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Abstract: Highly diverse agroecosystems are increasingly of interest as the realization of farms’ in‑
valuable ecosystem services grows. Simultaneously, there has been an increased use of uncrewed
aerial systems (UASs) in remote sensing, as drones offer a finer spatial resolution and faster revisit
rate than traditional satellites. With the combined utility of UASs and the attention on agroecosys‑
tems, there is an opportunity to assess UAS practicality in highly biodiverse settings. In this study,
weutilizedUASs to collect fine‑resolution 10‑bandmultispectral imagery of coffee agroecosystems in
PuertoRico. We created land covermaps through apixel‑based supervised classification of each farm
and assembled accuracy assessments for each classification. The average overall accuracy (53.9%),
though relatively low, was expected for such a diverse landscape with fine‑resolution data. To bol‑
ster our understanding of the classifications, we interviewed farmers to understand their thoughts
on how these maps may be best used to support their land management. After sharing imagery and
land cover classifications with farmers, we found that while the prints were often a point of pride
or curiosity for farmers, integrating the maps into farm management was perceived as impractical.
These findings highlight that while researchers and government agencies can increasingly apply
remote sensing to estimate land cover classes and ecosystem services in diverse agroecosystems, fur‑
ther work is needed to make these products relevant to diversified smallholder farmers.

Keywords: agroecosystem; drones; farm management

1. Introduction
Unlike the highly input‑dependent monocultures that make up a large portion of the

food production system [1,2], diversified agroecosystems have the capacity to maintain
ecosystem services, biodiversity, and farmer livelihoods representing a more sustainable
alternative to monocultures [3–5]. Coffee agroecosystems are ecologically, economically,
and politically significant to the neotropics [6]. Ecologically, coffee is significant because
of the species richness it has the potential to promote. While there exists a gradient from
which coffee is grown, ranging from unshaded monocultures to shaded polycultures and
agroforestry systems, many coffee farms in the neotropics promote biodiversity by plant‑
ing coffee in the shade of overstory vegetation. This overstory vegetation and other cul‑
tivated plants intercropped with coffee can provide habitat for wild flora and fauna and
regulate ecosystem functions [7–9]. Economically, a significant portion of the world’s cof‑
fee production takes place in Latin America [10–12]. Because of the significant economic
impact that coffee exports have on the neotropics, government policy has frequently en‑
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couraged high‑intensity production at the expense of more ecologically sound agroecosys‑
tems [13].

The advent of uncrewed aircrafts (UAs), or drones, means that remote sensing im‑
agery can be captured with a much finer spatial resolution, on the order of tens of cen‑
timeters [14], compared to satellites like Sentinel‑2A MSI and Landsat 8 OLI, which have
resolutions of 10–20 m and 30 m per pixel, respectively [15]. In addition to the increased
spatial resolution, drones have quicker revisit times and can be employed with greater
ease and maneuverability given appropriate conditions The flexibility and increased spa‑
tial resolution of drones mean that UAs have the potential to create vastly more accurate
land cover classifications. These advances in drone capabilities have the potential to better
support diversified farming systems by providing a platform to monitor key agroecologi‑
cal features, such as biodiversity, soil health, or pests [16].

While the use of finer‑resolution uncrewed aerial vehicle (UAV) data may aid in im‑
proving classification of more diverse farms, researchers and other outside actors making
these classifications should be aware of how their perceptions potentially impact classes
of interest [17]. In order to derive practical tools and analyses from classifications, farmers
should be included in the mapping and classification of their land. This becomes espe‑
cially important in diversified systems, as more nuances can exist in what does and does
not constitute a “crop”. Working in partnership with farmers highlights how emphases
on accuracy in certain land cover classes may differ between researchers and farmers, and
how this can lead to alternative sources of bias. For example, Laso et al. (2023) note that
the inclusion of “silvopastures” in their classification led to the potential underreporting
of another class. However, in Laso et al. (2023), the inclusion of “silvopastures” was more
relevant to farmers [17].

In this project, we sought to understand how fine‑resolution imagery enabled by ad‑
vancing UAV technology may bolster management of diversified smallholder farms. We
classified multispectral imagery taken by UAV over nine farms in the central western re‑
gion of Puerto Rico and presented imagery and classified maps of given farms to farmers.
After sharing imagery and maps with farmers, we interviewed the farmers to understand
how data collected by UAVs can be used in ways that align with farmers’ expectations and
needs. We synthesized the technical methodologies of remotely sensing diverse farms at
a high resolution and the results of engaging farmers in the initial classification of their
own land. In conducting this work, we acknowledge that use of UAVs has the potential
to reinforce historical, asymmetric power dynamics between researchers and land stew‑
ards [18]. By inviting land managers to review our initial classifications in interviews, we
hope to take steps towards empowering communities as the experts in their own lands and
de‑emphasize the power dynamics between researchers and land managers.

2. Materials and Methods
Our study took place in the coffee‑growing mountainous areas of central‑western

Puerto Rico. More specifically, farms were surveyed in Utuado, Adjuntas, Jayuya, and
Yauco (see Figure 1). Farms in these regions experience between 177 and 229 cm of an‑
nual rainfall [19] and are classified as submontane and lower montane wet forests [20].
Soils present in the coffee‑growing region include ultisols, inceptisols, and oxisols [21].
Farms surveyed were a part of long‑term coffee agroecosystem research in the region and
spanned across a gradient of coffee production intensification [8]. Coffee cultivation peri‑
ods significantly vary in this region, but coffee is generally harvested in autumn. Other
commonly found crops in these diverse agroecosystems include citrus trees, bananas, and
plantains. The farms surveyed had an average slope of 15.4 degrees. Farms ranged from
0.8 to 56.7 hectares in size. More information can be found in Table 1.
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Figure 1. Study sites within the central‑western coffee growing region of Puerto Rico. Municipal‑
ities layer from UN Office for the Coordination of Humanitarian Affairs. The figure is projected
to “StatePlane Puerto Rico Virgin Isl FIPS 5200 (Meters)”, a version of the Lambert conformal conic
projection, and has a datum of NAD 1983.

