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Simple Summary: Using eBird citizen science data, researchers identified power law patterns in bird
abundance rankings. This study examines the concept of “granular size” related to these patterns, and
determined 13 specific species to be the granular size. The granular size of the bird rank abundance
distribution might have something to do with the number of species, which, like big businesses in an
economy, have a disproportionately big effect on their environment. However, keep in mind that
these species may be considered special simply because they were all discovered in cities.

Abstract: In previous studies using eBird citizen data, bird abundance rankings followed a power
law distribution. Our research delves into the “granular size” concept within these power laws,
likening birds to firms. We identified 13 bird species as being the granular size, representing species
with significant ecosystem impact, akin to major corporations in an economy. In particular, these
species are urban, raising concerns about the eBird database’s sampling bias. Using the economic
concept of granular size, we argue that the eBird database may be inherently unreliable.
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1. Introduction

Birds play a pivotal role in our ecosystems, offering insights into broader ecological
dynamics and health. With the advent of modern technology, citizen science data, like the
eBird app, have revolutionized the way we study and understand avian populations [1-10].
Although recent studies have tapped into this wealth of data to estimate the abundance
of nearly 92% of all avian populations [11], questions persist about the accuracy and
representativeness of such databases [12-14].

While the extensive eBird dataset has shed light on the abundance and distribution
of several bird species [11,15], its inherent bias towards urban environments raises con-
cerns [5]. The predilection of bird enthusiasts to document sightings primarily in urban
areas might obscure the true picture of avian diversity and the impacts of urbanization.
Such biases may have far-reaching implications, especially when considering species with
more restricted distributions outside urban zones or outside the Americas, like the Ring-
billed Gull (Larus delawarensis).

The power laws identified in rank abundance distribution from these datasets [15]
further underline the need for a critical examination. While power laws can emerge even
in scattered datasets [15], it is essential to evaluate the validity and reliability of eBird’s
data. Our study dives deep into these concerns, probing the quality of the eBird database,
especially with the intriguing concept of granular size [16].

One recent study in particular [11] harnessed the latest influx of citizen science data to
estimate the abundance of 9700 bird species, encompassing approximately 92% of all avian
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populations. By amalgamating data from the eBird app and 724 well-studied species, the
authors employed an algorithm to extrapolate sample estimates. Their findings unveiled
numerous species with limited populations confined to niche habitats, along with a select
few species distributed across vast areas. Within the rank abundance distribution, three
separate power laws were identified using the same dataset: one for the top four species,
another for abundant species beyond the top four, and a third for rare species [15].

The objective of this paper is to assess the accuracy and biases of the eBird database,
particularly focusing on the impact of granular size on bird species representation. Based
on existing literature [5], we hypothesize that the eBird database has urban-biased misrep-
resentations, affecting accurate estimates of bird species abundance. Datasets from eBird
and similar large-scale volunteer projects [10] often face challenges like spatial bias, varying
effort, and species-reporting bias [5]. Building on this, we present a strong case that the
eBird database is flawed, drawing on the granular size concept from economics.

2. Materials and Methods

A power law describes a situation where the probability of a certain value is inversely
related to that value raised to a specific power. In simple terms, if one quantity changes,
the other changes in a predictable proportion, no matter the starting point. On a log-log
graph, a power law shows as a straight line. The steepness of this line, or its slope, is
termed the Pareto exponent [17]. Most distributions do not follow a power law across
their whole range. Instead, a power law typically applies within specific limits: from a
minimum to a maximum value. This leads to what is known as a power law tail in the
distribution [18]. The Pareto exponent is a key measure in this context. It is an index that
gauges the “heaviness” or thickness of the distribution’s right tail. The lower the Pareto
exponent, the heavier the tail [19].

Da Silva and Matsushita [15] have previously studied the change in Pareto exponents
as the x most abundant species are progressively removed. Their diagram of this, shown in
their Figure 2, shows the shift in exponents after removing the top two (x = 2), three (x = 3),
and so forth [15]. The exercise was designed to assess the effect of the Pareto exponent « on
the remaining top four species. They discovered that these exponents alternate between
light-tailed (¢ > 2) and heavy-tailed distributions (x < 2). The Gaussian distribution is
represented by a = 2.

