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Abstract: Background: Artificial intelligence in medicine is a field that is rapidly evolving. Machine
learning and deep learning are used to improve disease identification and diagnosis, personalize
disease treatment, analyze medical images, evaluate clinical trials, and speed drug development.
Methods: First, relevant aspects of AI are revised in a comprehensive manner, including the classifica-
tion of hematopoietic neoplasms, types of AI, applications in medicine and hematological neoplasia,
generative pre-trained transformers (GPTs), and the architecture and interpretation of feedforward
neural net-works (multilayer perceptron). Second, a series of 233 diffuse large B-cell lymphoma
(DLBCL) patients treated with rituximab-CHOP from the Lymphoma/Leukemia Molecular Profiling
Project (LLMPP) was analyzed. Results: Using conventional statistics, the high expression of MYC
and BCL2 was associated with poor survival, but high BCL6 was associated with a favorable overall
survival of the patients. Then, a neural network predicted MYC, BCL2, and BCL6 with high accuracy
using a pan-cancer panel of 758 genes of immuno-oncology and translational research that includes
clinically relevant actionable genes and pathways. A comparable analysis was performed using gene
set enrichment analysis (GSEA). Conclusions: The mathematical way in which neural networks
reach conclusions has been considered a black box, but a careful understanding and evaluation of
the architectural design allows us to interpret the results logically. In diffuse large B-cell lymphoma,
neural networks are a plausible data analysis approach.

Keywords: artificial intelligence; machine learning; artificial neural networks; lymphoma; hemato-
logical neoplasia; immuno-oncology; MYC; BCL2; BCL6; diffuse large B-cell lymphoma

1. Introduction
1.1. Classification of Hematopoietic Neoplasms

The current classification of hematopoietic neoplasms integrates data from several
sources, including histological features, immunophenotype, molecular pathology, and
clinical features [1]. Therefore, there is a consensus between pathologists, hematologists,
oncologists, geneticists, and bioinformaticians [1–4]. The classification can be divided into
myeloid neoplasms, lymphoid neoplasms, and other categories, such as mastocytosis and
histiocytic/dendritic neoplasms [1,5].

Myeloid neoplasms derive from progenitor cells from the bone marrow and can
differentiate into erythrocytes, granulocytes, monocytes, and megakaryocytes. They include
myeloproliferative neoplasms, such as chronic myeloid leukemia, acute myeloid leukemia,
and myelodysplastic syndromes [1,5].

Lymphoid neoplasms originate from B lymphocytes and T lymphocytes. They include
precursor B- and T-cell lymphoid neoplasms (acute lymphoblastic leukemia/lymphoma),
mature B-cell neoplasms, such as chronic lymphocytic leukemia, follicular lymphoma,
diffuse large B-cell lymphoma, and multiple myeloma; mature T or natural killer (NK)
cell neoplasms, such as peripheral T-cell lymphoma (PTCL); and Hodgkin lymphoma.
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Hodgkin lymphoma is characterized by a mixed inflammatory cell background that in-
cludes a minority of neoplastic cells, known as Reed–Sternberg cells, and their variants,
which are derived from germinal or post-germinal centers [1,5]. Figures 1 and 2 show a
summarized version of the classification of hematopoietic neoplasms and characteristic
histological images.
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Figure 2. Histological images of lymphoma subtypes (Hematoxylin and Eosin staining; original 
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phoma (BL), diffuse large B-cell lymphoma (DLBCL) with MYC rearrangement (MYC-R+), high-
grade B-cell lymphoma with MYC, BCL2, and BCL6 rearrangement (triple-hit lymphoma (THL)), 
classical Hodgkin lymphoma (cHL), peripheral T-cell lymphoma (PTCL), not otherwise specified 
(NOS), and monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL). 
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Figure 2. Histological images of lymphoma subtypes (Hematoxylin and Eosin staining; original mag-
nification 400×). Chronic myeloid leukemia (CML), acute myeloid leukemia (AML), B lymphoblastic
lymphoma (B-LBL), chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), lym-
phoplasmacytic lymphoma (LPL), plasma cell myeloma (PCM), mucosa-associated lymphoid tissue
(MALT) lymphoma, follicular lymphoma (FL), mantle cell lymphoma (MCL), Burkitt lymphoma
(BL), diffuse large B-cell lymphoma (DLBCL) with MYC rearrangement (MYC-R+), high-grade B-
cell lymphoma with MYC, BCL2, and BCL6 rearrangement (triple-hit lymphoma (THL)), classical
Hodgkin lymphoma (cHL), peripheral T-cell lymphoma (PTCL), not otherwise specified (NOS), and
monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL).

1.2. Diffuse Large B-Cell Lymphoma

Diffuse large B-cell lymphoma (DLBCL) is one of the most frequent non-Hodgkin lym-
phomas (NHLs) and mature B-cell neoplasms, accounting for around 20–25% of NHLs. DLBCL
is a heterogeneous disease and has morphologic, genetic, and biologic characteristics [1,5].
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The typical clinical presentation is a rapidly enlarging mass in the neck or abdomen.
Extranodal involvement is common with high LDH levels, and “B” symptoms are present
in 30% of the patients. Advanced stage III/IV is found in 60% of cases [1,5].