Table 1. Information on farm size, aspect, slope, and classification based on Moguel and Toledo’s
(1999) coffee growing gradient.

Farm Size (ha) Aspect Median Slope (◦) Classification

UTUA2 1.64 West‑facing 7 Commercial polyculture
UTUA16 0.96 South‑facing 12 Traditional polyculture
UTUA18 2.13 East‑facing 16 Traditional polyculture
UTUA20 1.63 South‑facing 18 Commercial polyculture
UTUA30 0.82 West‑facing 25 Traditional polyculture
YAUC4 2.47 North‑facing 12 Traditional polyculture
ADJUCP 3.45 North‑facing 12 Commercial polyculture
ADJU8 41.97 East‑facing 16 Shaded monoculture
JAYU2_3 56.05 South‑facing 17 Shaded monoculture
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The uncrewed aircraft (UA) flights used in this study were conducted in 2022 to col‑
lect 10‑band multispectral imagery. Before 2021, numerous preliminary data‑gathering
missions occurred with the use of fixed‑wing andmultirotor UAs. Ground data collection,
which includes the GPS and plant characteristic data, occurred in 2021, 2022, and 2023.
Interviews with farmers were conducted in May of 2023 and were subject to review and
exemption approval by the Institutional Review Board (IRB) of the University of Michigan.

2.1. Ground Data Collection
Ground data collection was conducted in field campaigns in 2021, 2022, and 2023 to

create control points to train and test land cover classification accuracy. We used the ESRI
Collector or ESRI FieldMaps smartphone app to capture data from a linked external GNSS
receiver. In earlier campaigns, the Trimble R1 was used, and in later campaigns, a Bad Elf
Flexwas incorporated andused as a secondaryGNSS receiver. Both of these externalGNSS
receivers were placed on a 2‑m tall survey pole in order to assist in an appropriate satellite
connection. Both external receivers increased GPS accuracy (as compared to integrated
GPS in the smartphones used to capture data), but steep topography meant that strong
connections to satellites were not always met, resulting in decreased GPS accuracy. The
Trimble R1 Receiver typically receives submeter accuracy [22], whereas the Bad Elf Flex
receives 30–60 cm accuracy on average [23]. Because of the steep topography, typically
accuracies of below 1 m were accepted. On very few occasions, accuracies were accepted
at around 1.5 m if a given surveyor had waited 5 min with no increase in accuracy.

At a given crop or plant of interest, the survey pole with attached external GPS was
placed as close to the base of the plant as possible. Using a smartphone and either ESRI’s
Field Maps or Collector, a GPS point was recorded. The data capture software recorded
various types of information for each GPS point. If the plant of interest was coffee, infor‑
mation on the coffee leaf rust (CLR) and leaf miner level was recorded. Other information
collected included the plant type, specific plant species if relevant, farm code, percent of
plant covered by vines, notes about the surrounding canopy, date and time of point collec‑
tion, and a photo of the plant or surroundings if desired.

2.2. Remote Sensing Flights with Uncrewed Aircraft
The uncrewed aircraft (UA) flights used in this study were conducted in mid‑May of

2022 to collect 10‑bandmultispectral imagery. UAwork and subsequentmethoddocumen‑
tation were in accordance with the Federal Aviation Administration’s (FAA) 14 CFR Part
107 regulations. Highly variable topography within the coffee‑growing region of Puerto
Rico required significant mission and flight planning in order to collect quality multispec‑
tral and LiDAR data. Mission planning was completed prior to arrival in Puerto Rico, and
included tasks such as identifying appropriate equipment and sensors for the specific ter‑
rain and creating standardized procedures. Google Earth Pro was first utilized to identify
farm boundaries and areas within farms that may be of special interest, in addition to be‑
ing used to identify potential divisions for farms that were too large to be imaged with a
single drone flight.

ADJI Inspire 2multirotor UAwas outfittedwith amultispectral imaging sensor. Mul‑
tispectral imaging for relevant field campaignswasperformedusing aMicaSenseRedEdge‑
MX Dual Camera Imaging System, which included 10 synchronized bands that spectrally
overlapped with Sentinel‑2A MSI and Landsat 8 OLI imagery (detailed in Table 2).
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Table 2. Spectral band information for the MicaSense RedEdge‑MX Dual Camera Imaging System
as compared to Sentinel‑2A MSI and Landsat 8 OLI.

Sentinel‑2A MSI Landsat 8 OLI MicaSense RedEdge‑MX Dual Camera
Imaging System

Spectral Region Wavelength
Range (nm) Spectral Region Wavelength

Range (nm) Spectral Region Wavelength
Range (nm)

Blue 458–523 Blue 435–451 Blue 430–458
Green peak 543–578 Blue 452–512 Blue 459–491

Red 650–680 Green 533–590 Green 524–538
Red edge 698–713 Red 636–673 Green 546.5–573.5
Red edge 733–748 NIR 851–879 Red 642–658
Red edge 773–793 SWIR1 1566–1651 Red 661–675

NIR 785–899 SWIR2 2107–2294 Red Edge 700–719
NIR narrow 855–875 Red Edge 711–723

SWIR 1565–1655 Red Edge 731–749
SWIR 2100–2280 NIR 814.5–870.5

On site, awaypoint‑defined flight planwas created inDJI Ground Station Pro on amo‑
bile tablet. The size of the farm, data needs, and underlying surface were considered in de‑
termining whether a single or double grid (cross‑hatch) flight pattern was flown (Figure 2).
Generally, larger farms were flown over as a single grid, as a double grid requires more
flight time and therefore more battery life.

