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Abstract: Reactor design requires safety studies to ensure that the reactors will behave appropriately
under incidental or accidental situations. Safety studies often involve multiphysics simulations where
several branches of reactor physics are necessary to model a given phenomenon. In those situations,
it has been observed that the neutron transport part is still a bottleneck in terms of computational
times, with more than 80% of the total time. In the case of hexagonal lattice reactors, transport solvers
usually invert the discretised Boltzmann equation by discretising the regular hexagon into lozenges
or triangles. In this work, we seek to reduce the computational burden of the neutron transport
solver by designing a numerical spatial discretisation scheme that would be more appropriate for
honeycomb meshes. In our past research efforts, we have set up interesting discretisation schemes
in the finite element setting in 2D, and we wish to extend them to 3D geometries that are prisms
with a hexagonal base. In 3D, a rigorous method was derived to shrink the tensor product between
2D and 1D bases to minimum terms. We have applied these functions successfully on a reactor
benchmark—Takeda Model 4—to compare and contrast the numerical results in a physical setting.

Keywords: neutron transport; discrete ordinates; discontinuous Galerkin; polygonal finite element;
high-order discretisation; Wachspress functions

1. Introduction

With the increasing needs in electricity, nuclear energy is an appropriate option to meet
supplies in a sustainable fashion. Apart from the usual designs such as Pressurised Water
Reactors (PWR) which are widespread, novel nuclear reactor concepts are presently being
developed throughout the world. Among those, there are technologies where the reactor
core is a lattice of hexagonal assemblies: the fast neutron reactors such as sodium-cooled
fast reactors (SFR) that allow for fuel regeneration or new versions of the Vodo-Vodianoï
Energuetitcheski Reaktor (VVER).

Nowadays, reactor design requires safety studies to ensure that the reactors will
behave appropriately under incidental or accidental situations. The safety studies often
involve multiphysics simulations where several branches of reactor physics are necessary
to model a given phenomenon. For instance, considering an accidental scenario such
as the unprotected loss of flow (ULOF) for SFR, neutronics and thermal hydraulics are
coupled together to perform a large number of parametric computations on relevant
quantities pertaining to the safety of the reactor. Recently, much work has been dedicated
to the coupling strategy to improve its convergence as illustrated in [1–3]. In the case of
severe accidents, it has been observed that in these simulations, neutron transport is still
a bottleneck in terms of computational times, with more than 80% of the total simulation
time [4].
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In the case of hexagonal lattice reactors such as SFR or VVER, transport solvers usually
invert the discretised Boltzmann equation by discretising the regular hexagon into lozenges
or triangles [5,6]. In fact, neutronics relies on prime quantities such as the reactivity where
the accuracy is required in 1 × 10−5 or pcm, even in coarse simulations. On the other hand,
the other physics coupled to neutronics would usually have more relaxed computational
requirements; for instance, thermalhydraulics will consider each hexagonal assembly as a
closed channel and perform independent 1D computations of this channel to provide an
average assembly temperature. As such, it would seem that neutronics is “overmeshed” to
guarantee proper convergence and highly resolved results.

In this work, we seek to reduce the computational burden of the neutron transport
solver by designing a numerical spatial discretisation scheme which would be more appro-
priate for hexagonal or honeycomb meshes. In our past research efforts, we have set up
interesting discretisation schemes in the finite element setting [7] in 2D, and we wish to
extend those schemes to 3D geometries, which are prisms with a hexagonal base. In the
first section of this work, we recall the theoretical setting of past works and use those to
build an interesting and novel 3D functions. In fact, for constructing the 3D bases, we have
derived a mathematical setting for keeping only the required terms from the classical tensor
product between a 2D and a 1D basis sets. Then, we apply these functions on a reactor
benchmark of a small SFR to compare and contrast the numerical results in a physical
setting.

2. Theoretical Background

In this section, we shall provide the mathematical setting necessary to discretise the
Boltzmann transport equation. First, we will talk about the usual discretisations for the
energy and angle variables. Then, we shall describe the spatial discretisation in more detail
for both 2D and 3D cylindrical (extruded) geometries. All the methods described in this
section have been implemented in an in-house Python mock-up code.

2.1. Main Discretisations of the Transport Equation

Given a system of neutrons at equilibrium, their mean behaviour in an isotropic
medium is governed by the time-independent Boltzmann transport equation, with r in a
spatial domain D, direction Ω on the unit sphere S2 and energy of the incident neutron,
E ∈ E ⊂ R+. The usual method used to discretise the energy variable of the transport
equation is the multigroup approximation. It involves the partitioning of the energy range

into non-overlapping discrete energy intervals, groups, as E =
G⋃

g=1
Eg =

G⋃
g=1

[Eg, Eg−1],

wherein the cross sections are assumed constant. By convention, the highest energy is
assigned the smallest group number and as the neutron loses energy, the group number
increases. Thus, the Boltzmann equation is integrated over the G energy groups, leading to
G coupled equations through the scattering and fission source term.

In the present work, the angular variable Ω is discretised using a collocation method
called the discrete ordinates method, or the Sn method. This method has been set up
formally by Chandrasekhar in the field of astrophysics for radiative transfer [8], and
adapted to the neutron transport equation by Carlson [9]. It consists of solving the transport
equation for a predefined set of directions, and approximating the angular integrals by a
quadrature with the angular weights ωn.

For each direction in {(ωn, Ωn)}1≤n≤N, the multigroup transport equation is expressed as

Ωn ·∇ψg(r, Ωn) + Σg
t (r)ψ

g(r, Ωn) =
1

2π

L

∑
l=0

2l + 1
2

+l

∑
m=−l

Rm
l (Ωn)∑

E′
g

Σg′→g
sl (r)ϕg′

lm(r) (1)

+
χg

4πkeff
∑
Eg′

νΣg′

f (r)ϕ
g′
00(r) (2)
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where:

• ψg(r, Ω) is the neutron angular flux which is the basic unknown of the transport
equation.