DLBCL arises from B lymphocytes of the germinal center of follicles or the post-
germinal zone [1,5]. The pathogenesis is multifactorial and includes aberrant BCL6 ex-
pression, TP53 downregulation, somatic hypermutation, BCL2 and MYC overexpression,
immune evasion by changes in the tumor immune microenvironment and immune check-
point, and abnormal lymphocyte trafficking [5]. Based on the cell of origin classification
and gene expression profiling, DLBCL can be divided into germinal center B-cell type
(GCB), activated B-cell type (ABC), and unclassified (UNC) [5–12].

This diagnostic category includes other separate subtypes, such as T-cell/histiocyte-
rich large B-cell lymphoma, primary DLBCL of the mediastinum, intravascular large B-cell
lymphoma, Epstein–Barr virus-positive large B-cell lymphoma, primary DLBCL of the
central nervous system, etc. [1]. Therefore, DLBCL is not a single disease but a collection of
morphologically, genetically, and clinically different diseases [3].

The category high-grade B-cell lymphomas (HGBCLs) included the HGBCL, NOS, and
HGBCL with MYC and BCL2 and/or BCL6 rearrangements (DH or triple-hit [TH]) [1]. Fur-
ther studies have supported the differentiation between HGBCL-DH-BCL2, GCB-DLBCL,
NOS, and HGBCL-DH-BCL6 [3]. HGBCL and NOS remain a diagnosis of exclusion of cases
that are not HGBCL-DH and have intermediate-size cells, often with blastoid or Burkitt-like
cytology, but they lack characteristics of DLBCL or Burkitt lymphoma [3]. Of note, more
detailed descriptions are found in the publications of the currently updated lymphoma
classification [3,4].

This histological variability of DLBCL is shown in Figure 3.

1.3. Types of Artificial Intelligence

Artificial intelligence (AI) is a discipline of data analysis that combines the information
present in datasets with information technology and data processing methodology to
solve problems. AI includes machine learning and deep learning methods that can make
predictions (outputs) based on several predictors (inputs).

There are several definitions and subtypes of AI. The most commonly used AI is
weak AI or narrow AI (ANI), which aims to solve specific and concrete problems, such as
autonomous driving vehicles. Conversely, strong AI emulates the human mind. Within
strong AI, two subtypes are defined. (1) Artificial general intelligence (AGI) equals the
human mind, including awareness of oneself and the environment. AGI manages to
identify problems, learn how to solve them, and make early plans to recognize and address
emerging issues. (2) Artificial superintelligence (ASI) is more advanced than human
intellect (Figure 4).

1.4. Applications of Artificial Intelligence in Medicine

Nowadays, there are many applications of AI, the most common being speech recog-
nition that transforms human speech into text, virtual agents that are usually used in
customer portals and replace frequently asked questions (FAQs), computer vision that
acquires information and meaningful data from images and visual inputs and utilizes
convolutional neural networks, recommendation engines that analyze previously data by
algorithms and identify data trends, and automated trading in stocks.

AI has numerous applications in the medical field, and in recent years, there has been
an exponential increase in the number of publications about AI in medicine. If properly
designed and implemented, AI can be beneficial in the practice of medicine, including
disease detection and diagnosis, personalized medicine, medical imaging, clinical trial
effectiveness, and drug development (Table 1).



Hemato 2024, 5 123Hemato 2024, 5, FOR PEER REVIEW 5 
 

 

 

Figure 3. Histological variability of diffuse large B-cell lymphoma (DLBCL). DLBCL is one of the most
frequent mature B-cell neoplasms. DLBCL is a heterogeneous disease with differentmorphologic,
genetic, and biologic characteristics. scale bar = 25 µm.
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Figure 4. Types of artificial intelligence. Artificial intelligence (AI) is a broad term that includes
several analytical techniques, such machine learning and deep learning (artificial neural networks).
AI can also be classified according to comparison with the human intellect, which is also based on
an organic neural network, such as narrow AI, artificial general intelligence (AGI), and artificial
superintelligence (ASI).
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Table 1. Applications of artificial intelligence in the medical field.

1. Disease detection

1.1. Using DNA methylation analysis, a neural network was used for the early detection of
hepatocellular carcinoma [13].

1.2. Several biochemical parameters from the cerebrospinal fluid were evaluated using Raman
spectroscopy and convolutional neural networks for the early diagnosis of Alzheimer’s
disease. The study achieved a good classification accuracy of around 90% and a good
correlation with the clinical dementia rating score [14].

1.3. Several machine learning techniques and artificial neural networks were used to predict
heart disease at an early stage using clinical, biochemical, and ECG data. In this study, the
highest accuracy was achieved using random forests [15].

1.4. A machine learning algorithm was used to classify patients with coronary disease based on
31 features. The classification had an acceptable accuracy for the identification of severe
disease [16].

2. Personalized medicine

2.1. A proof-of-concept analysis based on machine learning algorithms was used to classify
patients with similar clinical and echocardiographic parameters to optimize the rate of
responders to specific cardiac resynchronization therapies [17].

2.2. Several machine learning algorithms were used to identify patients with a higher
probability of major depression and anxiety disorder and who would benefit from digital
psychiatric interventions [18].

2.3. The Leukemia Artificial Intelligence Program (LEAP) used a machine learning method for
the optimal treatment of tyrosine kinase inhibitors in patients with chronic myeloid
leukemia [19].

3. Medical imaging

3.1. Mammogram images were evaluated by two radiologists using an AI-assisted method. The
study showed that both methods provided comparable results [20].

