
Citation: Leitão, D.; Cunha, R.;

Lemos, J.M. Adaptive Control of

Quadrotors in Uncertain

Environments. Eng 2024, 5, 544–561.

https://doi.org/10.3390/eng5020030

Academic Editor: Antonio Gil Bravo

Received: 7 March 2024

Revised: 22 March 2024

Accepted: 26 March 2024

Published: 28 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Adaptive Control of Quadrotors in Uncertain Environments
Daniel Leitão 1,† , Rita Cunha 2,† and João M. Lemos 3,*,†

1 Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
daniel.g.leitao@tecnico.ulisboa.pt

2 Institute for Systems and Robotics, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais,
1049-001 Lisboa, Portugal; rita.cunha@tecnico.ulisboa.pt

3 INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Rua Alves Redol 9, 1000-029 Lisboa, Portugal
* Correspondence: jlml@inesc-id.pt; Tel.: +351-213100259
† These authors contributed equally to this work.

Abstract: The problem addressed in this article consists of the motion control of a quadrotor affected
by model disturbances and uncertainties. In order to tackle model uncertainty, adaptive control
based on reinforcement learning is used. The distinctive feature of this article, in comparison with
other works on quadrotor control using reinforcement learning, is the exploration of the underlying
optimal control problem in which a quadratic cost and a linear dynamics allow for an algorithm that
runs in real time. Instead of identifying a plant model, adaptation is obtained by approximating the
performance index given by the Q-function using directional forgetting recursive least squares that
rely on a linear regressor built from quadratic functions of input/output data. The adaptive algorithm
proposed is tested in simulation in a cascade control structure that drives a quadrotor. Simulations
show the improvement in performance that results when the proposed algorithm is turned on.

Keywords: quadrotor control; adaptive control; reinforcement learning

1. Introduction
1.1. Motivation

Unmanned aerial vehicles are currently becoming an important player in areas such
as inspection and maintenance, photography, surveillance, mapping, agriculture, military
warfare, delivery, and more [1,2]. Fully automated vehicles without human intervention
have been receiving increased attention [3], as advanced controller architectures are [1,2]
progressing towards full autonomy, an example of which includes adaptive controllers that
can tackle wind perturbations or uncertainty in the model parameters.

Reinforcement learning (RL) is a technique in which the control action that is applied
to the manipulated variable of the plant is selected so as to maximize a reward signal [4].
Some RL algorithms can provide adaptation without the need for model knowledge about
the system upon which it acts. This opens a gateway for a new class of adaptive controllers
that can attain some degree of control robustness. The topic of drone control using RL has
been the subject of many recent works. In addition to the works reviewed in [2], other
references include [5–7], as well as [8,9], that address real-time RL.

Although general RL-based controllers yield remarkable performances for a wide
variety of robotic and aircraft plants [10], the fact that they rely on deep neural networks
implies long training periods, with a massive computational load, that may only be exe-
cuted off-line. Nevertheless, for a class of problems in which the plant dynamics is linear
and the cost to optimize is quadratic, the computational load is greatly reduced, being
compatible with on-line adaptive control.

This work has the objective of developing an adaptive controller for a quadrotor based
on a specific RL model-free algorithm, along the lines presented in [11]. It is stressed that,
contrary to the works reported in [2], the algorithm proposed in this article does not rely on

Eng 2024, 5, 544–561. https://doi.org/10.3390/eng5020030 https://www.mdpi.com/journal/eng

https://doi.org/10.3390/eng5020030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/eng
https://www.mdpi.com
https://orcid.org/0009-0005-1457-3541
https://orcid.org/0000-0002-8925-1273
https://orcid.org/0000-0003-3149-8035
https://doi.org/10.3390/eng5020030
https://www.mdpi.com/journal/eng
https://www.mdpi.com/article/10.3390/eng5020030?type=check_update&version=2

Eng 2024, 5 545

off-line training using massive amounts of data but, instead, provides real-time adaptation
of a vector of state feedback gains, without knowing or estimating the parameters of any
plant model. By real-time adaptation, it is meant that the algorithm is fast enough to be run
as the drone operates. This procedure is possible because we restrain the class of problems
addressed to be of the linear quadratic type, i.e., defined by an underlying plant dynamics
to be linear but unknown and a quadratic performance cost to be minimized.