• Ω ·∇ψg(r, Ω) is the term due to neutron streaming.
• Σg

t (r)ψ
g(r, Ω) is the loss of neutrons by interaction with matter, with Σt(r) being the

macroscopic total cross section.

•
1

2π
∑L

l=0
2l + 1

2 ∑+l
m=−l R

m
l (Ωn) ∑

E′
g

Σg′→g
sl (r)ϕg′

lm(r) is the scattering source, i.e., neu-

trons scattering from energy group g′ to g and/or from direction Ω′ to Ω.

•
χg

4πkeff
∑
Eg′

νΣg′

f (r)ϕ
g′
00(r) is the fission source term. νΣg

f (r) is the production cross sec-

tion.
• keff is the effective neutron multiplication factor.

In addition, the angular flux moments over the real spherical harmonic functions
Rm

l (Ω) are computed as:

ϕ
g′

lm(r) =
∫
S2

d2Ω′Rm
l (Ω

′)ψg(r, Ω′) =
N

∑
n′=1

ωn′Rm
l (Ωn′)ψg(r, Ωn′) (3)

and ϕ
g′
00(r) is the so-called scalar flux.

Thus, the transport equation becomes a system of N equations, coupled through the
angular flux moments. In the case of the hexagonal geometries, a product quadrature
(in the sense of a Cartesian product of two quadratures; in this case, a Gauss–Chebyshev
quadrature for the azimuthal angle and a Gauss–Legendre quadrature for the cosine of the
polar angle) is adapted to ensure the angular integration on these geometries conforms
to the symmetries of the regular hexagon. The polar (its cosine) and azimuthal angles,
µ and φ, respectively, are partitioned using a particular quadrature rule, and the final
angular quadrature is the product of these two quadratures. µ is expanded using a Gauss–
Legendre quadrature over [0, 1] and φ using a Gauss–Chebyshev quadrature over the
interval [0, π/3] for a twelfth of the unit sphere, and the directions thus obtained are
mapped to the remaining parts of the sphere.

2.2. Spatial Discretisation Scheme

Considering an open spatial domain D of R2 with boundary ∂D, meshed in a set Mh
of Nκ hexagonal elements κ, the discrete-ordinates equation for the monoenergetic neutron
transport equation in a given direction Ωn is expressed as

Ωn ·∇ψn(r) + Σt(r)ψn(r) = Qn(r)∀r ∈ D (4)

with Qn(r) being the neutron source in direction Ωn (Qn contains both the external sources
and the scattering source from other directions). Given n(r) the unit outward normal to
∂D at r ∈ ∂D, ∂D− is the inflow boundary defined as

∂D− = {r ∈ ∂D | Ωn · n(r) < 0} (5)

The boundary conditions for r ∈ ∂D− are of Dirichlet type for ψn(r). Taking P(κ) as
the space of functions of degree k or less on κ, the set Vh is defined as

Vh = {v ∈ L2(D)|∀κ ∈ Mh, v|κ = P(κ)} (6)

The unknown angular flux ψn(r) is thus expanded over functions ϕh ∈ Vh. These
functions form a basis of the approximation space, and are non-zero over κ and discon-
tinuous across κ|κ′ interfaces. Defining ψ+

n and ψ−
n as the internal and external traces (the

trace is the restriction of the flux to the boundary. In this work, as the numerical scheme is
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discontinuous Galerkin, it allows a jump at the boundary between two elements, thereby
leading to an internal and external trace with respect to to the boundary), respectively,
Equation (7), the weak formulation for the transport equation, is obtained by multiplying
Equation (4) by ϕh, integrating by parts over element κ, applying the divergence theorem to
the streaming term, and using the upwinding approximation for the numerical flux at the
interfaces, as in the seminal work on the discontinuous Galerkin (DG) method by Reed and
Hill [10]. More details can be found in [5]. The upwind DG scheme is particularly useful in
transport problems to retain the sweep mechanism in the source iterations [11] (usually, in
neutron transport, the problem is solved by inverting the transport operator locally and
propagating the outgoing flux to downstream cells, thereby leading to a wavefront pattern.
The use of an upwind DG scheme avoids the assembly of a global system, and retains this
mechanism whereby only a small dense matrix is solved locally).∫

κ

((
Ω⃗n · ∇⃗ψn

)
ϕh + Σtψnϕh

)
dV −

∫
∂κ−

(
n⃗ · Ω⃗n

)
ψ+

n ϕ+
h dS =∫

κ
QnϕhdV −

∫
∂κ−

(
n⃗ · Ω⃗n

)
ψ−

n ϕ+
h dS

(7)

The problem described by Equation (7) with void boundary conditions is well posed
and can be solved if P(κ) is defined such that ψn may be projected over the correspond-
ing functions. Usually for meshes with triangular or quadrilateral elements, P(κ) is the
space of polynomial functions. However, in the general case of convex polygons such as
hexagons, continuity of ϕh cannot be ensured using nodal polynomial finite elements, as
was demonstrated by Wachspress in [12].

2.3. Basis Functions on Hexagons

Several options have been considered for the choice of basis functions for P(κ). Past
works from [12–15] have described a class of functions known as generalised barycentric coor-
dinates (GBC) using different techniques. These functions verify the following properties:

Let D ∈ R2, a convex m-sided polygon with vertices (vi)(1≤i≤n), (m ≥ 3). The

functions ϕi are called generalised barycentric coordinates if ∀i ∈ [[1; m]],
m

∑
i=1

ϕi(x) = 1,

m

∑
i=1

ϕi(x)vi = x.

Consequently, if r is a point inside D, the value of a function f can be evaluated as

f (r) =
m
∑

i=1
ϕi(r) f (ai), with ai the anchor points for defining the basis functions ϕi.