Figure 2. (a) Depiction of a single‑grid flight pattern; (b) depiction of a double‑grid flight pattern.

Prior to farm classifications, basic image processing was performed in Agisoft
Metashape in order to create a georeferenced orthomosaic [24]. The default processing
utilized the GPS data generated by the UAS and MicaSense dual camera data capturing
process, with no additional manual ground control point input. Reflectance calibration
was performed, but no reflectance normalization was performed across flights or farms.
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2.3. Image Processing and Classification
The 2022 images were pre‑processed and classified for interviews with farmers in

2023. In order to run comprehensive, farm‑level classifications, it was determined that
for farms that had multiple multispectral images (UA flights), the various images should
be mosaicked to create one image per farm. Mosaics were created in ERDAS IMAGINE
using the MosaicPro tool, with an “overlay” overlap function specified, default “optimal
seamline” generation option chosen, and color corrections set to “histogram matching”.

Pixel‑based supervised classifications were run in ArcGIS Pro 3.1, sourced from Esri
Inc., Redlands, CA, USA. After loading in the mosaicked farm image, the ground control
points (GCPs) from three field campaignswere also layered on top. A classification schema
was created to encompass the dominant crops and land cover types across the farms, based
on previous visits. This schema included the following 10 classes: coffee, citrus, banana,
palms, low herbaceous vegetation/grass, bare earth, pavement, buildings, water, and over‑
story vegetation. For each class, training site polygons were drawn using GCPs as a ref‑
erence. For instance, if creating a training site for coffee, a polygon was drawn around
whichever coffee plant(s) a GCP identified as coffee. For farms that may be larger, signif‑
icant areas of land would have no GCPs. In order to create representative training sites
across the entirety of a farm, polygons were drawn in areas without GCPs that were visu‑
ally confirmed to match plants with associated GCPs. After creating ample training sites
for each class within each farm, a support vector machine (SVM) classifier was run on the
entirety of the farm. We expected that many farms may have a limited number of poten‑
tial training and testing sites. Knowing this, we selected SVM because the classifier makes
no assumptions about the data distribution [25] and is less susceptible to an imbalance in
training samples [26].

After preliminary classifications were completed, interviews occurred, and analysis
was finalized after the interviews. Accuracy assessments were run using testing created
with the same process as the training sites. For each farm, roughly the same number of
testing sites and training sites (0–15 sites depending on the farm and class) were created
for a given class. Asmuch as possible, testing sites did not overlapwith previously created
training sites, with a few exceptions. For instance, farms with water bodies typically only
had one small pond, which meant there was little to no separation between training and
testing sites for that class for that farm. Testing sites were used as reference data for the ac‑
curacy assessments, which were then run. We tested additional iterations of classifications
utilizing principal component analyses (PCAs) to determine if accuracy was increased by
the addition of more data (Table 3). While the inclusion of PCAs in classifications did not
ultimately improve classifications, the PCAs confirmed that 10 bands of imagery explained
more than 98% of the variance.

Table 3. Improved classification iterations applied on 2022 farm imagery.

Iteration Name Multispectral
Bands

Principal
Components Other Layers Farms Layer Stack Was

Performed on

Iteration A 1–10 一 一

UTUA2, UTUA16,
UTUA18, UTUA20,
UTUA30, YAUC4,
ADJU8, JAYU2

Iteration B 一 1–10 一
UTUA2, UTUA16,
UTUA18, UTUA20

Iteration C 5–7 1–3 一
UTUA2, UTUA16,

UTUA18
Iteration D 5–8 1–3 一 UTUA20
Iteration E 5–10 1, 2 一 UTUA2
Iteration F 5–7 1–3 NDVI UTUA2
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2.4. Farmer Interviews
In May 2023, we conducted semi‑structured interviews with farmers, land managers,

and owners, with references made to themultispectral imagery and the classifications. For
this purpose, we made posters of each farm’s multispectral imagery and classifications in
ArcGIS Pro 3.1. These posters were then printed on 32″ × 40″ matte paper These inter‑
views were conducted with the intention of better understanding land use history, farm‑
ers’ spatial relationships with their farms, and how remote sensing or land cover classifi‑
cations may improve the management or understanding of such complex agroecosystems.
Interviews were conducted onsite at farms, or at homes on farm property with teams of
2–3 researchers. Interviewees were asked if they consented to both the interview itself, as
well as being recorded during the interview using an audio recorder. See Appendix A for
more information on the interview script.

Our interviews assumed that we would be referencing the printed orthomosaics and
classifications, but many interviews also included walking areas of the farm with farm‑
ers as they pointed out specific crops or landmarks. Interview length varied greatly, with
some interviews under an hour and others over two and a half hours. This length variation
is primarily because interviews were farmer‑guided, with respondents addressing topics
they felt relevant. After a series of questions that were intended to orient researchers to the
specifics of a given farm, the multispectral image was shown to the farmers. This was in‑
tended to show the farmers what the UA had collected, as well as compile any preliminary
thoughts the farmers had on the UA itself. In earlier interviews, tracing paper was laid on
top of the multispectral image, and farmers were encouraged to annotate any areas they
felt important or of general interest. Annotating tracing paper was later removed as part of
the interview process, as farmers were often more comfortable speaking generally about
the land. After viewing the multispectral image, the classification image was brought out,
and farmers were asked questions about the utility of the classification in their manage‑
ment. Viewing the classification map was largely considered to be the conclusion of the
interview, and farmers were asked if they had any questions for the researchers. Both
the multispectral imagery and the classification maps were left with interviewees at the
conclusion of the discussions.