What is the Pareto exponent value when we do not limit our view to just the remaining
top four species? Figure 1 depicts the scenario from the aforementioned paper [15] with
K = 4 largest grains, along with two other cases for K =7 and K = 13. We determined the
correct K for analysis, defined below as the granular size.

For K values between 4 and 12, some Pareto exponents exceed 2. But from K = 13
onward, all Pareto exponents are below 2, indicating no variance. Could K = 13 be the
granular size?

We draw a parallel between economics’ concept of granularity and a comparison of
firms to birds. The granular hypothesis suggests that a few large companies impact the
economy alongside many smaller ones, countering the notion that individual firm effects
average out [20]. This mirrors firm size distributions following a power law [21]. The
“granular residual” aggregates shocks from the largest firms, weighted by size. Failing to
adjust for the correct number of large firms can misrepresent this residual [16].

One method used to determine the granular size contrasts a weighted curve of uneven
firm rankings with a curve assuming all firms are of equal size [16]. Similarly, for bird rank
abundance distributions following power laws [15], we introduce a method. This method
calculates the granular size by comparing uneven bird species rankings to a simulated
Gaussian curve that represents an even distribution of species.
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Figure 1. Pareto exponent « values (vertical axis) for different large grains K (horizontal axis).

3. Analysis, Results, and Discussion

Figure 2 plots the natural log of bird species abundance against the natural log of bird
species rank, with In(13) distinctly highlighted by a horizontal line. This suggests that
K =13 bird species is the granular size for the abundance distribution.
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Figure 2. This figure shows the natural log of bird species abundance plotted against the natural
log of bird species rank. A horizontal line highlights In(13), making the special 13 bird species
distinctly visible.

Table 1 displays the special 13 bird species and their decay rates of abundance. In a
hypothetical Gaussian distribution with equally abundant bird species, decay rates would
center around zero. This contrasts with the observed power law distribution.
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Table 1. Abundance and decay rates of the special 13 bird species.

Rank The Special 13 Abundance Decay Rate

1 House Sparrow 1,618,744,682 -

2 European Starling 1,288,846,040 —0.2038
3 Ring-Billed Gull 1,229,072,620 —0.0464
4 Barn Swallow 1,076,122,004 —0.1244
5 Glaucous Gull 949,879,030 —0.1173
6 Alder Flycatcher 896,919,155 —0.0557
7 Black-Legged Kittiwake 815,654,031 —0.0906
8 Horned Lark 770,962,832 —0.0548
9 Sooty Tern 711,704,137 —0.0769
10 Savannah Sparrow 599,661,514 —0.1574
11 American Robin 561,290,332 —0.0640
12 Blue-Gray Gnatcatcher 542,518,652 —0.0334
13 Red-Winged Blackbird 418,284,484 —0.2290

Note: The decay rate column is calculated by comparing the abundance of each bird species to the species
ranked immediately higher, as shown in the abundance column. In a scenario where all bird species have equal
abundance, a normal distribution with decay rates around zero is expected. However, the nonzero decay rates we
observe indicate a power law distribution instead.

To determine the granular size, we use the following steps: (1) Simulate 50 series, each
with 10,000 values (akin to the number of bird species in our sample) from a standardized
normal distribution. (2) Rank these simulated values. (3) Calculate the decay rate between
successive grain ranks (e.g., rank 1 to rank 2, rank 2 to rank 3) as shown in Table 1.
(4) Compute the mean and standard deviation of these decay rates across all 50 series.
(5) For each average decay rate between positions #n and n + 1, determine a range: one
standard deviation above and below. (6) Assess the decay rate based on bird rank.

Figure 3 presents the results: the x-axis represents the largest grains K and the y-axis
shows the decay rates. The blue line shows the decay rate of abundance, while the black and
red lines represent the upper and lower boundaries of the standard deviation, respectively.

9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

K

Figure 3. This figure plots various largest grains K on the horizontal axis against decay rates on the
vertical axis. The blue line represents the decay rate of abundance, while the black and red lines mark
the upper and lower limits of standard deviations, respectively.