A few important remarks can be added:

• Wachspress in [12] proved that it is impossible to find polynomial GBCs for an m-sided
polygon with m ≥ 4 (apart from the parallelogram).

• These GBCs are no longer unique for m ≥ 4.

In our case, we will consider Wachspress-type GBCs for the hexagons as described
by [16] to define basis functions for Lagrange or nodal finite elements. On the other hand,
since we are in a DG setting, we may also use functions that do not ensure the continuity of
ϕh at the interfaces between elements and define basis functions for the particular setting,
whereby the numerical scheme, i.e., DG, itself allows for discontinuities for the flux (the
scheme is discontinuous, but in the case of problems such as those encountered in most
situations in reactor physics, the flux is continuous, and at convergence, the interelement
discontinuities disappear).

2.3.1. Polynomial (POLY) Basis

In this case, the basis functions are defined by a set of orthogonalised monomials used
in a DG setting for polygonal meshes [17,18]. In the transport context, this is the same
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strategy employed by the NYMO neutron transport solver [19]. For a given order k, P(κ) is
defined by orthogonalising the space P̃k defined as

P̃k = span({∀i ∈ [[0, Nk]], νi = (
x − xe

p
)αi (

y − ye

p
)βi , with αi, βi ≥ 0, αi + βi ≤ k}) (8)

where p is the pitch of the regular hexagon, i.e., the length between two parallel sides, and
(xe, ye) is the centroid of the hexagon, Nk = (k+2

k ) is the number of functions for a given
order k. The mesh is composed only of regular hexagons; each element is a translation
of the reference element, and thus, the Jacobian matrix for this mapping is the identity
matrix. Furthermore, the basis functions hence obtained are orthogonalised using the
Gram–Schmidt procedure with the scalar product ( · , · )L2(κ).

2.3.2. High-Order Wachspress (HOW) Basis

In [20] from the Wachspress’s results, Gout describes rational finite element bases for
different polygons. Indeed, Gout proposed different Wachspress bases for quadrangles,
pentagons, and hexagons at low orders (in particular, up to 3 for the hexagon). While
rigorous proofs were provided a posteriori to verify that these bases span the appropriate
finite element space, no actual method is provided to construct such bases at a higher order
or on a different polygon. In addition, when Gout considers the third-order basis functions
he designed for the hexagon, he does not discuss the fact that the proposed basis is only
one possibility among an infinite number of bases.

Following promising applications of Gout’s basis functions to the transport problem
for reactor engineering application in [21], we have recently extended Gout’s work by
proposing an original method to compute such bases on any type of convex polygons (with
m sides) for any order k < m by using the algebraic properties for them to span the correct
approximation space [7].

For κ, a regular hexagon with vertices, we define the nodes (ai)i∈[[1;6]] such that ai and
ai+1 are consecutive. We also define the nodes within a given edge ai and ai+1 as aij such

that for order k, aij =
1
k ((k − j)ai + jai+1). The equation of the straight line di through ai−1

and ai is denoted by li(x, y) = 0 and D = {bi}1≤i≤m, forming the exterior intersection
points of the straight lines di and dj. The example of the regular hexagon is depicted on
Figure 1.

For a given order k such that k < 6, ∀i ∈ [[1; 6]], ∀j ∈ [[1; k − 1]], the basis functions are
written as (according to [12])

P(κ) = span({∀i ∈ [[1; 6]], ∀j ∈ [[1; k − 1]], wi = ci
πiri

q
; wij = cij

πij rij

q
}) (9)

where:

• q is the adjoint curve which passes through all points bi (the adjoint corresponds to the
curve passing through the external intersection points) and is, in the case of a regular
polygon, the equation of a circle;

• πi (resp. πij ) is the product of all straight-line equations l⋆, which do not pass by ai
(resp. aij);

• ri (resp. rij ) is a polynomial function of order k − 1 (resp. k − 2), which satisfies
∀l ∈ [[i − 1, i]], ri(alj

) = 0 (resp. ∀h ̸= j, rij(aih) = 0);
• ci (resp. cij ) is the normalisation coefficient such that wi(ai) = 1 (resp. wij(aij) = 1).

In our work, using geometrical constraints and interpolation properties of the approxi-
mation space, we used computer algebra to determine high-order Wachspress functions for
any convex m-sided polygon up to order k < m and applied those to the regular hexagon
and an irregular pentagon in [7]. The basis functions hence obtained for the hexagon were
applied successfully to the Poisson equation and to the transport equation. Moreover,
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also compared the performance of these basis functions on transport problems through
the method of manufactured solutions (MMS) [22] and to reactor problems in 2D for a
one-group problem [23]. In particular, in [22], we studied the numerical convergence of
POLY and HOW bases in a DG setting for two situations. If the solution to the MMS
problem does not belong to the approximation space but is regular, the basis functions lead
to optimal convergence with the order, as suggested by Richter [24]. However, we have
shown that as the solution becomes less regular, convergence is limited by its regularity
rather than the order, and that the error of the Wachspress bases is lower compared to the
orthogonalised monomial bases.

x

y

O

a3

a4

a5

a6

a1

a2

b3

b4b5

b6

b1 b2

a21

a22

a52

a51

a31

a32a41a42

a61 a62 a11

a12

Figure 1. Geometrical elements to define Wachspress shape functions on a regular hexagon (in green)
defined with vertices in blue dots at p = 3. Adapted from [7].

2.4. Extension to 3D Cylindrical Geometries

From the work carried out in the previous sections, we have devised two types of
basis functions for building the approximation space required in a DG-FEM setting for
2D honeycomb meshes. In this section, we wish to design basis functions for 3D spatial
meshes, which are the extrusion of the 2D mesh along the z-axis, or a so-called cylindrical
mesh with a regular hexagonal base. In this case, the 3D basis functions can be obtained
quite simply and directly through the tensor product between basis functions defined in
the 2D plane and 1D functions defined on the 1D axis. We will then focus on an original
manner of designing 3D basis functions of lower cardinality. This is useful in of seeking a
spatial discretisation to reduce computation times while guaranteeing an acceptable level
of accuracy (although the notion of calculation times is not explicitly addressed in this
work, we can safely affirm that reducing the dofs for a given problem entails a decrease in
time spent in the solving step).

