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Abstract: The development of compact neutron sources for applications is extensive and features
many approaches. For ion-based approaches, several projects with different parameters exist. This
article focuses on ion-based neutron production below the spallation barrier for proton and deuteron
beams with arbitrary energy distributions with kinetic energies from 3 MeV to 97 MeV. This model
makes it possible to compare different ion-based neutron source concepts against each other quickly.
This contribution derives a predictive model using Monte Carlo simulations (an order of 50,000 simu-
lations) and deep neural networks. It is the first time a model of this kind has been developed. With
this model, lengthy Monte Carlo simulations, which individually take a long time to complete, can
be circumvented. A prediction of neutron spectra then takes some milliseconds, which enables fast
optimization and comparison. The models’ shortcomings for low-energy neutrons (<0.1 MeV) and
the cut-off prediction uncertainty (±3 MeV) are addressed, and mitigation strategies are proposed.
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1. Introduction

Research with neutrons is increasingly limited to a few large-scale facilities due to the
successive shutdown of European research reactors (as well as the not-far-off completion
of the European Spallation Source ESS, the world’s brightest neutron source). The loss of
reactors leads to a decrease in available beam time, as can be seen in Figure 1. Smaller
facilities and institutes are developing compact neutron sources to continue their research
with neutrons [1–4].

The loss of reactors causes a decline in the available beam time, as displayed in
Figure 1. Compact neutron sources have the potential to establish themselves as a backup
to large-scale neutron research facilities, as they can be commissioned more quickly and
at smaller institutes. Utilizing these sources can increase the available beamtime and give
more flexibility to neutron researchers.

Accelerator-based neutron sources, which we discuss here, are scalable. The miniatur-
ization of accelerators generally means that only lower energies can be achieved compared
to larger machines, reducing the neutron yield. This makes a trade-off necessary for conven-
tional accelerators since the accelerator cannot become genuinely compact if high energies
should be achieved, which increases the final neutron yield. Nuclear waste is less of an
issue for particles with energies below the spallation threshold, leaving compactness as
the remaining issue [5] (p. 1008 f). This reinforces the goal of keeping the energy below
this threshold and aiming for more compact sources. An additional aspect of the design
of a compact neutron source is the neutron energy. Higher neutron energies allow us to
penetrate thicker materials and increase the number of applications for this source type, for
example, in homeland security applications [6].
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Figure 1. Different scenarios for the projected availability for neutron beamtime in Europe. Its
differences are caused by the assumption of different remaining runtimes from existing machines and
different commissions of new instruments, especially at the ESS. Enhanced includes faster commis-
sioning of the ESS instruments and longer runtime, while Degraded assumes faster decommissioning
and delays in the ESS commissioning. The detailed explanation for each scenario is given in the
ESFRI’s report [4] (pp. 66–77).

1.1. Physical Constraints

Most approaches to compact neutron sources are based on the acceleration of light
ions (protons or deuterons) impinging on a low-mass target (e.g., lithium, beryllium [1],
tantalum [2]) and have particle energies below the spallation threshold (<100 MeV/u) [5]
(p. 1008 f). The projects mentioned in this article are based on projectile energies lower than
that threshold [1–3,7,8].

A method that ensures comparability among these different projects and which is
quick to evaluate is essential for developing, comparing, and improving compact neutron
sources. Models and results created by the individual institutions for their systems are not
necessarily comparable since different nuclear cross-section libraries and measurement
methods are used. We developed a model based on simulations and deep learning to
ensure this.

This model further allows the evaluation of compact neutron source concepts with
non-mono energetic beams, for example, laser-driven ion acceleration via the Target Normal
Sheath Acceleration mechanism (TNSA) [7]. TNSA ejects an exponential energy spectrum,
which starkly contrasts the mono-energetic particles created by conventional accelerators.

1.2. Outline

The model presented in this work can be used to quickly evaluate neutron source
characteristics such as neutron yield, neutron energy, and angular distribution over a wide
range of ion energies for proton and deuteron projectiles for several converter materials.
This model was originally devised as part of the thesis by B. Schmitz [9] and is here
presented in more detail and with additional validations.

