i)
= 1 − FNR(i) (1)

TNR(i) =
TN(i)
N(i)

=
TN(i)

TN(i) + FP(i)
= 1 − FPR(i) (2)

FNR(i) =
FN(i)
P(i)

=
FN(i)

FN(i) + TP(i)
= 1 − TPR(i) (3)

FPR(i) =
FP(i)
N(i)

=
FP(i)

FP(i) + TN(i)
= 1 − TNR(i) (4)

These indices can be interpreted as follows:

• TPR(i) expresses the proportion of actual positives correctly classified by the model
as belonging to the i-th class. The best values of TPR approach 1, while the worst case
is when TPR approaches 0. TPR is also known as Recall or Sensitivity.

• TNR(i) expresses the proportion of actual negatives correctly classified as not belong-
ing to the i-th class. Similar to TPR, the best values of TNR approach 1, while the
worst values approach 0. TNR is also known as Specificity.

• FNR(i) expresses the proportion of false negatives in the i-th class, with respect to all
actual positives in the same class. In the best case, FNR approaches 0, while in the
worst case, it approaches 1.

• FPR(i) expresses the proportion of false positives in the i-th class with respect to the
total number of actual negatives in the same class. Similar to FNR, in the best case,
FNR approaches 0, while in the worst case, it approaches 1.

Another useful index is the Positive Predicted Value (PPV) or Precision, which, for the
generic class i, is defined as

PPV(i) =
TP(i)

TP(i) + FP(i)
= 1 − FDR(i) (5)

Here, FDR stands for False Discovery Rate. A useful way to collect most of these
performance indices is the Confusion Matrix (CM), examples of which are shown in
Section 4. On the confusion matrix (CM), the rows correspond to the predicted class
(Output Class), and the columns correspond to the true class (Target Class). The diagonal
cells correspond to correctly classified observations, while the off-diagonal cells correspond
to incorrectly classified observations. Both the number of observations and the percentage
of the total number of observations are shown in each cell. The column on the far right of
the plot shows the percentages of all the examples predicted to belong to each class that
are correctly and incorrectly classified, i.e., the PPV(i) and the FDR(i). The row at the
bottom of the plot shows the percentages of all the examples belonging to each class that
are correctly and incorrectly classified, i.e., the TPR(i) and the FNR(i), respectively. The
cell in the bottom right of the plot shows the total accuracy, here referred to as totAcc. The
total accuracy can formally be described by using expression (6):

totAcc = 100 ∑N
n=1 I(C(xn) = yn)

N
(6)

where

• I(g) is a function that returns 1 if g is true and 0 otherwise,
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• C(xn) is the class label assigned by the classifier to the sample xn,
• yn is the true class label of the sample xn,
• N is the number of samples in the testing set.

If expression (6) refers to the individual classes, i.e., evaluating expression (7)

classAcci =
100
Ni

Ni

∑
n=1

I(C(xn) = yn), i = 1, 2, . . . , K (7)

where

• Ni is the number of samples in class i in the testing set,
• K is the total number of classes,

We obtain the classical TPR(i) rate. However, in this paper, we prefer to use the term
class accuracy instead of TPR(i) and refer to it as classAcci.

Another useful tool for evaluating the reliability of supervised classifiers is the Receiver
Operating Characteristic (ROC) metric and, in particular, the area under curve (AuC(i)),
where the i-th index refers to the class. The ROC curves typically feature the true positive
rate on the Y axis and the false positive rate on the X axis. The top-left corner of the plot is
the ideal point, characterized by a false positive rate of zero and a true positive rate of one.
The best values of AuC(i) approach 1, while for a classifier performing randomly, AuC(i)
approaches 0.5.

4. Numerical Results

In this section, we provide a comprehensive analysis of the performance of various
neural networks employed for the classification of volcanic activity images in the considered
case study. The primary evaluation focuses on the crucial metric of total accuracy, providing
a holistic measure of each network’s ability to correctly classify images across all classes.

Figure 5 illustrates the total accuracy achieved by different neural networks, each
trained and tested as described in the previous Section 3. The total accuracy values represent
the percentage of correctly classified instances across all classes. Therefore, a higher total
accuracy indicates a more robust and effective network for the given classification task.

Figure 5. Comparison of Total Accuracy for selected networks.
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Based on the total accuracy, it appears that VGG-16 and AlexNet exhibited a total
accuracy greater than 90%, with VGG-16 outperforming the others considered in the
comparison, exhibiting a total accuracy of about 94%.

For deeper insights, the class accuracies for the VGG-16 and AlexNet CNN pretrained
models are shown in Figure 6.

Figure 6. Class Accuracy for the selected networks.