Assuming the underlying plant dynamics to be linear is justified by the type of
application envisaged: the algorithm developed is embedded in the control part of the
quadrotor GNC (guidance, navigation, and control) system and has the task of regulating
the quadrotor state around a reference trajectory generated by the guidance system. Hence,
the controller is required to tackle only incremental dynamics that may be approximated
by a linear model.

With respect to other works described in the literature for motion control of quadrotors
based on reinforcement learning [2], the approach proposed here has the drawback of not
allowing large amplitude maneuvers, in which the nonlinear character of the dynamics
dominates. In compensation, the control algorithm proposed provides a model-free adap-
tive controller that operates in real time with little a priori plant knowledge. The design
and use of such a controller for drone motion is the focus of this article.

1.2. Problem Definition, Objectives, and Contribution

A common control architecture for quadrotors consists of two controllers intercon-
nected in a cascade structure: an outer control loop, responsible for keeping the quadrotor
in a desired position, and an inner control loop that tracks the quadrotor attitude demanded
by the outer controller.

The attitude controller works on the premise that the quadrotor is not performing
extreme maneuvers, so it is valid to assume that the drone dynamics is approximately
linear. In order to tackle uncertainty in dynamics, the inner loop that regulates the attitude
relies on an adaptive controller that embeds a reinforcement learning (RL) algorithm to
learn the gains that optimize a quadratic cost.

The outer loop consists of a linear quadratic (LQ) controller with constant gains,
designed using a nominal model, and it has a time scale that is much slower than the one
of the inner loop.

The contribution of this article consists of the design of the above cascade adaptive
control architecture and its demonstration in simulations for a quadrotor model. The main
innovative feature is the embedding of a reinforcement learning algorithm in the inner loop
to yield a model-free adaptive controller. The use of a directional forgetting least-squares
estimation algorithm to avoid identifiability problems in the Q-function approximator is
a contribution.

The article is organized as follows: Section 2 describes the drone model used in the
simulations; Section 3 presents the control architecture; Section 4 explains the class of
RL-based control algorithms used; Section 5 presents simulation results; finally, Section 6
draws conclusions.

2. Dynamics Modeling

Although the proposed controller does not rely on a model, the dynamics of the drone
considered is described in this section for the purposes of simulation and interpretation of
the results presented later.

The model dynamics follows the rigid body equations of motion [12]. In this case, an
inertial reference frame {I} attached to the ground and a fixed body frame {B} attached to
the vehicle are defined as represented in Figure 1.

Eng 2024, 5 546

Eng 2024, 1 3

transformation between the fixed body frame {B} and the inertial frame {I} orientations.
The full kinematics equations are:

ṗ = Rv

λ̇ = Q(λ)ω

, (1)

where the quadrotor attitude λ is expressed in Euler angles, a vector with the elements ϕ as
the angle of rotation about the x axis, θ as the angle of rotation about the y axis, and ψ as
the angle of rotation about the z axis. The matrix Q is defined as

Q(λ) =

1 sin ϕ tan θ cos ϕ tan θ
0 cos ϕ − sin ϕ
0 sin ϕ sec θ cos ϕ sec θ

. (2)

Figure 1. Quadrotor with inertial reference frame and fixed body frame defined.

The dynamics equations are

mp̈ = TRe3 −mge3 + w

Jω̇ = −S(ω)Jω + n
, (3)

where J represents the moment of inertia matrix, which is assumed to be diagonal. The
application S(.) corresponds to a skew-symmetric matrix. The inputs T and n represent the
thrust force and torque, respectively.