Data-driven modeling needs a large dataset of consistent experimental data distributed
over the parameter range of interest. Due to insufficient data in the relevant energy range,
Monte Carlo simulations were used as the basis for modeling. The simulation results
are used to devise a surrogate model based on artificial neural networks to predict the
double differential neutron yield with a fast inference of some microseconds. Bootstrap
training was performed on the model to predict the uncertainty (refer to Section 2.4). Our
model is then compared to experimentally measured neutron spectra and to the model of
Wakabayashi et al. [10] to test its validity.
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2. Methods

An overview of the steps to be taken is given in Figure 2. The details of the major steps
are listed in the remainder of the section.
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Figure 2. Flowchart of the modeling approach and the later usage of the resulting Surrogate model.
The dashed lines indicate data flow, the solid lines indicate the input of the parameters from Table 1,
and the dashed and dash-dotted lines indicate the surrogate output. The dotted line indicates the
spectrum model, and the dash-dotted line indicates the cut-off model. (X|Y) are the real Neutron
spectra, where X is the energy value and Y (Y(X)) the count rate at the corresponding X. The hat
indicates normalized quantities. The concrete definitions are given in Equations (1) and (2). The
predicted quantities are indexed accordingly. Both are needed to extract a physically meaningful
spectrum. We would like to reference the supplied scripts and examples for more details. Refer to the
data availability statement for further details.

2.1. Monte Carlo Simulations

We simulated the neutron yield with Monte Carlo Simulations utilizing the PHITS [11]
code in Version 3.28A with the FENDL [12] library in Version 3. The observable is the
neutron count, which is determined by measuring the number of neutrons crossing a
detector’s surface. We implemented several detectors as rings around the converter to
resolve the angular distribution. This is illustrated in Figure 3.

We give the concrete parameters for the angle elements (center of the detector) Θ and
its size ∆Θ in Appendix A in Table A1.

The ion beam is modeled as a cylindrical beam, starting at position (0, 0,−9). Its
direction is aligned with (0, 0, 1) and the radius is defined as r0 = 0.5 cm. Energy and
particle type of the incoming particles are subject to variation as indicated by Table 1. The
converter is given as a cylinder along the z-axis centered around (0, 0, 0) with a radius
r = 2.4 cm. The length of the converter is variable and subject to change in this study. Its
range is listed in Table 1.

We ensured the target was long enough to stop the full ion bunch inside the target for
each energy.

Low-energy neutron absorption and moderation is an effect that has to be taken into
account as well. We dealt with this by allowing converters to become longer than the ion
stopping range. This is important for non-mono energetic ion beams such as TNSA. TNSA
has an exponential energy distribution: if the high-energy part of the spectrum is fully
stopped in a converter, then the low-energy part of the spectrum is stopped earlier, leaving
more range for the created neutron to interact with the material. These neutrons have a
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lower final energy due to the moderation inside the remaining converter. If this is not
incorporated, the model would overestimate the neutron yield at higher energies. For the
parameters of interest, and throughout this study, we acquired 54,768 simulations. Each is
generating energy-resolved neutron spectra for 21 distinct scattering angles.
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Figure 3. Simulation description plots for the Monte Carlo simulation geometry. (a) CAD of the
simulation setup. Created using PHITS Angel tool. (b) Crosssection in the z-y-plane. Created using
PHITS Angel tool. (c) Simulation sketch, true to scale, with ion source (red). The converter is centered
at the origin.

Table 1. Parameters of interest and their range. All parameters needed to set up the Monte Carlo
simulations are listed here. Square brackets indicate each continuous interval, while categorical
values are comma-separated. Steps indicate the number of possibilities (linearly divided) a parameter
can take.