It is seen that the two classifiers had a similar accuracy with reference to the “No
activity”, “Lava flow or cooling products”, and “Degassing or ash emission” classes, with a
slight superiority of VGG-16 for the remaining classes (“Strombolian”, “Lava Fountain”,
and “Cloudy”).

The performances of VGG-16 in terms of the Confusion Matrix and ROC curves are
shown in Figures 7 and 8, respectively.

Figure 7. Confusion matrix for the VGG-16 classifier. The green and red boxes display the correctly
and uncorrectly classified events, respectively.
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Figure 8. ROC curves for the VGG-16 classifier.

It is necessary to stress that the two networks that exhibited the greatest accuracy, VGG-
16 and AlexNet, are the ones with the greatest number of parameters, as shown in Table 1.
Specifically, VGG-16 and AlexNet have 138 million and 61 million parameters, respectively.
Therefore, the cost of their higher accuracy compared to the others could be attributed to
this feature, which makes the learning phase slower and requires greater computational
resources. However, we believe that these aspects are less decisive in the choice of the model,
since once trained, the classifier can be implemented on standard computers available in a
monitoring room. It is necessary to observe that images are recorded with a frame rate of 1
or 2 frames per second, depending on the considered camera, which is much lower than
the classification time, typically a few milliseconds. However, at the present stage of the
project, the re-training of a classifier cannot be performed online since, for a large model
like VGG-16 and our dataset of images, it takes about 30 min to complete the training phase.

Highlighting the Role of Transfer Learning

To assess the impact of transfer learning, we implemented the following strategy.
Having established that the classification of volcanic activity images into six classes can be
achieved with satisfactory accuracy using a pretrained VGG-16, we attempted to train a
network with an identical architecture as VGG-16, but with randomly initialized connection
weights. We only adjusted the number of output classes to six. The non-pretrained network
was then trained using the same options employed for training the pretrained VGG-
16 model.

Upon the completion of the training, the network achieved results summarized by the
confusion matrix reported in Figure 9.
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As it is possible to see, the total accuracy achieved was 61.4%. Notably, only the
images belonging to the Lava Fountain class were correctly classified (class accuracy 100%),
and with a lower accuracy, images of the Strombolian class (class accuracy 75.6%). Images
belonging to the remaining classes were poorly classified.

Additionally, we considered a custom CNN with 17 layers, including 5 convolution
layers and 302,374 parameters. This custom CNN exhibited the following performance
metrics: total accuracy of 33.1%, which is evidently insufficient.

Figure 9. Confusion matrix for the non-pretrained VGG-16 classifier. The green and red boxes display
the correctly and uncorrectly classified events, respectively.

The stark contrast in performance between the pretrained networks and the networks
trained from scratch underscores the effectiveness of transfer learning for the considered
application. The pretrained VGG-16, leveraging knowledge from a broader dataset, out-
performed the networks initialized without pretrained weights. Transfer learning not only
improved the overall accuracy but also demonstrated the capability to recognize a diverse
set of volcanic activity classes.

5. Conclusions

This study addresses the challenging task of classifying thermal images capturing the
eruptive activity of Mount Etna, leveraging Convolutional Neural Networks (CNNs) with
a focus on pretrained models. Eight widely recognized pretrained neural networks were
rigorously experimented, demonstrating their efficacy in solving the classification problem
for ground-based thermal camera imagery.

Through empirical testing, several pretrained networks proved effective in achieving
an impressive total accuracy of approximately 90% after retraining on a limited dataset
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of 476 images. Notable performers included VGG-16, AlexNet, DarkNet201, GoogleNet,
and SqueezeNet.

A crucial finding of this work is the significance of transfer learning. Attempting to
solve the classification problem without leveraging pretrained networks yielded unsatis-
factory results, highlighting the effectiveness of transfer learning in geospatial imagery
analysis, especially in scenarios with limited labeled data.

In conclusion, the work conducted thus far is considered a work in progress, with
a series of planned extensions. Efforts are underway to expand the dataset of images
used for training from the current 476 to encompass thousands. However, this endeavor
is time-consuming and labor-intensive, given the meticulous process of data collection,
labeling, and verification required. The aim is not only to include data from a single camera,
as demonstrated in this study, but also ideally from all cameras within the network.

Furthermore, it is essential to develop an effective strategy for distinguishing strong
Strombolian activity from light Lava Fountain activity in the images. Currently, this
distinction relies more on volcanologists’ experience than measurable geometric factors,
presenting an ongoing challenge that requires careful consideration.

In summary, the results presented here provide significant impetus to continue towards
the adoption of pretrained classifiers for an effective solution to the problem posed in
this work.
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