3.2. Convolutional neural networks were used to detect lung nodules on chest computed
tomography in patients with complex lung disease. The accuracy of the neural network was
similar to that of experienced radiologists [21].

4. Clinical trials

4.1. A randomized, controlled clinical trial (NCT0438756) used an AI-based system to assist in
the evaluation of mammography images. The study concluded that AI-supported screening
was comparable to standard double reading [22].

4.2. The clinical trial NCT03954548 compared the evaluation of colonoscopy between a deep
learning-assisted method and the standard method in patients undergoing colorectal cancer
screening or surveillance. The study found that the AI method had a 2-fold lower misrate of
colorectal cancer [23].

4.3. The clinical trial ChiCTR1800018403 used an AI-based system to evaluate endoscopic
images for the early detection of gastric cancer. The study showed that the deep
convolutional neural network and deep reinforcement learning method correctly predicted
cancer lesions but with less performance than the human-based method [24]

1.5. Applications of Artificial Intelligence in Hematological Neoplasia

AI applications in the field of hematopathology have also been developed. An ad-
vanced PubMed search that focused on the title and abstracts with the keywords “artificial
intelligence” and “lymphoma” resulted in 133 entries. Table 2 shows some of the most
relevant studies (because of length restraints, not all valuable studies are shown). The types
of AI-based analyses include the evaluation of clinicopathological features, gene expression,
mutational landscapes using next-generation sequencing, histological characteristics, and
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PE/TC images. The types of hematological neoplasia ranged from leukemia to Hodgkin’s
lymphoma and non-Hodgkin’s lymphoma (Table 2).

Table 2. Applications of artificial intelligence in hematological neoplasia.

1. Molecular pathology

1.1. More than 130 genetic markers, gene expression, and microenvironment data were used to
classify the seven most frequent non-Hodgkin B-cell lymphomas (B-NHLs) [25].

1.2. A supervised machine learning method used the expression of 6817 genes to predict the
overall survival of patients with diffuse large B-cell lymphoma [8].

1.3. A series of 123 cases of mantle cell lymphoma were analyzed using gene expression data
and several machine learning and artificial neural networks. This research highlighted
pathogenic genes and immune–oncology pathways [26].

1.4. Based on the RNA expression of 1408 genes, next-generation profiling, and machine
learning (geometric mean naïve Bayesian algorithm), several diagnostic entities, including
carcinomas and lymphoma, were classified with good performance [27].

1.5. The prognosis of diffuse large B-cell lymphoma was predicted using a feedforward neural
network in a series of 414 cases and gene expression data, which correlated to other
prognostic markers, including MYC and BCL2 [28].

1.6. Several mature B-cell neoplasms were analyzed using gene expression,
immunohistochemical markers, machine learning, and neural networks. The study
managed to classify the patients according to their lymphoma subtype and predict their
survival. Pan-cancer analysis was also performed [29].

1.7. Based on 730 immune–oncology genes, overall survival and cell-of-origin subtypes were
predicted in a series of 106 cases of diffuse large B-cell lymphoma. The analysis included
several machine learning and neural networks [30].

1.8. Targeted RNA sequencing data obtained from a next-generation sequencing analysis
platform were used to classify 418 cases of diffuse large B-cell lymphoma using AI and to
predict the survival of the patients [31].

2. Medical imaging

2.1. A total of 31 variables were used by an artificial neural network to predict the 5-year
recurrence after treatment of 114 patients with Hodgkin’s lymphoma [32].

2.2. A discrimination method that includes convolution and a neural network combined with
the least absolute shrinkage and selection operator (LASSO) model was used to analyze the
computed tomography data of 276 patients with enlarged cervical lymph nodes. The
accuracy of this method was above 86% for lymphoma cases [33].

2.3. The data of 5275 patients with lung and breast cancer and non-Hodgkin lymphoma were
analyzed using an AI-based tool to create a predictive model of risk stratification and early
disease detection [34].

2.4. AI was used to analyze PET/CT images of 382 cases of diffuse large B-cell lymphoma
(DLBCL) using only 2 maximum-intensity projection (MIP) images, and it correlated with
the prognosis of the patients [35].

2.5. The focal skeleton/bone marrow uptake (BMU) of FDG-PET/CT images was analyzed
using an AI-based method in 201 patients with Hodgkin’s lymphoma [36].

2.6. Anterior segment optical coherence tomography (AS-OCT) images were used to classify
between vitreoretinal lymphoma and uveitis in 28 patients using the xgboost python
function with good performance (AUC 0.84–0.94) [37].
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Table 2. Cont.

3. Histological and cytological images

3.1. Several artificial intelligence-based tools (Phyton SciPy package) were used to model several
morphological biomarkers (nuclear size, cell density, and cell distance) to distinguish 125
tissue samples of chronic lymphocytic leukemia (CLL) progression to accelerated CLL
(aCLL) or transformation to diffuse large B-cell lymphoma (Richter transformation; RT). The
performance of the method was moderate, with an area under the curve (AUC) ranging
from 0.66 to 0.94 [38].

3.2. A series of 287 samples from several hospitals were used to predict MYC rearrangement
using histological slides of diffuse large B-cell lymphoma. The analysis had a good
sensitivity of 0.93 but a low specificity of 0.52 [39].

3.3. Neural networks were used to differentiate between diffuse large B-cell lymphoma and
Burkitt lymphoma in a series of 70 cases, including 10,818 images [40].