Quantity Values Steps

Projectile Deuterons, Protons 2
Source Radius/cm 0.5 fix

Ekin/MeV [3, 97] 56
Element Li, LiF, Be, Va, Ta 5

Length/cm [0.002, 10.445] 356
Angle/◦ [0, 180] 21

Converter Radius/cm 2.4 fix
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2.2. Data Preparation

Data pre-processing is necessary to ensure the convergence of our model during train-
ing. We organized the data as follows: We labeled the categorical data features according
to a binary representation of the values, commonly referred to as one-hot encoding. At the
same time, we scaled the continuous data from 0 to 1 to its maximum value.

For the categorical data then follows: Each simulation using Deuterium gets assigned
a 1, and each simulation using Hydrogen gets assigned a 0. Five different categorical values
can only be represented in binary format if three bits are used. Then we can label the
different converter materials as: ‘Li’–’000’, ‘LiF’–‘1001’, ‘Be’–‘010’, ‘Va’–‘1011’, ‘Ta’–‘100’.

For the continuous parameters of the input features, namely Source Radius, Ekin,
Length, and Angle, we applied the mentioned normalization to the range of 0 to 1 by
dividing each value by the defined maximum value of the parameter, as given in Table 1.

The observable is also a continuously distributed quantity. Since it varies by several
orders of magnitude, four steps must be applied to prepare the data for training and ensure
numerical convergence.

• We first resampled the data: The simulation output data were sampled logarithmically
and are, therefore, relatively sparse in the higher energy end of the spectrum. With
sparse data in the energy component and a decline in the particle count by several
orders of magnitude, the stability of the surrogate in this area is in question. We
circumvented this by linearly resampling the full spectrum. To acquire this resampling,
we applied a cubic spline interpolation of the Monte Carlo output data. Both sets, the
raw data and the resampled data, are merged, effectively doubling the number of data
points. This resampling increases stability in the higher energy range while it keeps
the spectral shape unchanged.

• We then rescaled the data using the relations given in Equation (1)

Ȳ = log10(Y)

Ŷ = Ȳ/ min(Ȳ)
(1)

where Ŷ is the renormalized and Y is the raw data generated by the simulation.
These two steps are necessary due to the numerical stability of the training process:
not only the spareseness of data is problematic in surrogate training. Points with a
(orders of magnitude) lower numerical value do contribute much less to the training
process metrics than others. As a result, the training process is volatile, which we
mitigated by these rescalings.
As mentioned previously, the ion input energies are below the spallation threshold,
and the unit of the spectral data Y is normalized to the reaction’s source particle. This
implies that each data point is between 0 and smaller than 1. After both rescaling steps,
the converted output data Ŷ of the simulation is normalized and ranges between 1
and the normalized maximal value.

• The spectrum also consists of energy information to the count rate. We normalized the
resulting neutron’s energy En by the neutron cut-off energy to get a scale from 0 to 1.

Ên︸︷︷︸
X̂

= En︸︷︷︸
X

/ max(En) (2)

This results in the energy information range from 0 to 1 and allow us to use all spectra
in the same training procedure. These maximum energy values are used later in a
second model to predict the cut-off energy.

2.3. ANN Setup

Discontinuities are not smooth and can only be approximated with an even more
extensive dataset. Since the physical spectrum has hard cut-off positions representing a dis-
continuity in the spectrum, we either needed even more data or used a more sophisticated
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approach. Therefore, we trained two models. The first predicts the normalized spectrum,
while the second predicts the cut-off energy.

The networks are both fully connected feed-forward networks. For the spectrum,
the node structure is as follows, where xs is an eight-dimensional input vector: (xs →
200 → 200 → 200 → 200 → 200 → 200 → 200 → 1). For the cut-off energy of the
spectrum, the node structure is as follows, where xc is a seven-dimensional input vector:
(xc → 260 → 180 → 180 → 340 → 180 → 180 → 340 → 340 → 180 → 1). More details
about these input vectors are given in Appendix B.2. For both networks, the split between
training and validation data is 90:10. The data for each epoch is taken from the training data
and separated again 90:10 into the actual training data and the corresponding testing data.