After the interviews were completed, they were uploaded into transcription software
and transcribed in Spanish. Researchers then translated the transcriptions from Spanish
to English, making corrections to the transcriptions where the software failed to capture
any regional language differences or language not otherwise captured. A content analysis
was run on the interviews, which included coding each interview transcript individually,
as well as synthesizing notes from interviews that were not recorded. In order to conduct
an effective content analysis, each theme was clearly defined by researchers. Examples or
quotes from interviews were highlighted and sorted into relevant themes. Each example
was again reviewed by researchers to ensure that a given example fit into the theme it
was assigned to. Each theme was linked to a more generalized research finding from the
interviews, and the relevance of each theme to the project at large was defined. Results
were then summarized and put into a content matrix.
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3. Results
3.1. Ground Data and Image Capturing

The results of drone flights for 2022 were largely successful. Ten farms were surveyed
with multispectral imagery. Table 4 details the number of flights flown per farm, as well
as the grid pattern flown at each farm. Farms that required multiple flights were flown
in succession, with brief pauses between flights to accommodate a battery change for the
drone. Of these 10 farms, all but two (ADJUCP and ADJU7) were classified. ADJUCP was
not classified as we were unsure if an interview would occur with land managers, and
ADJU7 was not classified as large amounts of water were highly reflective and changed
the color balance of the farmmosaic. In addition, Table 4 details the ground control points
(GCPs) collected by farm.

Table 4. The number of flights flown and ground control points collected by farm.

Farms Number of
Flights Grid Pattern Ground Control

Points
Auxiliary Ground
Control Points

UTUA2 1 Double‑grid 112 142
UTUA16 1 Double‑grid 20 52
UTUA18 1 Double‑grid 32 62
UTUA20 1 Double‑grid 41 80
UTUA30 2 Double‑grid 24 51
YAUC4 1 Double‑grid 28 51
ADJU8 7 Single‑grid 44 64
JAYU2_3 8 Single‑grid 63 170
Total GCPs 364 672

3.2. Classifications and Accuracy Assessments
An example classification result is shown in Figure 3. Classification figures for all

other farms can be found in Appendix B, Figures A1–A7. Training and testing sites are
detailed in Tables A1–A4 in Appendix C. Both training and testing sites are quantified in
two forms: polygons and pixels. Polygons designate the number of sites drawn, and pixels
refer to the total number of pixels across all polygons.

The initial landcover classifications were all assessed for accuracy. Table 5 details
both the overall accuracy of the classification, as well as the Cohen’s Kappa statistic. The
Cohen’s Kappa statistic incorporates errors of commission and omission and is regarded
asmore nuanced than that of overall accuracy [27]. Kappa is reported on a scale of−1 to +1,
with values closer to +1 indicating a stronger classifier. A classifier is considered strong if
it has a high accuracy while considering the expected accuracy of a random classifier [28].

The average overall accuracy across all farmswas 53.9%, and the averageKappa statis‑
tic across all farms was 0.409. Farm YAUC4 had the highest overall accuracy, as well as
the highest Kappa statistic. The farmwith the lowest accuracy and Kappa statistic for clas‑
sification was UTUA16. Individual accuracy assessments, including users’ and producers’
error, can be found in the Supplementary Material, Tables S1–S9.
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Figure 3. Example land cover classification of farm UTUA2 using 2022 multispectral imagery. All
maps shown are projected in the coordinate system “StatePlane Puerto Rico Virgin Isl FIPS 5200
(Meters)” datum of NAD 1983.

Our secondary classification results were similar to those of the initial classification,
but ultimately did not improve classification accuracy consistently. Because of this, they
were omitted from the paper, but more information on their results can be found in
Appendix D, Table A5. Individual accuracy assessments for secondary classifications can
be found in the Supplementary Material, Tables S10–S19.

Table 5. Accuracy of farm classification using 2022 imagery. The table details the overall accuracy
of each farm along with Cohen’s Kappa statistic.

Farm Overall Accuracy (%) Kappa (κ)

UTUA2 57.0 0.463
UTUA16 49.4 0.369
UTUA18 58.4 0.447

UTUA18_obj 36.8 0.221
UTUA20 52.4 0.388
UTUA30 51.3 0.391
YAUC4 74.0 0.509
ADJU8 53.5 0.463
JAYU2_3 52.6 0.430

3.3. Farmer Interview Content Analysis
We conducted a total of nine interviews, six of which were recorded on an audio

recorder, following the interviewee’s consent. Using the recorded interviews and notes
from the interviewees who did not consent to be recorded, we created a content matrix
(Table 6) to summarize shared themes across interviews. The themes highlighted included
utility, novelty, orientation, biodiversity, clarity, and land management. Farmers found
the maps interesting and exciting but were unsure if they were applicable to the land man‑
agement of their farms. Many farmers struggled to orient themselves, especially when
landmarks the farmers were familiar with were not overtly visible in the map. Many farm‑
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ers noted a lack of biodiversity or crops present in the map. Lastly, while viewing maps,
many farmers noted current or future management decisions they considered. These were
included in the content matrix, as they may inform future iterations or methodologies
of classifications.