3.4. Hematoxylin and eosin (H&E) images of 388 cases were analyzed by AI to classify the
samples into diffuse large B-cell lymphoma, follicular lymphoma, and reactive lymphoid
tissue with high accuracy [41].

3.5. The images of 629 patients with non-Hodgkin lymphoma were analyzed using a
convolutional neural network to stratify the patients according to different lymphoma
subtypes. The algorithm had an accuracy of 96% [42].

3.6. Histological images of chronic lymphocytic leukemia were analyzed using AI in
proliferation centers to identify the accelerated phase and Richter transformation based on
nuclear characteristics [43].

3.7. Blood films from 591 samples were used to identify circulating abnormal cells (leukemic and
dysplastic cells) [44].

1.6. Paradigm of Generative Pretrained Transformers

Generative pretrained transformers (GPTs) are a type of language model that belongs
to the field of generative artificial intelligence [45]. These types of neural networks handle
natural language processing analyses and were introduced by Google in 2017 [46]. A
transformer is a deep learning architecture based on the multihead self-attention mechanism
that learns context and understanding through sequential data analysis. It can translate
text and speech in near real time [46]. The architecture is shown in Appendix A.

Transformers have several applications. For example, they can be used to analyze
organic molecules for designing antiviral candidate analogs, so this type of analysis can
accelerate drug discovery [47]. GPT technology has been applied in the medical field as
well, but with a focus on language model capabilities, for example, in radiology reporting.
A GPT-4 model processed 100 anonymized radiology reports. For each report, an AI-
generated report was created. The AI-generated reports are reliable [45]. GPT-4 was used
in data mining and labeling oncologic phenotypes from CT reports [48] and in writing
operative notes made by ophthalmic teams following ocular or ophthalmic surgery [49].
Of note, ChatGPT is open access but not open source; it is closed source. Therefore, it is
not possible to access or modify the model’s source code and it cannot be subjected to
peer review.

1.7. Function and Architecture of Multilayer Perceptron

Neural networks can be classified into feedforward neural networks, also known
as multilayer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent
neural networks (RNNs). MLPs are the primary focus of this article.

Physiological conditions and disease models can be described by numbers and re-
lationships between numbers. The relationships between numbers are called functions
[“f(x)”, “x” being the input variable]. The goal of artificial intelligence is to write programs
that can understand and predict these models or functions, or rather have the programs
write themselves so that they can build their own functions [50].
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Function approximation is the process of selecting a defined function among those
that are well characterized and that approximates (i.e., matches) a target function
(Figure 5A) [50–55]. In computer science, function approximation is used to make predic-
tions and is also used when theoretical models are unavailable and are difficult to compute.
Two types of situations can be found. First, a known target function can be approximated
by other specific classes of functions that have more advantageous properties. Second, a
target function may be unknown and only a series of points are known, and by several
techniques, a more appropriate function is approximated [50–55].
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Figure 5. Functions and neural networks. (A) Neural networks work as universal function ap-
proximators to different curves of the dataset. In other words, a neural network is a function that
approximates an unknown target function. (B) The basic units are called neurons and are organized
into layers. The structure of a neural network is characterized by three parts: the input layer that
contains the input fields (variables), one or more hidden layers, and an output layer (with a unit
or units that represent the target fields). The units are connected by different connection strengths
(weights).

Artificial neural networks have the ability of function approximation and build their
own functions to approximate physiological conditions and disease models. Functions are
“input-output machines”, in which an input set of numbers (i.e., predictors, “x”) is taken,
and the output (create) is a corresponding set of numbers (“y”). The function [f(x)] defines
the relationship between these numbers [(x -> f(x) -> y)] [56]. Neural networks are used
when the definition of the functions that we are trying to approximate is unknown and
only the dataset points of inputs and outputs are known. Curve fitting approximates a
function that fits the data points, making it possible to accurately predict outputs given
inputs that are not in the dataset [57–59]. Therefore, neural networks (NNs) work as a
universal function approximator for different curves of datasets [60]. In other words, a
network itself is a function that approximates an unknown target function [f(x) ≈ NN(x)].

A simple form of a neural network is the fully connected feedforward network (also
known as multilayer perceptron) (Figure 5B). The inputs (X) are called features, and the
outputs (Y) are predictions and take the form of vectors (arrays of numbers). The network
comprises several simple functions called neurons (Figure 6A). The dimension of a neural
network refers to the number of neurons in each layer.

Neurons take many inputs (X) but only produce one output (Y). Each input is mul-
tiplied by its own weight (W), and in the equation, one extra weight known as bias is
added (W4) [=W1X1 + W2X2 + W3X3 + W4 (Bias)] (Figure 6A). This weighted sum can
be rewritten using linear algebra (Figure 6B). The inputs are included in a vector with an
extra one for the bias. The weights are included in another vector. Figure 6(C1) shows an
example of the dot product. After addition, the product is passed to an activation function
to add nonlinearity to the neural network, such as ReLU. There are other types of activation
functions, such as Leaky ReLU and sigmoid (Figure 6(C2)). In a neural network, the output
vector is successively fed as inputs to the next layer until the final output. The point is
that each neuron is responsible for learning a small piece or feature of the overall function,
and a complicated function can be built by combining many neurons. Interestingly, with
an infinite number of neurons, any function could be built. During the training of the
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network, the values of the weights (parameters) are determined. The aim of the training is
to minimize the network’s error (loss), which is a measurement of the difference between
the predicted outputs and the real (true) outputs. With time, the loss decreases. The
backpropagation algorithm is used to achieve this optimization. Gradient descent is an
optimization algorithm that is commonly used to train machine learning models and neural
networks. The network improves its predictions until one or more of the stopping criteria
are met.