Further optimization, such as dropout regularization, might acquire better results, but
time constraints did not permit further topology optimization. The selected hyperparame-
ters are given in Appendix B.1.

2.4. ANN Bootstrap

The simulation data have, due to their probabilistic nature, an uncertainty. We incor-
porated this uncertainty with a bootstrap method [13,14]. The raw data were randomly
resampled in the range of uncertainty, which is Gaussian distribution, and calculated by
PHITS. Taking the Gaussian distribution, we can resample the yield data N times:

Yres = G(µ = Y, σ = σY), (3)

where G is the Normal distribution. Applying the same procedure on each resampled
spectrum yields N + 1 different predictions, which deviate around the joined mean. For
each set of input parameters, N + 1 predictions are generated. The mean of these predictions
is then the predicted value, while the standard deviation of those predictions is then the
uncertainty of the prediction.

2.5. Ensuring Generality

Our surrogate F maps the input parameters (converter shape, particle parameters)
onto the spectrum (double differential yield). The simulated data are normalized to the
incident particle. As a result, the model is also normalized. The model’s output must be
multiplied by the corresponding particle count Np to determine the actual yield. We can
further split non-monoenergetic ion spectra into mono-energetic slices and superpose the
results; each summand depends on each slice’s ion energy Ep. Furthermore, since the data
are binned, the bin width ∆Ep must also be considered.

The formal application F is then given by

d2Y
dΘ dEn

= ∑
Ep

Np
(
Ep

)
· F̂

(
En, Θ, Ep, ∗

)
∆Ep (4)

and with the infinitesimal limit for ∆Ep → 0:

=
∫

Np
(
Ep

)
· F̂

(
En, Θ, Ep, ∗

)
dEp, (5)

where Y is the neutron yield, Θ the angle under which the observation is made, En the
energy of the neutron, Np the number of incoming projectiles, Ep the energy of the projectile,
and F̂ is the unit surrogate model, which is normalized to one projectile particle. ∗ denotes
all other mentioned parameters from Table 1. Ep is sampled according to the needed
precision; we used a bin width of ∆Ep = 1 MeV. Setting the model up like this enables us
to apply and verify this model on mono-energetic spectra and laser-accelerated ions. This
model ensures direct comparability between conventional accelerator-driven ion sources
and laser-plasma-driven sources.
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3. Results

Each network’s final mean squared error and the normalization factor used during
preprocessing are displayed in Table 2.

Table 2. Network metrics for all trained networks. Id 0 means the raw data are used. The other
nine numbers indicate the nine resampled datasets. MSE is the mean squared error training metric,
and Normalization indicates the normalization constant applied to each dataset after the logarithm
was applied.

Id MSE Normalization

0 0.00128 −16.0505
1 0.00124 −16.2796
2 0.00128 −15.9784
3 0.00119 −16.6231
4 0.00114 −16.9578
5 0.00114 −16.8753
6 0.00125 −16.1653
7 0.00120 −16.5274
8 0.00140 −15.3819
9 0.00121 −16.4534

3.1. Validation against the Raw Simulation Data

The validity of the surrogate can be shown by plotting the surrogate’s results with
the raw data curves. These curves are displayed in Figures 4 and 5. Displayed are the
full spectra created by the Monte Carlo code vs. the result created by our model, with its
corresponding uncertainty.
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Figure 4. Model verification against the simulation data for proton-induced reactions. Solid lines
indicate the model prediction (M), while the dashed lines are the resulting Monte Carlo spectra (D).
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(d) Be reaction under Θ = 90◦.

Figure 5. Model verification against the simulation data for deuteron-induced reactions. Solid lines
indicate the model prediction (M), while the dashed lines are the resulting Monte Carlo spectra (D).

We obtain important constraints of the surrogate regarding its validity from the
comparison.