3. Controlling the Quadrotor
3.1. Controller Structure

The relationship between both sets of Equations (1) and (3) allows for the development
of a cascade control structure that has an inner loop for controlling the attitude of the
quadrotor and an outer loop for controlling the position and that generates as a manipulated
variable the desired orientation to the inner (attitude) controller. This type of controller is
commonly used in UAVs, and its block diagram is shown in Figure 2.

The trajectory generator block creates the references pd, ṗd, and p̈d for the position
controller and the reference ψd for the attitude controller. These signals represent the desired
position and its derivatives and the desired ψ angle, respectively. Besides generating an
input thrust T, the position controller also generates a desired upwards orientation r3d

Figure 1. Quadrotor with inertial reference frame and fixed body frame defined.

The rigid body state comprises a position in the inertial frame p, a velocity in the body
frame v, an angular velocity in the body frame ω, and a rotation matrix R that represents the
transformation between the fixed body frame {B} and the inertial frame {I} orientations.
The full kinematics equations are:

{ .
p = Rv
.
λ = Q(λ)ω

, (1)

where the quadrotor attitude λ is expressed in Euler angles, a vector with the elements ϕ as
the angle of rotation about the x axis, θ as the angle of rotation about the y axis, and ψ as
the angle of rotation about the z axis. The matrix Q is defined as

Q(λ) =

1 sin ϕ tan θ cos ϕ tan θ
0 cos ϕ − sin ϕ
0 sin ϕ sec θ cos ϕ sec θ

. (2)

The dynamics equations are
{

m
..
p = TRe3 −mge3 + w

J
.

ω = −S(ω)Jω + n
, (3)

where J represents the moment of inertia matrix, which is assumed to be diagonal. The
application S(.) corresponds to a skew-symmetric matrix. The inputs T and n represent the
thrust force and torque, respectively.

3. Controlling the Quadrotor
3.1. Controller Structure

The relationship between both sets of Equations (1) and (3) allows for the development
of a cascade control structure that has an inner loop for controlling the attitude of the
quadrotor and an outer loop for controlling the position and that generates as a manipulated
variable the desired orientation to the inner (attitude) controller. This type of controller is
commonly used in UAVs, and its block diagram is shown in Figure 2.

Eng 2024, 5 547

Eng 2024, 1 4

corresponding to the third column of R, which is combined with ψd in the attitude controller
to track the desired orientation angles.

Figure 2. Cascade controller for the quadrotor motion.

3.2. Position Controller

Neglecting the rotational dynamics, it is assumed that the desired orientation, r3d,

can be forced upon the system. Considering that r3 = Re3, the virtual input uT =
T
m

r3d is
defined and transforms the first line of (3) into

p̈ = uT − ge3, (4)

which is now a linear system that can be controlled with a linear controller.
For the sake of reference trajectory tracking, define the tracking error e by

e = p− pd, (5)

where pd represents the reference position yielded by the guidance subsystem. Taking the
second derivative of (5) and resorting to (4), the error dynamics

ë = p̈− p̈d = uT − ge3 − p̈d (6)

is obtained. Selecting the virtual control variable uT to be

uT = −(k1e + k2 ė) + ge3 + p̈d (7)

introduces linear state feedback, where each state has a proportional gain. There is also
a correction term in order to eliminate the second derivative of the error present in the
dynamics. Applying the control law (7) transforms (6) into

ë = −k1e− k2 ė, (8)

where the gains k1 and k2 are selected so as to drive the error e to zero, enabling reference
tracking of a desired trajectory pd with time derivatives ṗd and p̈d.

The virtual control input uT , which is a three-dimensional vector, is translated into
the thrust T input and the desired orientation r3d (forced upon the system) values. Via
Equation (7), the thrust T is calculated with

T = m||uT ||, (9)

and the desired orientation r3d is obtained through

r3d =
uT
||uT ||

. (10)

The thrust input is fed directly into the system, as opposed to r3d, which is passed to
the attitude controller so that the orientation errors can also be regulated.

Figure 2. Cascade controller for the quadrotor motion.