Table 6. Content matrix summarizing interview findings.

Themes Quote/Example Research Finding Subthemes
Relevance to Land Cover
Classification Map and

Methodology

Utility “What is the purpose of us
seeing this?”

Many farmers were unsure
how the classification maps

could fit into the farm
management but were excited
about the maps and being

able to keep them.

Beauty

Landcover maps are created with
the intention of better

understanding the makeup of a
given area to enhance land

management. However, there were
no clear farmer‑generated ideas on
the implementation of the maps in
their own management, nor any
motivation to implement the ones

suggested by researchers.

Novelty

The majority of farmers
provided excited
exclamations when

presented with a map. Farmers are open to the use of
maps and the classification
and visuals in their present

form.

Pride, Technology

There is still excitement about the
prospect of utilizing drone imagery
and classifications but there still
exists a gap in understanding the
applicability of relatively new
technology in these contexts.

“You can think you know
everything. On the contrary,
huh. Technology advances,
Knowledge is continuous”.

Orientation

“I don’t know where it is”

. When relevant personal
landmarks were noted,

farmers often used them to
orient themselves. In the case
that they were not present,
their absence was noted, and
farmers then used other
points or direction from
interviewers to orient

themselves.

Movement,
Landmarks,
Perspectives

In connection to novelty and utility,
a lack of orientation means that the
imagery or classification maps may

not be implemented and may
instead become a barrier for farmers

engaging with this technology.“Oh, there’s my lake!” or “I
let myself be led by the

buildings”.

Biodiversity

Many farmers noted that
other food crops and

vegetation were present on
the farm but had not been
mapped (i.e., peppers,

guaraguao trees, smaller
citrus, mangoes).

Within diversified farming,
there is a wealth of food crops

and non‑food crops that
farmers prioritize.

Food Crops, Land
Management

While capturing biodiversity
present in diverse agroecosystems is
desired, maps created that highlight

such diversity may also be
overwhelming or imperceivable to
those who have not yet had an

introduction to this type of imagery.

Clarity

“I know the farm, but that’s
not exactly it, but it’s not

because I really see it there”.
While farmers express

wanting representation of the
entirety of crops and
vegetation, a cursory

introduction to the maps in a
simplified form aids synthesis

of imagery and content.

Digestibility,
Simplification

Understanding the audience of a
map is a principal element of

cartography. In a setting such as this
study, creating a simpler iteration
may serve as a tool with which to
foster connections and understand

where to expound upon
classifications or tools in the future.

Visual representation
provided in a concise

format supported outward
expressions of map

legibility.

Land
Management

A farmer speaking to the
increased heat noted they

needed to plant more plants
to shade coffee.

Land management techniques
often include practices to
address climatic conditions.

By diversifying crops, farmers
are better shielded from

economic downturns and a
rapidly changing
environment.

Crop Selection, Crop
Placement

Land management may inform
classifications by creating more

targeted areas for ground truthing
and testing sites. For example, if a
farmer noted that coffee was planted
under an area of dense canopy, it

may make sense to ground truth the
area heavily and test the degree to
which the coffee in that area was

present in the classification.

Farmers intercropped coffee
with citrus as a means of
protecting the coffee (their

primary crop).
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4. Discussion
We learned from our interviews with farmers how our maps could be improved in

terms of accuracy and relevance. While diversified coffee agroecosystems have amyriad of
potential land cover classes, we initially believed that fewer classification categories would
support the legibility of the maps to farmers who might be unfamiliar with this format.
However, many farmers noted that biodiversity and plants that they deemed important
were absent from our maps. These exchanges underscore the importance of contextual‑
izing the development of a classification workflow with local knowledge, as it can help
identify critical problems that justify extra effort to provide a more relevant deliverable
for farmers.

We obtained an average kappa value across all farms of 0.409, meaning that the classi‑
fiers, generally, were fair in comparison to a random classifier [29,30]. Many of the farms
had a slight disagreement between overall accuracy and the kappa index; for instance,
YAUC4 had an accuracy of 74% (or 0.74) and a kappa statistic of 0.51. In the case of all
classification iterations in this paper, the overstory vegetation class often had more train‑
ing and testing sites made of larger polygons, and therefore more pixels. While the higher
amount of pixels of overstory vegetation may have skewed overall accuracy, the kappa
statistic takes into account the relative impact of each class, meaning that it is not skewed
by a single well‑represented class [27,28,31]. It is worth noting, in this paper and other‑
wise, that while overall accuracy and the kappa statistic are common ways to evaluate
land cover classifications in the remote sensing field, more recent literature [32,33] has
highlighted that confusion matrices are not entirely reliable and need to be analyzed with
some understanding that the accuracies reported are not absolute.

Somewhat expectedly,manyof the vegetation classes (i.e., coffee, citrus, banana, palm,
and overstory vegetation) were misclassified as other vegetation classes. Because these
classes are spectrally similar, and because the initial classifications utilized all 10 bands,
including those that had little separation between classes within the same band, it could
be anticipated that there would be some confusion amongst these classes. Figure 4 illus‑
trates the spectral similarities across vegetation training classes. Another area of confusion
was between the pavement and building classes. Across many of the farms, buildings and
pavementsweremisclassified as one another, butwere less oftenmisclassified as bare earth
and vegetation.