Appendix B describes activation functions in more detail.
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Figure 6. Neurons. Neural networks comprise several simple functions called neurons (A). Each input
is multiplied by its weight, all values (including the bias) are added, and the product is transformed
by the activation function (B). An example is shown (C1,C2).

1.8. Performance Parameters

The confusion matrix summarizes the predictions of the neural network against the
true values of the dataset (Table 3). Accuracy is the percentage of cases correctly classified.
Precision determines how accurately the neural network determines the positive outputs;
high-precision neural networks are characterized by low false positive percentages. Recall
measures the ability to detect positive predictions.

Table 3. Confusion matrix.

Confusion Matrix
True Class

Positive Negative

Predicted class
Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

Accuracy = (TP + TN)/(TP + TN + FP + FN).
Precision = TP/(TP + FP).
Recall/Sensitivity/True Positive Rate (TPR) = TP/(TP + FN).
False Positive Rate = FP/(FP + TN) = 1-Specificity.
Specificity = TN/(TN + FP).
F1 Score = TP/(TP + 0.5 (FP + FN) = 2/(1/Precision) + (1/Recall).
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The receiver operating characteristic (ROC) curves are used to compare the perfor-
mance of the deep learning models. The ROC curve shows the relationship between the
true positive rate (sensitivity) and the false positive rate (1-specificity). The area under the
curve (AUC) ranges from 0 to 1, and larger AUC values indicate better performance. An
AUC of 0.5 indicates no discriminative power (Figure 7).
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Figure 7. Receiver operating characteristic (ROC) curve. The area under the curve (AUC) ranges from
0 to 1, and larger AUC values indicate better performance. An AUC of 0.5 indicates no discriminative
power. The “blue star” indicates the position of the AUC of 1.0.

2. Material and Methods

This section shows an example of a feedforward neural network analysis using a
diffuse large B-cell lymphoma dataset.

The diffuse large B-cell lymphoma (DLBCL) dataset GSE10846 from the Lymphoma/
Leukemia Molecular Profiling Project (LLMPP) was downloaded from the National Center
for Biotechnology Information (NCBI) webpage of the National Library of Medicine (https:
//www.ncbi.nlm.nih.gov/, last accessed on 25 December 2023).

This series is characterized by being very well annotated and reliable. It was last
updated on 25 March 2019. This was a retrospective study that included 420 cases. For this
study, 233 patients treated with rituximab-CHOP were selected, and 181 patients treated
with CHOP were discarded.

RNA was extracted from frozen tissue samples and analyzed using the Affymetrix
Human Genome U133 Plus 2.0 Array (HG-U133_Plus_2), which has 20,684 genes. It is a
conventional series of DLBCL. All clinicopathological characteristics were described in our
previous publication and the original LLMPP [61–63]. In summary, all cases were treated
with R-CHOP, all were nodal biopsies, and the male/female ratio was 134/99. The mean
age was 60.2 years (±16.2 STD), with a range from 17 to 92 years, and the cases with more
than 60 years were 120/233 (51.5%). According to the cell of origin classification, 107 of
233 (45.9%) cases were germinal center B-cell-like (GCB), 93/233 (85.8%) were activated
B-cell-like (ABC), and 33/233 (14.2%) were unclassified. According to the International
Prognostic Index (IPI), the score was 1 in 32/164 (19.5%), 2 in 69/164 (42.1%), 3 in 52/164
(31.7%), and 4 in 11/164 (6.7%).

Bioinformatics analysis used normalized and log2-transformed data. It started by
testing if the overall survival of the patients could be stratified using three relevant DLBCL
pathogenic genes: MYC, BCL2, and BCL6. The survival of the patients was first tested
using a Cox regression analysis. After searching for an adequate cutoff, the survival of the
patients was tested using the Kaplan–Meier and log-rank tests.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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A multilayer perceptron analysis was performed to predict the expression of MYC,
BCL2, and BCL6 as qualitative variables (low vs. high, using the same cutoff as that of
the Kaplan–Meier analysis). The predictors were a pan-cancer panel of 758 genes for
immuno-oncology and translational research that included clinically relevant actionable
genes and pathways (Appendix C Figure A2). The neural network used the 758 genes as
inputs, and the gene expression values were rescaled using the standardized formula. The
dataset partition was the conventional 70% of the training set and 30% of the testing set.
The best architecture was searched with a minimum of units in the hidden layer of 1 to a
maximum of 1000. The type of training was batch, and the scaled conjugate gradient was
an optimization algorithm. More details are provided in the Results section.

The algorithms of MLP are shown in [64].

3. Results
3.1. Neural Networks

This series of R-CHOP-treated DLBCL is a conventional series because the overall
survival of the patients can be stratified according to the IPI and clinical stage. The gene
expression of MYC, BCL2, and BCL6 was correlated with overall survival.

The cutpoints of the gene expression values were searched, making equal percentiles
on the scanned cases with two or three cutpoints and interval widths of 33% or 25%, and
the survival analysis displayed three or four curves, respectively. Based on the plots, the
most adequate cutpoint (i.e., cutoff) was defined as being the most statistically significant,
but it also had a reasonable distribution of cases (Table 4).

Table 4. Cutpoints of MYC, BCL2, and BCL6 genes.