2.4.1. Multiplicative Basis Functions

Suppose we have a 3D mesh consisting of a 2D honeycomb mesh extruded along
the z-axis. Each cell of this mesh is termed κ, consisting of a regular hexagonal base κ2D
extending along κ1D = [z1, z2]. Wk = {wk

i (x, y)}i∈[[1,N(k)]] and Vl = {ϕj(z)}j∈[[0,l]] are the
basis functions of order k and order l for κ2D and κ1D, respectively.

Let us also denote Pd
k the space of d-variate polynomials of order k. Thus, we have

P2
k ⊂ span(Wk) and P1

l ⊂ span(Vl).
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Given Wk and Vl , the “straightforward” choice to define basis functions for κ is the
tensor product of those two sets of basis functions, thereby leading to the vector space
PBM (κ) as follows:

PBM (κ) = span(Wk ⊗ Vl) = span({wi(x, y)ϕj(z)}(i,j)∈[[1,N(k)]]×[[0,l]]) (10)

The space P2
k ⊗ P1

l is included in PBM (κ), since P2
k ⊂ span(Wk), P1

l ⊂ span(Vl), and
PBM (κ) is constructed from linearly independent functions. The basis associated with
PBM (κ) is termed a multiplicative basis to define finite elements on κ. The number of degrees
of freedom Nk,l depends on the choice for the basis functions on the regular hexagon:

Nk,l =

card(Wk)× card(Vl) = 6k × (l + 1) for Wachspress functions

card(Wk)× card(Vl) =
(k + 1)(k + 2)

2
× (l + 1) for polynomial functions

(11)

In the general case, it should also be noted that the orders k and l may be different.
However, in the particular case of k = l, PBM (κ) results in the space of polynomials of
terms with partial degree ≤ k, i.e., Q3

k , which is of a much larger dimension than the space
of polynomials with terms of total degree k, i.e., P3

k .

2.4.2. Additive Basis Functions

In this section, we seek to decrease the cardinality of the basis required for κ in order
to span P3

k . To achieve this goal, we require a constraint on one of the two sets of basis
functions we have: Wk or Vl in 2D and 1D, respectively. We would need one of them to
be hierarchical.

A set of polynomial functions {Bk}k≥0 is hierarchical if ∀k ≥ 0:

• Bk forms a basis of Pk
• Bk ⊂ Bk+1

For instance, ∀l ∈ N; the monomials
{
{zi}0≤i≤k

}
k≥0 are hierarchical. Rather than

defining hierarchical Wachspress functions (which could have been possible, as shown
by [25]), we opted for hierarchical Vl through the use of Legendre polynomials such that it
can be decomposed as a disjoint union as

Vl =
l⊔

m=0
Ṽm (12)

Hence, span(Vl) is a basis of P1
l , whereby span(Vl) ⊂ span(Vl+1), ∀m ∈ [[0, l]], ∀ f ∈

Ṽm, deg( f ) = m. To proceed, we first decompose P1
l in a hierarchy over the monomials:

P1
l =

l⊕
i=0

P̃1
i where P̃1

i = span({zi}) (13)

Using Equation (13), we can show that P3
k can be decomposed as

P3
k =

k

∑
m=0

P2
m ⊗ P̃1

k−m (14)

This decomposition can be easily proved by:

• Using the definition P3
k = span({xαyβzγ}α+β+γ≤k);

• Using the definition
k
∑

m=0
span({xαyβzk−m}α+β≤m) = span(

k⋃
m=0

{xαyβzk−m}α+β≤m);

• Applying the property that for two subspaces A, B of a vector space E, span(A ∪ B) =
span(A) + span(B) to invert the span and ∑ operators;
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• Injecting the fact that α + β + γ ≤ k is equivalent to α + β ≤ k − m subject to the
constraint γ ≤ m.

From Equation (14), the following substantial result can be induced:

P3
k ⊂

k

∑
m=0

span(Wm ⊗ Ṽk−m) (15)

The proof for Equation (15) is given in Appendix A. Hence, the following approxima-
tion space PBA(κ) can be generated:

PBA(κ) =
k⊕

m=0
span(Wm ⊗ Ṽk−m) (16)

which is associated with a basis termed additive basis (due to it being spanned by “adding”
specific terms from the tensor product).

Just as for PBM (κ), the number of degrees of freedom (dofs) Nk,l for the additive basis
associated with PBA(κ) depends on the choice of Wk:

Nk =
k

∑
m=0

card(Wm)× card(Ṽk−m) (17)
1 +

k
∑

m=1
6m = 3k(k + 1) + 1 for Wachspress functions

k
∑

m=0

(m + 1)(m + 2)
2

=
(k + 1)(k + 2)(k + 3)

6
for polynomial functions

(18)

Table 1 contrasts the numerical values for k up to degree 5 for the multiplicative and
additive basis functions for Wachspress and polynomial functions. It can be observed
that PBA(κ) has (almost) half the dofs of PBM (κ). Furthermore, it would be interesting to
analyse results prevailing from the PBA(κ) generated with Wachspress functions and PBM (κ)
generated by polynomials where the dofs are equivalent up to order 3. A final remark is
THAT the largest difference stems for PBM (κ) generated from Wachspress functions and
PBA(κ) from polynomials where a factor of more than 3 is observed in terms of dofs.

Table 1. Number of dofs for each of the four 3D bases.

Wachspress Polynomial
Order Multiplicative Additive Multiplicative Additive

1 12 7 6 4
2 36 19 18 10
3 72 37 40 20
4 120 61 75 35
5 180 91 126 56

3. Application to the Takeda Benchmark

Having detailed these different 2D and 3D bases, we will now apply them to solve the
neutron transport equation on a reactor case, the Takeda Model 4 benchmark.