1. The model predictions beyond the parameter range (see Table 1) are not physical.
2. The model can predict the lowest energy neutrons, which cannot be seen in the Monte

Carlo spectra. These values, however, have to be used with care: their uncertainty is
very high, up to 100 %, and the result does not reproduce measurement data correctly
(see Section 3.2). The main reason for zero compatible count rates is the bulky target;
the lowest neutrons created by low-energy projectiles cannot leave the target and are
stuck there or scattered, so they are not counted in the detector. Therefore, the count
rates in the simulation are low, meaning the statistical uncertainties are high.

3. The characteristic high-energy peak in the forward direction, which occurs in the
p-Li reaction due to the transition from Li-7 to the ground/excited state of Be-7, is
suppressed (see Figure 4a). The model is based on regression. Due to this, it further
suppresses fast signal peaks. It is, therefore, not capable of resolving these peaks.

4. The cut-off energies mean squared error is approximately 9 MeV2. This implies an
uncertainty of the cut-off energy of approximately ±3 MeV.

If these limitations are taken into account, we can use the model to predict spectra
over a large energy domain in milli seconds of time. How well this model fare against
real-world experimental data is discussed and deployed in the following chapter.

3.2. Validation against Experimental Data

The largest experimental data collection is the EXFOR database, hosted by the Inter-
national Atomic Energy Agency (IAEA) [15,16]. Only a few datasets are comparable to
the model derived here due to different experimental setups, the focus on cross-section
measurements with thin targets, and energies of interest larger than 100 MeV. We extracted
the corresponding matching data and normalized it to the same units we used in our model.

It is visible that the model, displayed in Figure 6, deviates from the data in the
low-energy region below 0.1 MeV. The dataset from Howard et al. taken in 2001 with
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Ep = 3 MeV [17] could not be adequately reproduced and is therefore not displayed here.
Both observations have the same reason: For low energy neutrons, the count rates in the
Monte Carlo code were too low, and as such, the relative uncertainty is as high as 100%.
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Figure 6. Experimental data compared to the model (solid lines with shaded uncertainty). (a) Data
taken by Kamada et al. in 2011 with Ep = 11 MeV [18]. (b,c) contain data taken by Osipenko et al. in
2013 with Ep = 62 MeV [19]. The scattering angle is listed in the legend, the model prediction is the
same color as the data, and the data have been multiplied by a factor as indicated by the legend’s
prefix to increase the readability of the plot.

The model’s output can also be compared against other modeling approaches. We
compare it here with the work from Wakabayashi et al. ([10], Figure 6). The data from the
publication are compared with the results of our model in Figure 7.
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Figure 7. Our model compared to the data extracted from ([10], Figure 6). Our model gives the
dashed lines with the corresponding uncertainty bands.

We normalized our model to the same units as Wakabayashi’s model. The variation
between experimental data, JENDL-based results, and the model in the corresponding
publication already exceeds up to two orders of magnitude. Our model is continuously
lower than the curves from Wakabayashi’s model because our model’s core is based on
the JENDL database, resulting in a lower yield. Furthermore, the shape of the converter
used in the experimental study is only described as a 2 mm thick Beryllium disc without
the radius information. Therefore, our model may further differ from Wakabayashi’s in
the converter geometry, increasing the differences between the two models. JENDL was
already continuously lower; we can, therefore, conclude that our model behaves indeed
as it should. For the forward direction at 0◦, we can ensure a good match in the geometry
and, therefore, also acquire a spectrum that agrees with the model from Wakabayashi’s
work. The larger the observation angle gets, the higher the spectra deviate. Due to the
lower experimental yield, we would expect the Beryllium disc to have a radius larger than
24 mm.

3.3. Spectra for Different Conventional Setups

We can use the model to compare different setups. They vary in the number of particles
and the corresponding input energies. Higher ion energy is expected to correlate with a
higher neutron yield and higher cut-off energy of the spectrum. The number of neutrons is
linearly dependent on the incoming particles due to the superposition principle.