Figure 4. The spectral profile of vegetation classes for farm UTUA2.
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There exists a myriad of reasons why the land cover classifications of this paper may
be considered “inaccurate”, many of which have been alluded to earlier in this discussion.
One such reason may be the inability of researchers to distinguish land cover types in mul‑
tispectral imagery. For instance, on many farms, coffee may be grown under the canopy
cover of other vegetation. If all coffee ground control points were obscured by larger over‑
story vegetation, researchers would be unable to accurately draw training and testing sites.
In addition, some classes present on farms, while relevant, lacked sufficient training and
testing points due to their rarity. As an example, we trained the classifier to identify citrus
in UTUA20, but found that the small number of citrus trees present meant testing sites
were either generated on the same trees training was performed on, or testing was unable
to be completed.

Our classification results could be improved with additional steps that were not avail‑
able to us at the time but may benefit future studies. We were unable to conduct radiomet‑
ric normalization prior to the image mosaicking process, which may have improved con‑
sistency across flights and farms [34]. While histogram equalizationwas conducted during
the mosaicking process, the resulting mosaics still had visible radiometric differences. For
example, radiometric normalization could have reduced the bright spots present in one
flight over ADJU7, which likely led to spectral imbalances that prevented us from suc‑
cessfully classifying the imagery of this farm. In addition, if radiometric normalization
occurred earlier in the process, it may have been feasible to train the classifier on only one
farm and then apply it across farms. This would reduce the work to create many training
sites across farms in order to compensate for the radiometric discrepancies. Additionally,
classifications may be improved by using ground control points in orthomosaic creation.
During the processing of imagery in Agisoft Metashape, only the internal UA GNSS sys‑
tem was used to georeference raw images. By including ground control points collected
with a more precise external GPS receiver in the image processing methodology, multi‑
spectral imagery may have been better aligned with ground control points collected for
building training sites. More broadly speaking, the inclusion of more GCPs in creating
training and testing sites may also improve classification accuracy. However, for some re‑
search, the time and labor needed to complete more ground truthing may not be justified
by an increased overall accuracy.

Analyzing the interview recordings and notes allowed for a more nuanced under‑
standing of the remote sensing work conducted in this study. It became very apparent
during interviews that farmers and land managers were extremely excited to view, talk
about, and keep the map printouts. Many remarked that the images of their farms were
beautiful and were excited to display the printouts for others to see but were unsure of
how the maps or products derived from the maps could be implemented in regular man‑
agement. One farmer noted that they planned to hang imagery in a cafe for visitors to see,
but when questioned about the utility of the map in their work, they indicated that they
would instead be more interested in utilizing the drone to evenly distribute pesticides.

While the beauty and excitement of images and landcover classification maps are of‑
ten overlooked as an aspect of utility in the remote sensing field, we understood this to be
an extremely important subtheme, as it becamemore evident that farmers and researchers
could build further rapport by addressing the beauty of the images and the farms that land
managers work so hard to maintain. Connection building in the context of this paper is
extremely relevant, as land cover classifications are regarded as an iterative process [17].
By fostering better connections between researchers and farmers, we can more intimately
understand the ways in which our work fits into farmers’ management and make adjust‑
ments to maps accordingly. In many of our interviews, interviewees often pointed out a
lack of diversity ormissing landmarks. Without having conversationswith landmanagers,
researchers are limited to making changes that may not be useful to farmers and instead
only serve to increase classification accuracies for schemas that were flawed themselves.

Farmers who communicated to us that maps were lacking relevant information also
had more difficulty orienting themselves during interviews. One farmer remarked that
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he had often regarded his land as a square parcel and viewing it as the roughly rectangu‑
lar shape the imagery was captured as led him to become disoriented. The farmer also
noted that he might have been able to orient himself in spite of his perception of the parcel,
but only if landmarks he passed by daily had been included and labeled as such. When
farmers are not able to orient themselves to the imagery, implementation of the maps in
management becomes even farther fetched.

While many farmers indicated absent crop and vegetation diversity in the land cover
classification map, we felt that sharing a more simplistic map first actually enhanced the
feedback we received and farmers’ own understanding of the maps. Because the map
shared was simpler, farmers noted specific areas where they were interested in seeing
more detail, where they were practicing a given land management technique, or where
they had a few personally relevant crops. In addition, we believe that the lack of detail
present allowed for quicker orientation and better clarity of understanding of the maps.
This was extremely important, as we understood that land managers had never seen their
land displayed in this manner and needed some time to relate the imagery to land they
were intimately familiar with.

Including interviews as part of this project greatly enhanced the findings of this paper
and would enhance any future work in similar settings. Colloredo‑Mansfield et al. found
similar results in their work, noting that participatory drone mapping allowed researchers
to ascertain broader and more relevant information about land management [35]. In ad‑
dition, Colloredo‑Mansfield et al. found that producing land cover classification maps al‑
lowed them to understand sensitive areas of farms (e.g., where youngplantswere growing)
and establish rapport between researchers and farmers. Following Colloredo‑Mansfield
et al. [35], it is clear that our project would benefit from more knowledge sharing between
researchers and farmers. One farmer noted during our interview that while she was ex‑
tremely excited about participating in research, she was disappointed that she previously
had no proof of the drones being on the property to share with a friend. By leaving her
with the printout of the map and a description of the work we had done, the farmer may
be more likely to continue working with researchers. In return, we received valuable feed‑
back on the crops and vegetation relevant to her on her property. Similar land cover classi‑
fication projects would benefit from additional iterations incorporating such feedback and
knowledge‑sharing.

The detailed nature of the high‑resolution imagery was seemingly part of the interest
that farmers had in interacting with the printouts. While the pixel‑based supervised land
cover classifications had fair accuracy, switching to an object‑based classification would
likely increase the overall average accuracy, as it is documented that object‑based classi‑
fications perform better, especially at finer resolutions [36]. However, the fine‑resolution
data presented in this paper came at a cost of increased processing power and time require‑
ments for each step of image processing and classification. Object‑based classificationsmay
require even more computational power, especially at the segmentation step [37].