Gene Cutpoint Distribution

MYC ≤12.0 176/233 (75.5%)
12.01+ 57/233 (24.5%)

BCL2 ≤10.28 117/233 (50.2%)
10.29+ 116/233 (49.8%)

BCL6 ≤12.37 67/233 (28.8%)
12.38+ 166/233 (71.2%)

High MYC expression was associated with unfavorable survival; Hazard Risk (HR) = 1.9
(95%CI 1.12–3.28); and p = 0.019 (Cox regression). High BCL2 was also associated with poor
prognosis; HR = 1.8 (95%CI 1.0–2.9); and p = 0.036. Conversely, high BCL6 was associated
with a favorable prognosis; HR = 0.4 (95%CI 0.2–0.6); and p < 0.001 (Figure 8).

A feedforward neural network was used to predict MYC, BCL2, and BCL6 expression
using a pan-cancer panel of 758 genes for immuno-oncology and translational research that
includes clinically relevant actionable genes and pathways. The characteristics and param-
eters of the different neural networks are detailed in Table 5. The network performance
was realistic and between 70% and 90% accuracy. The performance for the prediction of
BCL2 was moderate, with an area under the curve (AUC) of 0.783 and an accuracy of 73.4%
for the training and 63.3% for the testing set. The performances of MYC and BCL6 were
higher, with AUCs of 0.925 and 0.939, respectively. The accuracies for MYC were 86.3%
(training) and 88.9% (testing). The accuracies for BCL6 were 88.2% (training) and 86.1%
(testing). The first ten most relevant genes for the prediction of the marker, based on the
sensitivity analysis, are also shown (Tables 5–8, Figures 9 and 10).



Hemato 2024, 5 131

Hemato 2024, 5, FOR PEER REVIEW 12 
 

 

Table 4. Cutpoints of MYC, BCL2, and BCL6 genes. 

Gene Cutpoint Distribution 
MYC ≤12.0 176/233 (75.5%) 

 12.01+ 57/233 (24.5%) 
BCL2 ≤10.28 117/233 (50.2%) 

 10.29+ 116/233 (49.8%) 
BCL6 ≤12.37 67/233 (28.8%) 

 12.38+ 166/233 (71.2%) 

High MYC expression was associated with unfavorable survival; Hazard Risk (HR) 
= 1.9 (95%CI 1.12–3.28); and p = 0.019 (Cox regression). High BCL2 was also associated 
with poor prognosis; HR = 1.8 (95%CI 1.0–2.9); and p = 0.036. Conversely, high BCL6 was 
associated with a favorable prognosis; HR = 0.4 (95%CI 0.2–0.6); and p < 0.001 (Figure 8). 

 
Figure 8. Overall survival analysis. This study used a conventional series of diffuse large B-cell lym-
phoma (DLBCL), as shown by the International Prognostic Index (IPI) and clinical stage that strati-
fied patients according to survival. By gene expression, high MYC and BCL2 levels were associated 
with poor overall survival. Conversely, high BCL6 levels were associated with a favorable outcome. 

A feedforward neural network was used to predict MYC, BCL2, and BCL6 expression 
using a pan-cancer panel of 758 genes for immuno-oncology and translational research 
that includes clinically relevant actionable genes and pathways. The characteristics and 
parameters of the different neural networks are detailed in Table 5. The network perfor-
mance was realistic and between 70% and 90% accuracy. The performance for the predic-
tion of BCL2 was moderate, with an area under the curve (AUC) of 0.783 and an accuracy 
of 73.4% for the training and 63.3% for the testing set. The performances of MYC and BCL6 

Figure 8. Overall survival analysis. This study used a conventional series of diffuse large B-cell
lymphoma (DLBCL), as shown by the International Prognostic Index (IPI) and clinical stage that
stratified patients according to survival. By gene expression, high MYC and BCL2 levels were associated
with poor overall survival. Conversely, high BCL6 levels were associated with a favorable outcome.
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Table 5. Neural network characteristics.

MYC BCL2 BCL6 MYC, BCL2, and BCL6

Training set 161/233 (69.1%) 173/233 (74.2%) 161/233 (69.1%) 159/233 (68.2%)
Testing set 72/233 (30.9%) 60/233 (35.8%) 72/233 (30.9%) 74/233 (31.8%)
Input layer

Units 757 757 758 756
Rescaling Standardized Standardized Standardized Standardized

Hidden layer
Number 1 1 1 1

Units 9 9 10 11
Activation function Hyperbolic tangent Hyperbolic tangent Hyperbolic tangent Hyperbolic tangent

Output layer
Predicted variables 1 1 1 3

Units 2 2 2 6
Activation function Softmax Softmax Softmax Softmax

Error function Cross-entropy Cross-entropy Cross-entropy Cross-entropy
Classification

percentage correct

Training set 86.3% 82.2% 88.2% 76.7%, 81.1%, and
83.6%

Testing set 88.9% 63.3% 86.1% 83.8%, 67.6%, and
77.0%

Area under the curve
(AUC) 0.925 0.783 0.939 0.81, 0.86, and 0.86

First and most relevant
predictors

PSMC4, NCAM1,
SOX10, PTPRC,

PSMB10, C5AR1, IL6,
CBLC, FCGR3B, and

MTOR

PSMC4, CNTFR,
PSMB10, TNFAIP3,

MLH1, CXCR2, FADD,
CD7, AREG, and

TBXAS1

RAD51, SMAP1, HRAS,
SFRP1, LAG3, BTLA,

TICAM1, BCL2L1,
G6PD, and ICAM2

NCAM1, CCND1,
MMRN2, RAD51,

TIGIT, THY1, BTLA,
ITGA2, HCK, and

SFRP1

Table 6. Confusion matrix for MYC prediction.