The trajectory generator block creates the references pd,
.
pd, and

..
pd for the position

controller and the reference ψd for the attitude controller. These signals represent the desired
position and its derivatives and the desired ψ angle, respectively. Besides generating an
input thrust T, the position controller also generates a desired upwards orientation r3d
corresponding to the third column of R, which is combined with ψd in the attitude controller
to track the desired orientation angles.

3.2. Position Controller

Neglecting the rotational dynamics, it is assumed that the desired orientation, r3d,
can be forced upon the system. Considering that r3 = Re3, the virtual input uT = T

m r3d is
defined and transforms the first line of (3) into

..
p = uT − ge3, (4)

which is now a linear system that can be controlled with a linear controller.
For the sake of reference trajectory tracking, define the tracking error e by

e = p− pd, (5)

where pd represents the reference position yielded by the guidance subsystem. Taking the
second derivative of (5) and resorting to (4), the error dynamics

..
e =

..
p− ..

pd = uT − ge3 −
..
pd (6)

is obtained. Selecting the virtual control variable uT to be

uT = −
(
k1e + k2

.
e
)
+ ge3 +

..
pd (7)

introduces linear state feedback, where each state has a proportional gain. There is also
a correction term in order to eliminate the second derivative of the error present in the
dynamics. Applying the control law (7) transforms (6) into

..
e = −k1e− k2

.
e, (8)

where the gains k1 and k2 are selected so as to drive the error e to zero, enabling reference
tracking of a desired trajectory pd with time derivatives

.
pd and

..
pd.

The virtual control input uT , which is a three-dimensional vector, is translated into
the thrust T input and the desired orientation r3d (forced upon the system) values. Via
Equation (7), the thrust T is calculated with

T = m||uT ||, (9)

and the desired orientation r3d is obtained through

r3d =
uT
||uT ||

. (10)

Eng 2024, 5 548

The thrust input is fed directly into the system, as opposed to r3d, which is passed to
the attitude controller so that the orientation errors can also be regulated.

3.3. Attitude Controller

Neglecting the translational dynamics, the desired orientation r3d is fed to the attitude
controller, which produces, as manipulated variable, an input torque for the system.

To track the desired orientation value, the desired ψ angle, ψd, is combined with r3d to
obtain the remaining desired angles ϕd and θd.

Through decomposition of the desired R matrix, the equation

Rz(−ψd)r3d =

cos ϕd sin θd
− sin ϕd

cos ϕd cos θd

 (11)

allows the computation of the desired attitude λd. To track this value, a possible strategy is
to linearize the second equations of systems (1) and (3) around the hover condition, a valid
approach for smooth trajectories where aggressive maneuvers are not required, resulting in

{
δ

.
λ = δω

Jδ
.

ω = δn
, (12)

given that the matrix J is diagonal. The linearized system obtained is also a double
integrator. The input n is chosen to account for the angle and angular velocity error,
resulting in

n = −k1(λ− λd)− k2ω. (13)

The inner loop that comprises the attitude controller must react faster than the outer
loop containing the position controller. This time scale separation is forced to ensure that
the system quickly corrects angle displacements that are detrimental to effectively tracking
the desired position. To guarantee correctness, the gains of each controller must be chosen
such that the inner loop poles contain a real part that is 10 times (or more) larger than the
real part of the outer loop poles.

3.4. Underlying LQ Control

The adaptive RL controller proposed in this article consists of a state feedback in which
the gains converge to those of an LQ controller. Hereafter, the model and the quadratic
cost that define this underlying controller are defined. Assuming that the inputs are piece-
wise constant over the sampling period h, the discrete-time equivalent [13] of the double
integrator dynamics takes the form xk+1 = Φxk + Γuk, with

Φ =

[
1 h
0 1

]
, Γ =

[
h2/(2Ji,i)

h/Ji,i

]
, (14)

and where, for the case of the rotational dynamics, Ji,i is the diagonal element from the
inertial moment matrix J associated with the angle to be controlled. For the case of the
translational dynamics, the mass scaling is incorporated in the virtual input uT , and thus
Ji,i = 1.