Classification maps may also be enhanced with the addition of elevation or surface
data, like LiDARdata that are collected together with themultispectral imagery, and could
be the subject of collaborative data fusion projects. Farmers interviewed also often noted
that they oriented themselves using peaks and valleys present on farms, something not
reflected in the printout of the multispectral imagery or land cover classification maps.
However, including data of this type may mandate a more dynamic format in which to
present maps to farmers. While digital elevation and surface models are something many
in remote sensing are familiar with, viewing elevation data on a 2D plane may still present
some challenges for those who have not seen such maps before. This potentially could be
remedied by creating a 3D model of the surface or elevation data and viewing it together
with farmers on a computer.
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5. Conclusions
This study was conducted to better understand pixel‑based supervised classifications

of diverse ecosystems, and the utility these classifications have for researchers and land
managers. We applied this exploration to coffee agroecosystems in Puerto Rico, contribut‑
ing to the growing literature on understanding the role of UAS‑collected fine‑resolution
imagery. We found that while our land cover classifications were only moderately accu‑
rate, increased accuracy could be achieved by utilizing different methodologies and better
ground truths. In addition, we concluded that while farmers were unsure about using
the maps as a farm management tool, they were still excited about the technology being
applied to their land and grateful to have a better understanding of the research being
conducted. We also found that sharing our maps with farmers, even with their flaws, gen‑
erated better communication between researchers and farmers and created the opportu‑
nity to “be attentive to the ‘social position of the new map and how it engages institu‑
tions’” [17,38], rather than reinforcing historical power dynamics.

However, there still exist many opportunities to expand and improve this research.
Improving remote sensing methodologies includes further exploring object‑based classifi‑
cations in the context of Puerto Rican coffee agroecosystems, and improving farmer collab‑
oration could include viewingmore map iterations after classifications have been adjusted
to incorporate farmer feedback. Both remote sensing and interview methodologies would
be improved by visiting farmers and their land more often. We argue that this work en‑
courages further exploration of fine‑resolution remote sensing in coffee agroecosystems,
as well as further work alongside landmanagers to create classification schemes and prod‑
ucts better suited to their management needs.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/geographies4020019/s1, Table S1–S19: accuracy assessments for
all iterations.
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Appendix A
English Version of Interview
Note: The interviews will be conducted in Spanish, but we have included the English

version for IRB purposes.
“Hello,myname isNayethziHernandez and this ismy colleagueGwenKlenke. We’re

both graduate students at the University of Michigan. And this project is in collaboration
with Ivette Perfecto, who you know. Thank you for taking the time to participate in this
study. AsWarren let you know, our team is looking into diverse Puerto Rican coffee farms
and agroecology systems. As someone who is so knowledgeable, I really appreciate your
time. Through interviews, we’re just looking for generalizable information, and none of
this will be identifiable. If that’s still okay with you it’ll take us roughly 1 h. Before we
begin I want to confirm that it’s okay that I record our conversation. Please let me know if
anything comes up during the interview you just let me know.

Excellent! Let’s begin talking a bit about your land.
Question group 1: Land history and farm management
Can you tell me a bit about how you started growing coffee?
When it comes to your farm, what are your goals with your crops?
Could you tell me a little bit about how you decided to put which crops where?
What type of knowledge or techniques influence how you manage the farm?
Could you tell me about some of the environmental changes that you’ve experienced

while farming this land?
What are some goals you have for your farm?
Question group 2: Show farmers the map
*Translate what Gwen says about how the maps are made*
When you first look over the map what are some of your thoughts?
Question group 3: Map review
After looking over the map, what are areas of the map that are of interest to you?
Are there any changes you would like to consider when looking over this map?
If this technology was available to you would it be helpful for farm management?
If it’s helpful to you, how often would you want an updated map?
Closing:
Thank you so much for your insights! We really appreciate your time. We invite you

to keep the map if you’d like it. Before we finish, is there anything you’d like to ask or say
to us regarding the map or the interview? I will provide you with my contact information
if you have any questions for me about this study, or anything else”.
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Appendix B

Figure A1. Land cover classification of farm UTUA16 using 2022 multispectral imagery.

Figure A2. Land cover classification of farm UTUA18 using 2022 multispectral imagery.
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Figure A3. Land cover classification of farm UTUA20 using 2022 multispectral imagery.

Figure A4. Land cover classification of farm UTUA30 using 2022 multispectral imagery.
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Figure A5. Land cover classification of farm YAUC4 using 2022 multispectral imagery.

Figure A6. Land cover classification of farm ADJU8 using 2022 multispectral imagery.
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Figure A7. Land cover classification of farm JAYU2_3 using 2022 multispectral imagery.

Appendix C

Table A1. Number of training sites for each class in each farm. Each site is a polygon drawn around
one representative site.

Farm
Sites/Polygons

Total
Coffee Citrus Banana Palm Grasses/Low

Herb
Bare
Earth Paved Buildings Water Overstory

Veg
UTUA2 16 9 3 3 6 6 2 4 0 1 50
UTUA16 3 0 2 5 1 1 1 2 1 2 18
UTUA18 0 0 4 0 3 3 2 2 0 3 17

UTUA18_obj 6 0 2 0 2 3 3 3 0 2 21
UTUA20 4 7 4 0 2 4 2 3 0 2 28
UTUA30 10 0 8 0 2 4 4 4 0 4 36
YAUC4 9 0 6 0 8 5 4 3 0 3 38
ADJU8 14 0 14 0 10 10 3 6 2 7 66
JAYU2_3 22 0 14 11 10 12 7 10 2 11 99

Table A2. Number of pixels in training sites per class in each farm classification.