Training Predicted Testing Predicted
Observed Low High Observed Low High

Low 115 7 Low 50 4
High 15 24 High 4 14

Accuracy: 86.3% (training), 88.9% (testing).

Table 7. Confusion matrix for BCL2 prediction.

Training Predicted Testing Predicted
Observed Low High Observed Low High

Low 74 16 Low 20 7
High 30 53 High 15 18

Accuracy: 73.4% (training), 63.3% (testing).

Table 8. Confusion matrix for BCL6 prediction.

Training Predicted Testing Predicted
Observed Low High Observed Low High

Low 31 15 Low 17 4
High 4 111 High 6 45

Accuracy: 88.2% (training), 86.1% (testing).



Hemato 2024, 5 133

Hemato 2024, 5, FOR PEER REVIEW 14 
 

 

 
Figure 9. Architecture of neural networks. 

 
Figure 10. Comparison of performance using receiver operating characteristic (ROC) curves. The 
neural networks predicted the gene expression of MYC, BCL2, and BCL6 as binary variables (high 
vs. low). The predictors were 758 genes of a pan-cancer panel of immuno-oncology and translational 
research that includes clinically relevant actionable genes and pathways. The areas under the ROC 
curves were 0.925, 0.783, and 0.939, respectively. 

Table 6. Confusion matrix for MYC prediction. 

Training Predicted Testing Predicted 
Observed Low High Observed Low High 

Low 115 7 Low 50 4 
High 15 24 High 4 14 

Accuracy: 86.3% (training), 88.9% (testing). 
  

Figure 10. Comparison of performance using receiver operating characteristic (ROC) curves. The
neural networks predicted the gene expression of MYC, BCL2, and BCL6 as binary variables (high vs.
low). The predictors were 758 genes of a pan-cancer panel of immuno-oncology and translational
research that includes clinically relevant actionable genes and pathways. The areas under the ROC
curves were 0.925, 0.783, and 0.939, respectively.

The parameter estimates of the neural network are shown in [65].
The independent variable importance analysis performs a sensitivity analysis, which

calculates the relevance of each predictor in determining the neural network. The analysis is
based on the combined training and testing samples, or only on the training sample if there
is no testing sample. As a result, it creates a table and a chart displaying the importance
and normalized importance of each predictor. The table has been uploaded to Zenodo
repositories; please refer to the data availability statement.

3.2. Gene Set Enrichment Analysis (GSEA)

This study used a 758 gene pan-cancer panel of immuno-oncology and translational
research, which included clinically relevant actionable genes and pathways as input vari-
ables to predict MYC, BCL2, and BCL6 expression. The prognostic relevance of this panel
was also tested using other conventional bioinformatics techniques, such as GSEA [66–68].
The GSEA was performed on the following biological states (i.e., phenotypes): overall
survival (dead vs. alive), MYC expression (high vs. low), BCL2 (high vs. low), and BCL6
(high vs. low) using the same cutoffs of the neural networks analyses. The primary result
of the GSEA is the enrichment score (ES), which reflects the degree to which a gene set
is overrepresented at the top or bottom of a ranked list of genes [68]. The leading-edge
subset of a gene set is the subset of members that contribute most to the ES. For a positive
ES, the leading-edge subset is the set of members that appear in the ranked list prior to
the peak score. A negative ES is the set of members that appear subsequent to the peak
score [68]. Figure 11 shows the results of the GSEA, with the genes of the leading edges.
Additionally, due to the relevance of MYC, the GSEA of MYC included several gene sets in
the molecular signatures database (MSigDB), including hallmark (H), positional (C1), and
curated (C2) gene sets. Several associations were found. For example, high MYC expression
correlated with a high expression of genes associated with protein response, MYC targets,
DNA repair, oxidative phosphorylation pathways, and chromosome 3p25 locus-associated
genes (Figure 12).
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Figure 11. Gene set enrichment analysis (GSEA). Gene set enrichment analysis (GSEA) is a computa-
tional method that determines whether an a priori defined set of genes shows statistically significant,
concordant differences between two biological states (e.g., phenotypes) [66–68]. GSEA was performed
using (i.e., the priori-defined set of genes) the 758 genes of the pan-cancer panel of immuno-oncology
and translational research as predictors, which includes clinically relevant actionable genes and
pathways. The predicted variables (i.e., phenotypes) were the overall survival outcome, such as
dead vs. alive, and the MYC, BCL2, and BCL6 expression (high vs. low groups, the same as the
neural networks). In the GSEA, the genes are ranked based on their rank metric score and running
enrichment score (ES). The ES reflects the degree to which a gene set is overrepresented at the top
or bottom of a ranked list of genes [66–68], for example, the gene expression profile of patients
who died.
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Figure 12. Gene set enrichment analysis (GSEA) on MYC expression groups. GSEA analysis was
performed using as predictors several gene sets of the Molecular signatures database (MSigDB), in-
cluding hallmark (H), positional (C1), and curated (C2) gene sets. The predicted variable (phenotype)
was the MYC expression (high vs. low groups), the same as the neural networks. This figure shows
some of the most relevant GSEA plots. High MYC expression correlated with high expression of
genes associated with protein response, MYC targets, DNA repair, oxidative phosphorylation path-
ways, and chromosome 3p25 locus-associated genes. Low MYC expression correlated with allograft
rejection, interferon gamma response, inflammatory response, complement, and chromosome 1q11
and 8p24.
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4. Discussion