The most progressed concepts and projects for compact neutron sources are based on
conventional accelerators. We therefore extracted the relevant parameters from their design
reports and used our model to compare those spectra against each other. The projects are
the High Brightness Source project (HBS) from Jülich Center for Neutron Science [2], RIKEN
accelerator-driven compact neutron systems (RANS) at RIKEN in Japan [1], SONATE at
CEA-Saclay [3], and from the technical reports of the IAEA [8]. The parameters used for
this evaluation are tabulated in Table 3, and the model’s results are displayed in Figure 8a,b.

Table 3. Parameters for several conventional compact neutron sources based on ion accelerators. The
sources are given in the text.

Name Energy Current dT
Unit MeV 10−4 A cm

IAEA2 40 50 2.0
IAEA4 40 1250 2.0
RANS 7 1 0.03
HBS 70 1000 1.6

SONATE 20 1000 0.2
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Figure 8. Model output for the conventional accelerators in p+Be configuration.

Differences in the spectrum result from the different particle energies and the observa-
tion angle. The number of incoming ions then scales this spectrum.

3.4. Spectra for Laser-Accelerated Protons

As mentioned previously, the laser-accelerated spectra are calculated by the super-
position of several mono-energetic models which follow the composition of the full laser
particle spectrum. We tested this on a simulation for the ion spectrum evaluated by Schmitz
et al. [20]. The spectrum is analytically given as

dN
dE

(E) =
N0

E
exp

(
− E

kBT

)
, (6)

where N0 = 3.7 × 1011, kBT = 7.4 MeV, and E the spectrum’s energy in the interval from
5 MeV to 25.5 MeV. We performed additional simulations for this proton spectrum and a
corresponding beryllium target with a thickness of 5.02 mm and a radius of 24 mm. The
results of the simulations, together with the corresponding model output, are displayed in
Figure 9.
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Figure 9. Model and simulation output for a TNSA proton beam.

The model output is close to the simulation at 0◦. At emission angles larger than 60◦,
the model prediction shows larger deviations from the simulated spectra, indicated by a
jump in the spectrum at around 7 MeV. With a larger angle, the neutron’s range inside
the converter increases, as the transverse dimension of the target is much larger than the
thickness of the target in beam direction (24 mm vs. 5.02 mm).
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4. Conclusions

We presented a predictive surrogate model using an extensive Monte Carlo simulation
dataset. This model can be deployed quickly and provides the core for quick evaluations of
neutron yields. It increases the accessibility of neutron yield simulations and minimizes
the need for experience and training for the complex Monte Carlo tools. Despite insuffi-
cient experimental data for data-driven modeling, we showed that our model reproduces
experimental datasets if the experimental conditions come close to the model parameters.

Due to our simulation setup and its numerical feasibility, neutrons from projectile
energies Ep < 5 MeV have a large uncertainty if En < 0.1 MeV. We recommend not
trusting the model in this region without an additional check via a Monte Carlo simulation.
The uncertainty, which we calculate by the already explained bootstrapping method in
Section 2.4 is a good indicator of the model’s validity.

The next step to improve this model is to investigate the geometry dependency in
more detail and to improve the cut-off modeling for the neutron spectra. Both could be
achieved by new experimental data or an extension of the simulation model.
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Appendix A. Detector Details

The radius of the detector sphere is 25 cm. The area of the detector is the absolute
covered area of the specific detector, and the Ratio is the percentage of full coverage. Θmin
and Θmax values describe the minimum and maximum scattering angle the detector can
measure. Θmean is the central scattering angle of the detector.

Table A1. Data for detectors implemented in the Monte Carlo model. Every second value is greyed
to guide the eye.

Θmin Θmax Θmean σΘ Area Ratio
◦ ◦ ◦ ◦ cm2 %

D01 −5 5 0.0 5.0 14.94 0.19
D02 5 10 7.5 2.5 44.72 0.57
D03 10 15 12.5 2.5 74.15 0.94
D04 15 25 20.0 5.0 234.12 2.98
D05 25 35 30.0 5.0 342.26 4.36
D06 35 45 40.0 5.0 440.00 5.60
D07 45 55 50.0 5.0 524.37 6.68
D08 55 65 60.0 5.0 592.81 7.55

https://doi.org/10.48328/tudatalib-1185
https://doi.org/10.48328/tudatalib-1186
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Table A1. Cont.