3.1. Benchmark Description: Takeda Model 4

The case of interest for numerical results is the Takeda Model 4 benchmark [26].
Basically, this benchmark has been conceived from features from the KNK-1 reactor from
Karslsruhe, Germany. The materials are given on Figure 2. The multigroup (4-group) cross
sections’ data are available from [26], and we will not provide them here for the sake of
conciseness. The d provided on Figure 2 corresponds to the length of a side of the hexagon,
i.e., 7.50 cm, thereby corresponding to a pitch p of

√
3d.
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Table 2 describes the material indices in each of the seven layers composing the core
geometry as given in [26]. Since only the materials in the first three rings around the central
hexagon vary, the axial description is deduced along a given diagonal AA’, illustrated in
the initial benchmark and reproduced here in Figure 2.

Figure 2. Radial plane from the Takeda Model 4 benchmark adapted from [26].

Table 2. Material indices in each axial plane along the diagonal AA’ described in Figure 2 for the
Takeda core.

Height (cm) Material Indices along AA’

Central Hexagon

190
10 9 8 7 1 1 1 1 1 1 1 7 8 9 10155

145

145 10 9 8 7 3 3 2 2 2 3 3 7 8 9 10125

125
10 9 8 7 6 5 4 4 4 5 6 7 8 9 1095

65

65 10 9 8 7 3 3 2 2 2 3 3 7 8 9 1045

45 10 9 8 7 1 1 1 1 1 1 1 7 8 9 100
1: Steel; 2: Axial blanket; 3: Axial Reflector; 4: Test zone; 5: Driver zone with moderator; 6: Driver zone w/o
moderator; 7: Reflector w/o moderator; 8: Reflector with moderator; 9: KNK-1 Reflector; 10: Sodium/Steel zone.
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3.2. Numerical Results for 2D Configuration

Before computing the usual 3D configuration for this benchmark, we will first consider
a 2D setting, which we obtain by considering the plane lying at a height equal to 95 cm and
with the control rods inserted. The reference solution is obtained using a DG-FEM code
with nonconforming mesh capabilities, as described in [5]. In this case, the regular hexagon
is subdivided into 3 lozenges, which are themselves subdivided into 6 × 6 sublozenges
and using polynomial order 5, leading to 6.57 × 105 dofs. This reference setting results in
ke f f = 1.009815, along with reference absorption rates.

Furthermore, the benchmark is also computed with coarse meshes where the hexagon
is meshed into three lozenges (corresponding to the minimal mesh required by the code to
solve the transport equation with conformal mapping of the lozenges to Cartesian elements
as in [5]) and for orders 1 to 5; this solution will be labelled SNS1. We then compute the
same 2D configuration with our methods using polygonal DG-FEM over the hexagonal
mesh with high-order Wachspress functions and polynomial functions, termed HOW and
POLY hereafter. The relative stopping criteria for all iterative loops are set to 1 × 10−6. It
should be noted that the total dofs Ndofs are given by Nκ × N(k), with Nκ being the number
of cells (lozenges for SNS1 and hexagons for our HOW and POLY cases) in the mesh, and
N(k) the number of dofs per cell. Table 3 and Table 4 present the results for the difference
with the reference keff in pcm and the maximum and rms values for the relative difference
in the absorption rates, respectively.

Table 3. ∆ke f f with respect to reference value for the 2D configuration (cf. comments in text on
coloured lines).

SNS1 (Nκ = 507) HOW (Nκ = 169) POLY (Nκ = 169)
k Ndof s(N(k)) ∆ke f f [pcm] Ndof s(N(k)) ∆ke f f [pcm] Ndof s(N(k)) ∆ke f f [pcm]

1 2028 (4) 779.5 1024 (6) 1721.2 507 (3) −2277
2 4563 (9) 13.0 2028 (12) −16.6 1024 (6) 199.6
3 8112 (16) 4.7 3042 (18) 32.5 1690 (10) 9.8
4 12,675 (25) −0.4 4056 (24) −11.1 2535 (15) −2.3
5 18,252 (36) −0.5 5070 (30) 5.1 3549 (21) −0.1

From Table 3, it can be observed that SNS1, HOW, and POLY all converge towards the
reference keff value as we increase order k. Both polygonal FEM bases agree very well with
the reference solution. At order 2 for HOW, Ndofs is equal to that at order 1 for SNS1 (blue
labels in Table 3), and in this case, it is very interesting to observe that the HOW solution is
almost two orders of magnitude smaller than SNS1, and just a mere 20 pcm off the reference
value. POLY also yields the same solution accuracy as HOW, even better at order 4 for
comparable Ndofs. At order 5, it is worth noting that POLY leads to a solution with similar
accuracy as SNS1 with five times fewer dofs. The final trend of interest in that table is the
comparison between HOW and POLY: although POLY starts off with worse discrepancies
in keff at lower orders, as k increases, the rate at which the discrepancies diminish is much
faster for POLY.

This trend is consistent with the results obtained for manufactured solutions in [22]
for very smooth functions. In reactor cases, while the global regularity of the solution is
limited (see [27]), the local regularity is not uniform, and for regions where the solution is
affected locally by the discontinuities in material properties (e.g., cross sections) between
two regions along the streaming direction, the regularity of the solution can be limited.
This observation regarding local regularity is supported by results reported in the literature
where an estimation of local regularity is made (cf. [28], which was carried out in a logic of
hp-refinement).
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Table 4. Comparison of absorption rates with respect to reference values for the 2D configuration (cf.
comments in text on coloured lines).