Diffuse large B-cell lymphoma (DLBCL) is one of the most frequent non-Hodgkin
lymphomas and mature B-cell hematological neoplasms. DLBCL is not a single disease
but a group of different diseases that differ in terms of morphological, genetic, and clinical
characteristics [1,3]. There are several morphological subtypes, such as centroblastic,
immunoblastic, and anaplastic, but their identification by histopathologists suffers from
reproducibility. There are other phenotypic variants, such as the CD5 positive, MYC
positive, and BCL2 positive, which tend to be associated with a poor prognosis [1–3,69–72].

The classification using cell-of-origin markers that include germinal center B-cell-like,
activated B-cell-like, and unspecified is clinically relevant. Cell-of-origin classification
requires the use of gene expression data, which are not always available. However, cell-
of-origin classification can also be achieved using immunohistochemistry combining the
assessment of CD10, BCL6, and MUM-1 (IRF4) [1]. Recently, the lymphoma classification
has been updated with the incorporation of additional molecular features [2–4,69–76].

The 2016 WHO classification included the category of high-grade B-cell lymphoma
(HGBCL) with MYC, BCL2, and/or BCL6 rearrangements, which confer double-hit or
triple-hit status and poor prognosis [1]. In this study, the gene expression of a large series
of R-CHOP-treated DLBCL was analyzed, focusing on the expression of MYC, BCL2, and
BCL6. The results showed that a high expression of MYC and BCL2 was associated with
poor prognosis, and BCL6 with a favorable outcome. Importantly, the neural network was
able to predict these genes using a pan-cancer panel of 758 genes for immuno-oncology and
translational research that included clinically relevant actionable genes and pathways. For
each marker, the most relevant cancer genes are different. For example, MTOR is associated
with MYC, and CCND1 with BCL6. Of note, the accuracy for BCL2 prediction was moderate
to low. Therefore, the results of BCL2 must be taken with more caution.

The neural network analysis was complemented with a gene set enrichment analysis
(GSEA). The genes highlighted in the leading edges are the ones more relevant for the gene
expression of MYC, BCL2, and BCL6 phenotypes (high vs. low). In a clinical setting, the
simplest approach would be to look into MYC, BCL2, and BCL6 gene expression or protein
levels, including the rearrangement by FISH. Additionally, as shown in Figure 8, relevant
markers would be CD163, CD16, IL10, and IRF4, among others.

Neural networks are a subtype of machine learning and include deep learning al-
gorithms. The architecture of the neural network comprises node layers, including an
input layer, one or more hidden layers, and an output layer. When the output value of an
individual node is above a specified threshold, the node is activated and sends data to the
next layer. When the value is below the threshold, no data are passed. The principal focus
of this study was feedforward networks, but there are other types of neural networks. For
example, recurrent neural networks are used in natural language processing and speech
recognition. Conversely, convolutional neural networks are often used in computer vision
analysis. Convolutional neural networks have three main types of layers: a convolutional
layer, a pooling layer, and a fully connected layer. There are many architectures, such as
AlexNet, VGGNet, GoogleNET, ResNet, etc. This study focused on multilayer perceptron,
which is a type of feedforward network, to analyze gene expression data, but the analysis
of histological images could be performed in the future as well, focusing on lymphoma and
other hematological diseases, such as leukemia, myeloma, and myelodysplastic syndromes.

The birth of artificial intelligence (AI) was denoted by Alan Turing’s seminal work
“Computing Machinery and Intelligence”, which described AI as systems that act like
humans. AI combines computer science and robust datasets to make predictions and
classifications based on input data [77]. Our group has worked in predictive analytics
and AI in recent years in the field of lymphoma [78] and other diseases, such as celiac
disease [79] and ulcerative colitis [80]. In the lymphoma field, we identified several markers
of relevance, such as ENO3 [28], TNFAIP8 [81], PD-L1 [81], CASP8 [82], CSF1R [61], immune
response [83], RGS1 [26], FOXP3, PD-1, IL10, and CD163 [29,30,84], as well as BCL6 in
DLBCL [85,86] and FL [87]. Therefore, we have proven that this technology is useful.
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A turning point in AI has been the release of OpenAI’s ChatGPT, which is a trained
conversational model. However, it is important to point out that thinking and making our
own decisions is what makes us human. Letting machines think for us makes us less free
and less conscious. Therefore, no machine should be made in the likeness of the human
mind [77].

5. Conclusions

Artificial intelligence in medicine uses machine learning and neural network models
to improve disease identification and diagnosis, personalize disease treatment, analyze
medical images, evaluate clinical trials, and speed up drug development.

The mathematical way in which neural networks reach conclusions has been consid-
ered a black box, but a careful understanding and evaluation of the architectural design
allows us to interpret the results logically. In diffuse large B-cell lymphoma, neural net-
works are a plausible data analysis approach.
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Appendix A

Figure A1: Model architecture of the transformer.
This figure depicts the general architecture of the transformer. It uses stacked self-

attention and point-wise, fully connected layers for both the encoder (left) and the trans-
former (right) [46].
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classification is for the sigmoid [88–91].
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