Having both Φ and Γ, the discrete controller gains for the control laws in (7) and (13) can
be calculated resorting to the LQR algorithm, which aims at minimizing the quadratic cost

Jc =
∞

∑
k=0

(
xT

k Qcxk + Rcu2
k

)
. (15)

A careful choice of the Qc and Rc weight matrices is necessary for good performance.
The sampling period selected throughout all experiences is h = 0.01, equivalent to

a frequency of 100 Hz. The quadrotor state variables are assumed to be fully observable.

Eng 2024, 5 549

Sensor noise is modeled by adding white noise after the A/D sampling process. A standard
deviation of σ = 3.16× 10−5 (with zero mean) is used in the simulation.

4. Reinforcement Learning
4.1. Introduction

Reinforcement learning is an area of machine learning that aims to learn the best action
an agent can execute as it interacts with the environment that it acts upon, such that a
reward is optimized [4]. From a control perspective, we can think of the environment as
the system and the action as the output produced by the controller, which is the agent [14].

In this setting, the action is now the control action uk, and the state is xk. The control
policy determines the value of uk, and it is defined as

uk = Π(xk), (16)

for a map Π(.) from the state space to the control space. Since this map depends only on the
current state xk, it defines a state feedback controller. This definition needs to be coherent
with the definition of the reward signal, as detailed further below.

Hereafter, the system is described by

xk+1 = Axk + buk, (17)

where A and b are matrices that define the linearized quadrotor dynamics.

4.2. Dynamic Programming and Q-Function

The control policy is to be designed such as to minimize

Vπ(xk) =
∞

∑
i=k

γi−kr(xi, ui), (18)

often called the cost-to-go or return. The discount factor γ takes values in the interval [0, 1].
For the reward signal, this article considers the quadratic function

r(xk, uk) = x⊺k Qcxk + u⊺
k Rcuk. (19)

In order to obtain model-free controllers, define the Q-function

Qπ(xk, uk) = r(xk, uk) + γVπ(xk+1). (20)

The Q-function verifies a Bellman-like equation given by

Qπ(xk, uk) = r(xk, uk) + γQπ(xk+1, uk+1). (21)

The optimal control policy is then calculated through

Π∗(xk) = arg min
u

(Qπ(xk, uk)). (22)

In the absence of constraints, the optimal control policy can then be computed by solv-
ing

∂Q∗

∂u
= 0. (23)

4.3. Approximate Dynamic Programming

To determine the optimal policy at time k, it is necessary to know the optimal policy at
time k + 1. This minimization process is done backwards in time, and it is only feasible
as an off-line planning method using iterative algorithms [11]. The resulting dynamic
programming methods are not enough to obtain a controller that is able to learn in real

Eng 2024, 5 550

time. Approximate dynamic programming solves this problem and introduces two other
concepts that will make the operation forward in time possible.

The first concept required is that of temporal difference (TD). Taking advantage of
Equation (21), it is possible to define a residual error ek given by

ek = r(xk, uk) + γQπ(xk+1, uk+1)−Qπ(xk, uk). (24)

If the Bellman equation is satisfied, then the error is zero. This error can be seen as the
difference between observed and predicted performances when a previously calculated
action is applied. The next important tool is the value function approximation (VFA), which
approximates the Q-function by means of a parametric approximator. For linear plants and
quadratic costs, it can be shown [11] that the Q-function can be rewritten as

Qπ(xk, uk) = W⊺ϕ(xk, uk), (25)

where W is a vector of coefficients, and ϕ(xk, uk) is a vector containing the basis functions
with the square terms and cross terms for all elements of xk and uk.

Combining Equations (25) and (24), the TD error becomes

ek = r(xk, uk) + W⊺(γϕ(xk+1, uk+1)− ϕ(xk, uk)), (26)

which defines a linear regression model with parameters W. Approximating Qπ by means of
a linear combination of basis functions enables the use of estimation techniques to obtain the
coefficients that will then define the Qπ closest approximation [11].
Equations (21), (22) and (25) allow for building an on-line forward-time learning algo-
rithm for state feedback control.