SNS1 HOW POLY
k Ndof s Max [-] rms [-] Ndof s Max [-] rms [-] Ndof s max [-] rms [-]

1 2028 3.0 × 10−2 1.4 × 10−2 1024 6.2 × 10−2 3.1 × 10−2 507 1.5 × 10−1 7.5 × 10−2

2 4563 6.6 × 10−4 5.7 × 10−4 2028 2.1 × 10−3 9.7 × 10−4 1024 1.1 × 10−2 5.5 × 10−3

3 8112 2 × 10−4 1.6 × 10−4 3042 3.8 × 10−3 1.4 × 10−3 1690 2.3 × 10−3 3.4 × 10−3

4 12,675 4.3 × 10−5 2.4 × 10−5 4056 3.4 × 10−3 1.3 × 10−3 2535 7.6 × 10−4 6.5 × 10−4

5 18,252 9.1 × 10−5 3.5 × 10−5 5070 5.3 × 10−3 1.8 × 10−3 3549 8.8 × 10−4 2.4 × 10−4

From Table 4, SNS1, HOW, and POLY converge for both the maximum and rms
relative discrepancies on the absorption rates. However, it is very clear that as of k = 3,
SNS1 performs an order of magnitude lower than its counterparts. Nonetheless, it is
worth noting that for k = 5 for HOW and POLY, the discrepancies are much comparable
to order 3 for SNS1. Moreover, when comparing the polygonal FEM bases, HOW leads
to lower discrepancies than POLY, reversing the trend observed for the keff; the HOW
discrepancies are almost twice smaller compared to POLY when comparing the rms values
for the absorption rates (up to k = 3). Also, the maximum errors are of the same accuracy as
the rms value, which suggests an almost flat discrepancy map, as suggested by Figure 3 for
HOW, for example. The maximum discrepancies are located on the last ring of the reactor
for the reflector assemblies where scattering and streaming effects are more significant. The
same type of map is also observed for SNS1 or POLY.

Finally, it can be noted that the discrepancies for SNS1 deteriorate slightly from order
4 to order 5. This observation might suggest that for this benchmark case, as from k = 4,
the solution is no longer in the pre-asymptotic convergence regime with the order k. In
this case, it would require h-refinement or in other terms, submeshing of the hexagon
into subelements to further decrease efficiently the discrepancies. Thus, it would not be
interesting to further increase the order of k for HOW and POLY to improve the accuracy
for this benchmark if we maintain the hexagonal mesh only.

Figure 3. Discrepancy distribution on the absorption rates for the HOW case at k = 3 (left) and
k = 5 (right), Units = [-].

3.3. Numerical Results for 3D Configuration

In this part, we will now focus on the 3D case for the benchmark. The angular
quadrature is a product quadrature with Gauss–Legendre for the polar angle at order 4
and Gauss–Chebyshev at order 3 for the azimuthal angle, thereby leading to 144 directions.

The reference solution is obtained using the same in-house solver, which refines
the hexagonal cylindrical cell into parallepipeds with a lozenge base (3 (lozenges) ×
4 (radial) × 2 (axial) = 24) and with order 5, thereby leading to 6.13 × 106 dofs. The
reference keff is worth 0.879836, and the reference absorption rates are computed for each
hexagonal cell and are illustrated in Figure 4.
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Concerning the polygonal FEM methods, we employed high-order Wachspress (HOW)
and polynomial (POLY) basis functions with the multiplicative (MP) and additive (AD)
extensions to 3D. No axial submeshing has been applied, and similarly, only the polynomial
degree is increased to improve the modelling for axial effects. The corresponding dofs will
be recalled for these solvers in the results tables.

Furthermore, we also use the solver with subdivisions of the hexagonal cylindrical cell
into simply three extruded lozenges for orders 1 to 4; we denote these solutions as SNS1,
which will be used to contrast the performance of the polygonal FEM schemes. The number
of dofs for this case is given as (k + 1)3. The relative stopping criteria for all iterative loops
are set to 1 × 10−5. We also recall that the total dofs Ndofs are given by Nκ × N(k), Nκ , with
similar definitions as in the 2D case.

Figure 4. Reference absorption rates distribution, integrated in each spatial cell in the 3D mesh.

The discrepancies on the keff are summed up in Tables 5–7 for situations that are of
interest for our analysis. On the other hand, Tables 8–10 illustrate the relative discrepancies
for the absorption rates between the reference solution and the various cases for a subset of
parameters, namely the types of basis functions and the associated radial, and axial degrees
when relevant.

3.3.1. General Trends

The use of high-order polygonal FEM such as those developed in this work, and in
particular the additive version HOW-AD and POLY-AD, leads to satisfactory results for
this benchmark, especially in terms of computational cost vs. target accuracies on reactivity
and local reaction rates. For instance, with POLY-AD at order 4, with five times fewer dofs
than SNS1, the results are comparable both in terms of global indicators such as keff or local
values such as absorption rates.

However, it should also be noted that higher accuracies can only be achieved if the
hexagonal cell is submeshed, as can be observed by the red line for k = 4 in Tables 5 and 7,
where SNS1 produces solutions with errors almost an order of magnitude lower than HOW
or POLY cases. The maximum and rms discrepancies on the absorption rates confirm
the same trend as in Tables 8 and 10 for both MP and AD cases. It should be noted
that, just as in the previous 2D case, the maximum errors again are located on the core
periphery for reflective materials where streaming and leakage effects are exacerbated.
Indeed, this benchmark problem remains quite challenging on numerical discretisation
methods due to its highly heterogeneous configuration, and Takeda himself noted in [26]
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that some solutions obtained with an Sn discretisation were not sufficient, as it required
more spatial meshing.