Birds 2023, 4

334

We anticipate the granular size to be where the decay rate aligns with a Gaussian
distribution. This means the decay rate consistently stays within the range set by the
standardized normal distribution for a given rank. Figure 3 indicates this occurs between
the fourteenth and fifteenth largest grains. Thus, the granular size is 13, as from K = 14
onwards, the decay rate follows a Gaussian-like distribution.

Species abundance is shaped by various ecological processes [22]. The weight of the
tail in the rank abundance distribution can signal an ecosystem’s health and shed light on
species interactions [15]. Therefore, it is vital to evaluate the data suggesting a granular
size of 13 bird species.

In economics, the granular hypothesis suggests that a few large companies have a
significant impact on the economy. This idea counters the traditional belief that individual
firm effects will average out. This distribution of firm sizes, where a few large firms have
disproportionate influence, follows a power law distribution. In this context, the granular
residual is a way of aggregating shocks from the largest firms, with the effects weighted
by their size. If we do not account for the correct number of influential firms, this residual
might be misrepresented.

Drawing a parallel to the bird abundance distribution, the fact that K = 13 bird species
is the granular size for the rank abundance distribution can be interpreted in a similar
manner. Here, these 13 bird species might have a disproportionately large impact on
the ecosystem compared to others, in the same way that a few large firms can have a
disproportionate effect on the economy. Just as failing to adjust for the correct number of
influential firms can misrepresent the granular residual, not accounting for these 13 key bird
species might misrepresent certain ecological metrics or effects within the bird abundance
distribution. Our study shows that when K > 13, all Pareto exponents are below 2, which
means there is no variance. This underscores the significant impact of the special 13.

In essence, the granular size in the bird rank abundance distribution, in connection
with the ecology literature, could refer to the number of species that, like influential firms
in an economy, have a disproportionately large impact on their ecosystem.

To verify the robustness of our findings, we provided ChatGPT with the special
13 species to identify shared characteristics. We then did the same with the next 13 species.
Finally, we asked ChatGPT to differentiate between the two groups based on a unique
characteristic. The result: the first group mainly inhabits urban and suburban areas,
whereas the second group occupies diverse habitats such as wetlands, forests, grasslands,
and coasts. This indicates greater ecological diversity and adaptability in the second group
compared to the urban-centric first group. This finding suggests that the special 13 may be
more artifact than fact, potentially due to sampling bias favoring urban bird sightings.

Our findings highlight biases in the eBird database, primarily due to its urban-centric
data collection. This aligns with concerns raised by those who noted the potential for
skewed data in citizen science projects due to uneven geographic coverage and participant
effort [5]. To mitigate these biases, several strategies could be employed: (1) Integrating
data from multiple citizen science platforms and professional surveys can provide a more
balanced view [14]. This approach could reduce the urban bias evident in eBird data.
(2) Encouraging more rural data collection can help balance the urban-heavy data. Incen-
tivizing birdwatchers to document species in less-populated areas could be a practical
approach. (3) Sophisticated analytical methods could be used to correct for known biases
in citizen science data. Machine learning algorithms and statistical models that account for
sampling effort and geographic biases could refine the data quality [13,23,24]. (4) Aligning
citizen science data with ongoing ecological research [11] could ensure that data collection
is more targeted and scientifically valuable. This collaboration can guide data collection
efforts to fill gaps in current knowledge. (5) Providing training and educational resources
to citizen scientists [12,14] can improve the accuracy and reliability of the data collected.
This includes training in species identification and data recording standards. (6) Periodic
reviews and quality checks of the database [4] can help identify and correct biases. This
ongoing process ensures the reliability and validity of the data. Interestingly, the advice to
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use a hierarchical modeling framework to explicitly characterize the sampling process and
account for bias [13] was exactly what our work did.

4. Conclusions

The bird species’ rank abundance distribution adheres to power laws, deviating from
a Gaussian distribution. This was determined using combined data from the eBird app
and established species studies. While power laws appear even in incomplete datasets, the
related idea of granular size brings the data’s reliability into question. The granular size
concept, borrowed from economics, substitutes firms with birds in this analysis.

In this dataset, the granular size for rank abundance distribution is 13 bird species. The
granular size could relate to the number of species that, like influential corporations in an
economy, have a disproportionately big impact on their ecosystem. However, this special 13
could be an artifact, possibly influenced by a sampling bias towards urban bird sightings.
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