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Abstract: This research delves into asymmetric supercapacitor (ASC) design, utilizing activated
carbon from bamboo poles (AC) and electrodeposited polyaniline (PANI) on nickel foam (NF)
as key active components. The composite electrode formed from AC and PANI exhibited en-
hanced electrochemical attributes in various electrochemical configurations. The specified ASC,
PANI@AC/NF//AC/NF, demonstrated a potential of 1.8 V. Impressively, it reached an areal capaci-
tance measuring 423 mF/cm2, coupled with an energy density of 190 µWh/cm2 at a power density
of 900 µW/cm2, and maintained ~82% capacitance after 5000 GCD cycles. Notably, our developed
ASC presents outstanding research potential for scholars and scientists.

Keywords: biomass-derived activated carbon; polyaniline; electrochemical deposition; composite
electrodes; ionic liquid electrolyte; asymmetric supercapacitor

1. Introduction

Supercapacitors, merging the best of capacitors and batteries, are gaining prominence
for their rapid charge-discharge and long operational cycles [1]. The efficiency of these
devices hinges on electrode material selection, crucial for energy retention and overall
performance [2]. This study focuses on activated carbon (AC), known for its high electrical
conductivity and surface area [3], and polyaniline (PANI), recognized for its pseudoca-
pacitive [4,5], redox-based capacitance enhancement [2,3]. We explore bamboo poles as a
novel, sustainable source for AC, and investigate the synergistic potential of combining AC
and PANI in supercapacitors. This research presents the fabrication and electrochemical
characterization of an asymmetric supercapacitor (ASC), using bamboo-derived AC and
PANI deposited on nickel foam. Our goal is to elucidate how this material combination
can boost ASC performance, paving the way for future innovations in energy storage
technology. The synergistic combination of biomass-derived carbon and PANI in ASC
harnesses the high surface area and conductivity of carbon with the pseudocapacitive
properties of PANI, significantly enhancing energy storage and efficiency. This innovative
blend not only promises a leap in ASC performance, but also sets a sustainable pathway
for future energy storage solutions.

2. Materials and Experimental Methods
2.1. Materials

1-butyl-3-methylimidazolium hexafluorophosphate (BMIMBF, ≥97.0%), Aniline
monomer (≥99.5%), polyvinylidene fluoride (PVDF, Mw~534,000), sodium bicarbonate
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(NaHCO3, ≥99.7%), N-methyl-2-pyrrolidone (NMP, 99.5%), potassium hydroxide (KOH,
≥85%), hydrochloric acid (HCl, 37%), and sulfuric acid (H2SO4, 99.999%) were all procured
from Sigma Aldrich (St. Louis, MI, USA). Nickle foam (NF) was obtained from Amazon in
Japan and bamboo poles were collected from Kyoto University, Japan.

2.2. Synthesis of Electrode Materials and Fabrication of ASC

AC was produced from bamboo poles through a simple pyrolytic process. After
cleaning with de-ionized (DI) water and drying, the poles were ground and combined with
NaHCO3. This mixture underwent thermal treatment at 800 ◦C for 5 h in a N2 environment.
The resulting material was purified with HCl and DI water, and then dried at 80 ◦C to yield
the final AC product. The AC/NF electrode was fabricated by blending 90 wt.% synthesized
AC with 10 wt.% PVDF binder. After dissolving PVDF in NMP and integrating AC, a
uniform slurry was cast onto NF and were subjected to drying at 70 ◦C for 12 h. PANI’s
electrochemical deposition on NF and AC/NF was optimized at +0.8 V vs. Ag/AgCl
for 300 s, using a 0.5 M aniline in 1 M H2SO4 electrolytic solution. The PANI@AC/NF
exhibited superior current density (Figure 1), indicating efficient deposition. As shown in
Figure 1, the ASC was assembled with AC/NF as the negatrode and PANI@AC/NF as the
positrode (PANI@AC/NF//AC/NF), using a BMIMBF electrolyte-saturated filter paper
separator. Electrochemical assessments, i.e., galvanostatic charge–discharge (GCD), cyclic
voltammetry (CV), and electrochemical impedance spectroscopy (EIS), were performed,
with capacitance and energy/power densities measured from specific equations [6,7].
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Figure 1. Amperometric response on a bare and AC-modified NF substrate and the corresponding
PANI@AC/NF//AC/NF ASC.