3.3.2. Remarks on HOW/POLY MP/AD Basis Functions

For the multiplicative basis functions, the radial and axial orders may be different.
From Tables 6 and 9, for fixed k, the axial order l is varied. As l increases from 1 to 2,
the results are significantly improved, e.g., for HOW-MP, ∆ke f f is reduced from 588 pcm
for XY2-Z1 to 18.8 pcm for XY2-Z2, cf. the red line in Table 6 for the keff or Table 9 for
the absorption rates. However, the decrease in these discrepancies is far less, and even
stagnates as l is further increased (cf. the blue lines in the same tables), and we may deduce
that the errors are no longer driven by the axial effects but rather by the radial discretisation
order. These results are consistent with those observed from [29], where the axial flux is
approached with low-order functions. As the radial order increases from 1 to 2, HOW
solutions are drastically improved compared to POLY due to more (twice) dofs.

The same conclusions hold for the AD bases, cf. Table 8, for instance, where HOW and
POLY yield very comparable solutions.

Moreover, as in the 2D case, increasing the basis order is of interest until orders 3 or
4 in this benchmark, as is illustrated by Table 10 whence oscillations are observed on the
precision of quantities such as the maximum error.

3.3.3. MP vs. AD: Numerical Performance

The ∆keff values are higher with AD rather than MP cases, as can be observed from
Tables 5 and 7. Nevertheless, these differences are quite slight and very much comparable.
The trend is much more favourable on the local values such as the rms discrepancies on the
absorption rates, namely as from orders 3, whereby AD bases lead to more accurate results,
almost twice smaller rms values, and even better considering the maximum errors. The
additional dofs contained in MP bases do not contribute significantly to the accuracy of the
global solution.

This numerical accuracy coupled to the fact that AD bases are composed of much fewer
dofs supports the fact that these functions are very interesting for studies in reactor applications.

Table 5. ∆ke f f with respect to reference values for the 3D configuration for SNS1 and the AD cases
for k ∈ [[1, 4]] (cf. comments in text on coloured lines).

SNS1 (Nκ = 3549) HOW-AD (Nκ = 1183) POLY-AD (Nκ = 1183)
k Ndof s(N(k)) ∆ke f f [pcm] Ndof s (N(k)) ∆ke f f [pcm] Ndof s (N(k)) ∆ke f f [pcm]

1 28,392 (8) 1244 8281 (7) 2780 4732 (4) 3314
2 95,823 (27) 16.4 22,477 (19) 114 11,830 (10) 296
3 227,136 (64) 6.1 43,771(37) 36.4 23,660 (20) 59.9
4 443,625 (125) 1.7 72,163 (61) −7.3 41,405(35) −5.19

Table 6. ∆ke f f with respect to reference values for the 3D configuration for the MP cases with
(k, l) ∈ [[1, 2]]× [[1, 4]] (cf. comments in text on coloured lines).

HOW-MP (Nκ = 1183) POLY-MP (Nκ = 1183)
k, l Ndof s (N(k)) ∆ke f f [pcm] Ndof s (N(k)) ∆ke f f [pcm]

XY1-Z1 14,196 (12) 2040 7098 (6) 2520
XY1-Z2 21,294 (18) 1490 10,647 (9) 1970
XY1-Z3 28,392 (24) 1480 14,196 (12) 1970
XY1-Z4 35,490 (30) 1480 17,745 (15) 1970

XY2-Z1 28,392 (24) 588 14,196 (12) 745
XY2-Z2 42,588 (36) 18.8 21,294 (18) 179
XY2-Z3 56,784 (48) 14.3 28,392 (24) 176
XY2-Z4 70,980 (60) 13.1 35,490 (30) 176
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Table 7. ∆ke f f with respect to reference values for the 3D configuration for the MP cases with
k = l ∈ [[1, 4]] (cf. comments in text on coloured lines).

HOW-MP (Nκ = 1183) POLY-MP (Nκ = 1183)
k, l Ndof s (N(k)) ∆ke f f [pcm] Ndof s (N(k)) ∆ke f f [pcm]

XY1-Z1 14,196 (12) 2040 7098 (6) 2520
XY2-Z2 42,588 (36) 18.8 21,294 (18) 179
XY3-Z3 85,176 (72) 27.5 47,320 (40) 42.9
XY4-Z4 141,960 (120) −9.7 88,725 (75) −7.3

Table 8. Comparison of absorption rates with respect to reference values for the 3D configuration for
SNS1 and the AD cases up to k = 4 (cf. comments in text on coloured lines).

SNS1 HOW-AD POLY-AD

k Ndof s max [-] rms [-] Ndof s max [-] rms [-] Ndof s max [-] rms [-]

1 28,392 1.8 × 10−1 6.8 × 10−2 8281 2.1 × 10−1 9.0 × 10−2 4732 3.0 × 10−1 1.2 × 10−1

2 95,823 2.0 × 10−3 2.3 × 10−3 22,477 1.2 × 10−2 1.3 × 10−2 11,830 3.1 × 10−2 1.5 × 10−2

3 227,136 5.7 × 10−4 5.9 × 10−4 43,771 2.3 × 10−3 1.8 × 10−3 23,660 4.5 × 10−3 3.3 × 10−3

4 443,625 2.0 × 10−4 2.1 × 10−4 72,163 4.3 × 10−4 8.6 × 10−4 41,405 6.7 × 10−4 6.1 × 10−4

Table 9. Comparison of absorption rates with respect to reference values for the 3D configuration for
the MP cases such that (k, l) ∈ [[1, 2]]× [[1, 4]] (cf. comments in text on coloured lines).