4.4. Q-Learning Policy Iteration

In this article, the policy iteration adapted for Q-learning is chosen to be applied in the
controller.

The Policy Evaluation Step, where the VFA coefficients are estimated, requires deter-
mining a least squares solution to find the estimate of the parameter vector W in the linear
regression model (26). This can be done by resorting to recursive least squares (RLS) or
batch least squares. In this article, directional forgetting RLS [15] is used.

A Gaussian dither noise is added to the observed control input signal uk, derived from
the current policy Πj, obtained from (23). The reason behind this procedure is the necessity
to ensure the persistence of an excitation condition. The absence of this effect can cause the
algorithm to completely fail [11].

For estimation purposes, recursive least squares with directional exponential forgetting
(DF-RLS) is used [15], where the estimated Q-function gains Wj+1 are updated at every
time step k, and the policy Π(xk) is updated after a fixed number of time steps. Since
a recursive version of least squares is used, the estimates are updated at each sampling
time. The Q-learning algorithm using DF-RLS is detailed in Algorithm 1. The time step of
executing Algorithm 1 is equal to the beginning of each sampling time.

For a two-dimensional state system, the VFA is defined as in (25), with the basis
functions given by

ϕ(xk, uk) =
(

x2
k,1, x2

k,2, xk,1xk,2, xk,1uk, xk,2uk, u2
k

)
, (27)

which means that the policy improvement step at the update j+ 1, as defined in Algorithm 1,
takes the form

Πj+1(xk) = −
w(4)

j+1

2w(6)
j+1

xk,1 −
w(5)

j+1

2w(6)
j+1

xk,2. (28)

Eng 2024, 5 551

The control action takes the form of a linear state feedback Πj+1(xk) = Kxk, with a K
gain of

K =

[
w(4)

j+1

2w(6)
j+1

w(5)
j+1

2w(6)
j+1

]
, (29)

where w(i) represents the estimate of the ith element of W.

Algorithm 1: Q-Learning Policy Iteration, DF-RLS Update

Eng 2024, 1 8

The control action takes the form of a linear state feedback Πj+1(xk) = Kxk, with a K gain of

K =

 w(4)

j+1

2w(6)
j+1

w(5)
j+1

2w(6)
j+1

, (29)

where w(i) represents the estimate of the ith element of W.

Algorithm 1: Q-Learning Policy Iteration, DF-RLS Update
Requires: Π0(xk) is a stabilizing control policy. RLS update value M. Termination value
N.

k← 0; // Time step
j← 0; // Number of updates
s← 0; // Batch size
while k ̸= N do

if s ̸= 0 then
Policy Evaluation Step: Estimate Wk using DF-RLS, according to
W⊺

k (ϕ(xk−1, uk−1)− γϕ(xk, uk)) = r(xk−1, uk−1);
end
s← s + 1;
if s = M then

Policy Improvement Step:
Πj+1(xk) = arg min

Π(.)
(W⊺

k ϕ(xk, uk));

Update:
j← j + 1;
s← 0;

end
uk = Πj(xk) + nk; // Control input calculated; dither noise nk is applied
State update: uk is applied, and new state xk+1 is measured.
k← k + 1;

end

The importance of the use of DF-RLS stems from the fact that, although there are only
two controller gains, the Q-function is approximated by six parameters, a fact that may
cause identifiability problems.

In adaptive control, the time scale of the action update, i.e., of the value of the manipu-
lated variable, must be slower than that of the learning variable (in this case, learning the
parameters that define the control action), in order to decouple the dynamics of learning
from plant dynamics. In order to enhance this feature, the controller gains that define the
control action are only recomputed at a lower rate (every M steps), even though the RLS
parameters of the Q-function approximation are updated at every sampling rate (as well as
the control action).