Farm
Pixels

Total Image
PixelsCoffee Citrus Banana Palm Grasses/Low

Herb
Bare
Earth Paved Buildings Water Overstory

Veg Total

UTUA2 15,420 89,118 17,989 148,768 60,581 47,051 20,753 185,462 0 130,191 715,333 46,438,992
UTUA16 22,218 0 219,318 164,487 46,675 13,170 4615 85,679 26,321 448,878 1,031,361 40,464,036
UTUA18 0 0 29,439 0 21,740 113,898 8102 54,437 0 246,623 474,239 45,370,368

UTUA18_obj 19,621 0 14,374 0 52,909 161,456 18,481 60,649 0 427,093 754,583 45,370,368
UTUA20 4467 24,900 218,041 0 28,145 20,922 13,867 176,316 0 346,139 832,797 37,109,000
UTUA30 9420 0 45,587 0 37,646 18,861 23,754 55,815 0 1,339,405 1,530,488 34,595,745
YAUC4 13,393 0 74,659 0 63,188 49,843 107,538 142,527 0 983,011 1,434,159 49,498,494
ADJU8 36,804 0 10,892 0 96,113 48,835 23,161 99,930 45,674 424,707 786,116 175,322,016
JAYU2_3 60,510 0 42,551 47,663 361,668 163,092 57,446 142,129 10,865 635,097 1,521,021 184,144,180
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Table A3. Number of testing sites per class for each farm. Each site is a polygon drawn around one
representative site.

Farm
Sites/Polygons

Totals
Coffee Citrus Banana Palm Grasses/Low

Herb
Bare
Earth Paved Buildings Water Overstory

Veg
UTUA2 9 4 4 3 5 5 3 3 0 2 38
UTUA16 0 0 3 3 2 3 2 2 1 2 18
UTUA18 7 1 3 0 4 9 5 5 0 4 38

UTUA18_obj 7 1 3 0 4 9 5 5 0 4 38
UTUA20 6 0 4 1 3 9 5 5 0 3 36
UTUA30 11 0 4 2 3 3 4 3 0 2 32
YAUC4 11 0 5 3 6 7 3 2 0 3 40
ADJU8 16 0 13 0 10 10 3 3 2 4 61
JAYU2_3 22 0 15 4 12 12 7 4 1 5 82

Table A4. Number of pixels in testing sites per class for each farm.

Farm
Pixels Total

Image
PixelsCoffee Citrus Banana Palm Grasses/Low

Herb
Bare
Earth Paved Buildings Water Overstory

Veg Totals

UTUA2 3810 17,091 18,297 80,214 54,190 10,729 38281 125,668 0 203,356 551,636 46,438,992
UTUA16 0 0 7781 61,145 41,312 9343 9845 11,010 37,650 233,632 411,718 40,464,036
UTUA18 2493 4121 59,215 0 28,739 22,514 32,468 80,595 0 260,498 490,643 45,370,368

UTUA18_obj 2493 4121 59,215 0 28,739 22,514 32,468 80,595 0 260,498 490,643 45,370,368
UTUA20 2793 0 21,690 24,840 9667 23,540 6096 99,500 0 239,493 427,619 37,109,000
UTUA30 2483 0 2546 38,088 35,111 22,465 22,665 31,082 0 137,590 292,030 34,595,745
YAUC4 7746 0 34,838 79,386 10,584 52,144 24,292 5484 0 367,339 581,813 49,498,494
ADJU8 18,869 0 43,640 0 49,656 69,418 14,798 51,844 56,798 306,815 611,838 175,322,016
JAYU2_3 14,095 0 41,412 28,680 51,561 35,116 33,236 337,495 16,366 296,676 854,637 184,144,180

Appendix D

Table A5. Accuracy of secondary classifications. The table details the overall accuracy of each farm
along with Cohen’s Kappa statistic.

Iteration Farm Overall Accuracy (%) Kappa

B

UTUA2 51.3 0.399
UTUA16 51.6 0.389
UTUA18 55.3 0.425
UTUA20 52.7 0.395

C
UTUA2 45.4 0.361
UTUA16 51.2 0.376
UTUA18 46.9 0.324

D UTUA20 50.9 0.372

E UTUA2 47.3 0.380

F UTUA2 45.6 0.358

Secondary classifications were completed using several alternate band combinations,
but overall, the new layer stacks did not lead to an increase in accuracy under these meth‑
ods. With the exception of three classifications (Iteration B of farm UTUA16, Iteration B of
farm UTUA20, and Iteration C of farm UTUA16), overall accuracies of secondary classifi‑
cations were lower than the initial classification, although the differences in all cases were
only marginal. When considering Iteration A accuracies alongside Iterations B–F, the aver‑
age overall accuracies could not be directly compared because not all farms initially classi‑
fied were used in the secondary classifications. However, when comparing Iteration A to
each of Iterations B, C, and D, and filtering to only the relevant farms, the accuracy for Iter‑
ation A maintained a higher overall average than the respective secondary classifications.
The lowered accuracies of secondary classifications were somewhat anticipated. While
it has been documented that ancillary data work well to enhance object‑based classifica‑
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tions [37], the effects are not as strong for pixel‑based classifications because pixel‑based
classifications lack “objects” that ancillary data can contextualize [37].
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