HOW-MP POLY-MP

k, l Ndof s max [-] rms [-] Ndof s max [-] rms [-]

XY1-Z1 14,196 2.1 × 10−1 7.2 × 10−2 7098 2.9 × 10−1 1.0 × 10−1

XY1-Z2 21,294 6.3 × 10−2 2.7 × 10−2 10,647 1.6 × 10−1 6.1 × 10−2

XY1-Z3 28,392 6.3 × 10−2 2.7 × 10−2 14,196 1.6 × 10−1 6.1 × 10−2

XY1-Z4 35,490 6.3 × 10−2 2.7 × 10−2 17,745 1.6 × 10−1 6.1 × 10−2

XY2-Z1 28,392 1.7 × 10−1 7.1 × 10−2 14,196 1.8 × 10−1 6.9 × 10−2

XY2-Z2 42,588 1.2 × 10−2 3.2 × 10−3 21,294 1.1 × 10−2 6.8 × 10−3

XY2-Z3 56,784 1.2 × 10−2 3.1 × 10−3 28,392 1.0 × 10−2 6.4 × 10−3

XY2-Z4 70,980 1.2 × 10−2 2.9 × 10−3 35,490 1.0 × 10−2 6.5 × 10−3

Table 10. Comparison of absorption rates with respect to reference values for the 3D configuration
for the MP cases such that k = l ∈ [[1, 4]] (cf. comments in text on coloured lines).

HOW-MP POLY-MP

k, l Ndof s max [-] rms [-] Ndof s max [-] rms [-]

XY1-Z1 14,196 2.1 × 10−1 7.2 × 10−2 7098 2.9 × 10−1 1.0 × 10−1

XY2-Z2 42,588 1.2 × 10−2 3.2 × 10−3 21,294 1.1 × 10−2 6.8 × 10−3

XY3-Z3 85,176 1.1 × 10−2 3.0 × 10−3 47,320 2.0 × 10−3 4.2 × 10−3

XY4-Z4 141,960 1.2 × 10−2 2.7 × 10−3 88,725 1.0 × 10−3 1.6 × 10−3

4. Conclusions

The starting point for this work was the need to reduce computational cost-to-accuracy
ratio for simulations involving neutron transport in a multiphysics setting. Indeed, we have
observed that transport computations are expensive and the dominant factor for parametric
studies required for reactor design or engineering studies. The target accuracy in such
cases are usually around 10 pcm on reactivity and 1% for local reaction rates. Our goal in
this work was to reduce the computational burden by working on the spatial discretisation
for solving the neutron transport equation.

We kept the DG-FEM setting, which is usually the case for core solvers for the
APOLLO3® platform [30], such as MINARET [6]. Nevertheless, our main idea was to
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reduce the dofs by discretising the problem on the hexagon itself and avoid superfluous
dofs. From past works, we have devised methods for building sets of functions that could
be employed in the DG-FEM configuration [7],and we have verified their convergence
properties in theoretical settings.

In this work, we have recalled the main technical points for constructing such functions
and we have extended them for 3D geometries, which can be assimilated as 2D–1D meshes,
or cylindrical cells with a hexagonal base. For such cases, we assumed that we already had
high-order basis functions for the 2D shapes, and by combining these functions with 1D
functions, we devised two types of basis functions: a full set generated as a tensor product
and a set with the optimised number of functions to span the minimum space required for
the solution to our problem.

We have applied these functions to solve the Takeda Model 4 benchmark in 2D and
3D. We have compared our results to a reference solution, which was highly discretised
in meshing and in polynomial accuracy. Also, we have contrasted our solutions to those
obtained by discretising the hexagon in three lozenges, as in [5]. Our methods yield
discrepancies, which are well within the target accuracies required by studies, and with far
fewer dofs, ranging from 3 to 5 in 2D and up to 10 in 3D. Although we have not compared
the results in terms of computational times explicitly as these were implemented in a
Python mock-up code, we can safely affirm that with all other considerations such as
algorithms and iteration methods kept as before, the expected computational times will be
significantly reduced.

Further works on this topic include the investigation of adaptive refining techniques to
locally increase the order only where required using an error indicator as in [28]. For more
challenging cases, it would also be interesting to combine the partial submeshing of some
hexagonal cells in the reactor mesh with polygonal elements to improve the accuracy when
required, although this should not be the case for most industrial reactor applications.
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Appendix A. Proof of Equation (15)

Considering Legendre polynomials for Ṽi for i ∈ [[0, k − m]], one should note that
P̃1

i ̸⊂ span(Ṽi), so obtaining Equation (15) from Equation (14) is not straightforward.

To do so, we proceed by showing that ∀m ∈ [[0, k]], P2
m ⊗ P̃1

k−m ⊂
k
∑

j=0
span(Wj ⊗ Ṽk−j).

Starting from the fact that P̃1
i ⊂ span(

i⊔
j=0

Ṽj), one can write that

P2
m ⊗ P̃1

k−m ⊂
k−m

∑
i=0

P2
m ⊗ span(Ṽk−m−i) (A1)

Furthermore,

https://inis.iaea.org/collection/NCLCollectionStore/_Public/22/085/22085401.pdf
https://inis.iaea.org/collection/NCLCollectionStore/_Public/22/085/22085401.pdf
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P2
m ⊗ P̃1

k−m ⊂
k−m

∑
i=0

P2
m+i ⊗ span(Ṽk−m−i) =

k

∑
j=m

P2
j ⊗ span(Ṽk−j)

⊂
k

∑
j=0

P2
j ⊗ span(Ṽk−j)

(A2)

Accordingly, using that P2
j ⊂ span(Wj), we obtain

P2
m ⊗ P̃1

k−m ⊂
k

∑
j=0

span(Wj)⊗ span(Ṽk−j) =
k

∑
j=0

span(Wj ⊗ Ṽk−j) (A3)

As this result holds ∀m ∈ [[0, k]], then going back to Equation (15), we obtain that

P3
k ⊂

k
∑

m=0
span(Wm ⊗ Ṽk−m), as expected.

For the set of functions generating
n
∑

m=0
span(W2

m ⊗ Ṽn−m) to form a basis of P3
k , the

functions have to be linearly independent, which is achieved if span(
k⋂

m=0
Wm ⊗ Ṽk−m) =

{0}. This is the case, as we have previously opted for Vl to be the Legendre polynomials,
which are orthogonal, and Wk, forming a basis for the regular hexagons; by definition, its
elements are linearly independent. Accordingly, Equation (15) is verified.
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