Θmin Θmax Θmean σΘ Area Ratio
◦ ◦ ◦ ◦ cm2 %

D09 65 75 70.0 5.0 643.24 8.19
D10 75 85 80.0 5.0 674.12 8.58
D11 85 95 90.0 5.0 684.52 8.72
D12 95 105 100.0 5.0 674.12 8.58
D13 105 115 110.0 5.0 643.24 8.19
D14 115 125 120.0 5.0 592.81 7.55
D15 125 135 130.0 5.0 524.37 6.68
D16 135 145 140.0 5.0 440.00 5.60
D17 145 155 150.0 5.0 342.26 4.36
D18 155 165 160.0 5.0 234.12 2.98
D19 165 170 167.5 2.5 74.15 0.94
D20 170 175 172.5 2.5 44.72 0.57
D21 175 185 180.0 5.0 14.94 0.19

Appendix B. Parameters and Traits for the Artificial Neural Network Model

Appendix B.1. Hyperparameters

We used the Rectified Linear Unit (ReLU) for the activation function, which is widely
used for Regression problems. The identity is employed for the activation function for
the last step to the output layer. Similarly, we chose the mean squared error, suited for
regression problems, as loss, and it was minimized using the Adam optimizer with β1 = 0.9,
β2 = 0.999 and ϵ = 1 × 10−7. The initial learning rate was 0.001, which was lowered to a
minimum of 0.0001 during training should the optimizer detect a plateau in the validation
loss value (Keras’ ReduceLROnPlateau feature).

Considering the resampling, each simulation output contains information about
∼500 locations (400 raw data + 100 resampled data) in the energy spectrum. Hence,
the available data length for the continuous spectral model was 54,768 × 500 = 2,7384,000
data points. Of these, we used 81% for training, 9% for validation, and 10% for testing.
Every training used a batch size of 16 and an early stopping mechanism. Each hidden layer
in the network has an L1 regularization strength of 3.56 × 10−7 and an L2 regularization
strength of 1 × 10−14. Since the maximum energy is only predicted per simulation and
not per energy bin of the energy spectra, the model for the cut-off energy was trained on
54,768 unique data points. This significantly smaller dataset made the model training faster.
The L1 regularization strength was set to 6.2613 × 10−7, and the L2 regularization strength
was set to 2.0392 × 10−8.

Appendix B.2. Input Vectors

The different input vectors for the two neural networks are constructed as given in
Tables A2 and A3. OHE indicates the one-hot encoding of categorical data. The converter
material in the one-hot encoding is represented by three bits.

Table A2. Input vector of the model that predicts the spectrum and its defining quantities.

Position Quantity OHE/Max Description

0 En[i] /150 MeV Energy value for which the neutron yield should be predicted.
1 Ep /100 MeV Energy of the projectile causing the reaction.
2 Length /10.5 cm Length of the converter.
3 Theta /180 degree Scattering angle for which the prediction should be done.
4 Project OHE P The type of the projectile is encoded with one-hot encoding.
5 Conv[0] OHE T1 First bit of the one-hot encoded converter material.
6 Conv[1] OHE T2 Second bit of the one-hot encoded converter material.
7 Conv[2] OHE T3 Third bit of the one-hot encoded converter material
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Table A3. Input vector of the model that predicts the cut-off energy and its defining quantities.

Position Quantity OHE/Max Description

0 Ep /100 MeV Energy of the projectile causing the reaction.
1 Length /10.5 cm Length of the converter.
2 Theta /180 degree Scattering angle for which the prediction should be done.
3 Project OHE P The type of the projectile is encoded with one-hot encoding.
4 Conv[0] OHE T1 First bit of the one-hot encoded converter material.
5 Conv[1] OHE T2 Second bit of the one-hot encoded converter material.
6 Conv[2] OHE T3 Third bit of the one-hot encoded converter material
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