3. Results and Discussion

The XRD technique was employed to elucidate the structural nuances of the PANI/NF,
AC, and bare NF, as illustrated in Figure 2a. For the bare NF, prominent diffraction peaks at
specific 2θ values were identified, corresponding to its crystalline nature [8]. On the other
hand, the PANI/NF spectrum displayed additional peaks between 10◦ to 40◦, signifying
the successful deposition of PANI over the NF. This was further corroborated by distinct
peaks that align with literature findings [9]. AC’s XRD pattern in Figure 2a exhibited broad
peaks, indicative of its predominantly amorphous structure with a hint of crystallinity [6].
FESEM micrographs, as shown in Figure 2b,c, highlighted AC’s heterogeneous and porous
morphology, attributed to the volatilization during pyrolysis. Figure 2d,e and Figure 2f,g
presented the morphologies of bare NF and PANI/NF, respectively. The NF’s inherent
porous structure ensures a uniform PANI distribution, enhancing conductivity and stability.
The PANI’s cohesive integration with the NF substrate underscores its potential as a
superior electrode for supercapacitor applications.
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Figure 2. (a) XRD patterns and FESEM images of (b,c) AC, (d,e) NF, and (f,g) PANI/NF. (h) CV
curves and (i) GCD profiles various prepared electrodes.

Figure 2h displays the CV curves recorded at a 5 mV/sec scan rate in 1 M KOH.
AC/NF shows a quasi-rectangular pattern, with a 630 mF/cm2 areal capacitance. PANI/NF,
however, exhibits pronounced redox peaks, indicative of PANI’s pseudocapacitive nature
and an areal capacitance of 815 mF/cm2. The composite PANI@AC/NF curve highlights
a synergistic effect, achieving a peak areal capacitance of 1740 mF/cm2. GCD analysis
in Figure 2i reveals a similar approach with AC/NF’s areal capacitance at 529 mF/cm2,
PANI/NF’s at 833 mF/cm2, and the composite’s impressive 1180 mF/cm2.

For the ASC configuration, the AC/NF was designated as the negatrode, while
the PANI@AC/NF functioned as the positrode, culminating in the ASC represented
as PANI@AC/NF//AC/NF. Figure 3a presents AC/NF and PANI@AC/NF CV curves
recorded in their respective stable operating potential windows (OPWs). The AC/NF curve
spans a negative 0 to −1 V OPW, while the PANI@AC/NF curve occupies a 0 to 0.8 V OPW.
The combined theoretical OPW for the PANI@AC/NF//AC/NF ASC is approximately
1.8 V, indicating that the device’s maximum operational voltage closely approaches this
value. Figure 3b depicts the PANI@AC/NF//AC/NF ASC’s CV curves across various
scan rates within an OPW of 0 to 1.8 V. Notably, the curves exhibit a pronounced redox
peak, characteristic of the PANI@AC/NF//AC/NF device, while the electric double-layer
behavior of AC imparts a quasi-rectangular shape. As the scan rate escalates, the area
beneath the CV curves expands, accompanied by a surge in current density. The areal
capacitance derived from the CV curves ranged from 252 to 607 mF/cm2 with decrease
in the scan rate from 100 to 10 mV/sec. Figure 3c displays the GCD patterns of the
PANI@AC/NF//AC/NF ASC across various current densities. As the current density
fluctuated between 5 and 1 mA/cm2, the areal capacitances varied from 164 mF/cm2 to
423 mF/cm2. Notably, the ASC reached its maximum energy density of 190 µWh/cm2

when operating at a power density of 900 µW/cm2, depicted in Figure 3d.
Such commendable outcomes underline the synergistic potential of PANI and AC in

bolstering electrochemical performances. Post 5000 GCD cycles, the device retained ~82% of
its initial capacitance, underscoring its robust cycling stability (Figure 3e). In Figure 3f, the
EIS Nyquist plots for the PANI@AC/NF//AC/NF ASC, both before and after 5000 GCD
cycles, are expertly illustrated, spanning frequencies from 1 Hz to 1 MHz. These plots reveal
a semi-circular trajectory in the high-frequency range, indicative of a low charge-transfer
resistance (Rct) and fast ion diffusion into the electrodes, and a near-vertical line in the
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low-frequency domain, highlighting ideal capacitive behavior. Notably, the high-frequency
intercept pinpoints the equivalent series resistance, encompassing combined electrode,
electrolyte, and interface resistances. The Rct values, 18 Ohm initially and decreasing to
16 Ohm post 5000 cycles, demonstrate the system’s robustness. Significantly, the inset of
Figure 3f enriches our understanding by including the equivalent circuit diagram, offering
a comprehensive view of the electrical dynamics at play.
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retention, and (f) Nyquist plots of the PANI@AC/NF//AC/NF ASC.

4. Conclusions

The research successfully demonstrated the potential of bamboo rod-derived AC and
electrodeposited PANI in developing high-performance ASC. The meticulous synthesis
and characterization processes ensured the purity and structural integrity of the mate-
rials. The synergistic effect between AC and PANI was prominently showcased in the
PANI@AC/NF//AC/NF ASC, which achieved excellent electrochemical performance,
including a maximum areal capacitance measuring 423 mF/cm2, coupled with an energy
density of 190 µWh/cm2 at a power density of 900 µW/cm2. Furthermore, its commend-
able cycling stability, retaining ~82% capacitance after 5000 cycles, underscores its potential
for long-term applications. This research underscores the value of sustainable materials in
energy storage, encouraging advancements through synergistic combinations.
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