5. Simulation Study

This section presents simulations that illustrate the results obtained when applying the
above algorithm to control the motion of the quadrotor model described in Section 2. The
simulation experiments show that, with the proposed controller, the closed-loop system is
able to track a reference in which there are curved sections followed by segments that are
approximately straight. More important, the simulations illustrate adaptation. There is an
initial period in which a constant vector of a priori chosen controller gains is used. During
this period, the algorithm is learning the optimal gains, but these estimates are not used for
feedback. After this initial period, the gains learned by the RL algorithm are used.

The importance of the use of DF-RLS stems from the fact that, although there are only
two controller gains, the Q-function is approximated by six parameters, a fact that may
cause identifiability problems.

In adaptive control, the time scale of the action update, i.e., of the value of the manipu-
lated variable, must be slower than that of the learning variable (in this case, learning the
parameters that define the control action), in order to decouple the dynamics of learning
from plant dynamics. In order to enhance this feature, the controller gains that define the
control action are only recomputed at a lower rate (every M steps), even though the RLS
parameters of the Q-function approximation are updated at every sampling rate (as well as
the control action).

5. Simulation Study

This section presents simulations that illustrate the results obtained when applying the
above algorithm to control the motion of the quadrotor model described in Section 2. The
simulation experiments show that, with the proposed controller, the closed-loop system is
able to track a reference in which there are curved sections followed by segments that are
approximately straight. More important, the simulations illustrate adaptation. There is an
initial period in which a constant vector of a priori chosen controller gains is used. During
this period, the algorithm is learning the optimal gains, but these estimates are not used for
feedback. After this initial period, the gains learned by the RL algorithm are used.

There are two sets of experiments. In the first set, the initial gains are far from the
optimum. In the second set of experiments, the initial set of gains is not optimal, but

Eng 2024, 5 552

closer to optimum than the gains in the first set. Two relevant results are shown: one is
the ability of the algorithm to improve the performance when the gains obtained by RL
are used; furthermore, the dither noise can be reduced when the initial gains are closer to
the optimum (that is to say, when more a priori information is available). The evaluation
and comparison of the different situations is done using an objective index (the “score”)
defined below.

Usually, control action decisions based on RL are obtained by training neural networks,
requiring very large amounts of plant input/output data and, therefore, taking a long time
before convergence. However, in the approach followed in this article, the approximation
of the Q-function does not rely on neural network training but, instead, on recursive least-
squares that have a fast convergence rate. Again, this feature is rendered possible by the
class of control problems (linear-quadratic) considered.

The wind force w is characterized by its x, y, and z components, which determine its
direction and magnitude. White noise is applied to a low-pass filter and added to w to
produce more realistic deviations from the average magnitude. The average value of the
disturbance is assumed to be measurable and is compensated for, but the model is still
affected by the white noise effect, which has a standard deviation of σ = 3.16× 10−5. The
wind disturbance value for the i component is described as

wi = vi + oi, (30)

where wi represents the generated wind, vi represents the average value, and oi represents
the filtered white noise. The dynamics of the motor are neglected, being considered
much faster than the remaining quadrotor dynamics. The aerodynamic drag effect is also
neglected, since most of the quadrotor operations are maintained in a near-hover condition.

The model considered has the following parameters:

• m = 1.35 Kg;
• l = 0.18 m;
• J1,1 = J2,2 = 0.01 Kg·m2;
• J3,3 = 0.01 Kg·m2.

For simulation purposes, the constant wind disturbance is compensated, assuming
that it is possible to measure its average value. The noisy oscillations around the average
value still affect the system.

To gain a better insight into how well the controller performs before and after the
learning process, a performance metric is defined as

score =
∑N

i=1 ||p∗i − p||2
N

, (31)

where p∗ represents the desired position and p the actual position. The metric calculates
the average value of the distance between the moving point in the reference trajectory and
the actual position of the quadrotor. The lower this value, the better the controller can track
the given reference trajectory.

The control algorithm parameters are selected by trial and error in simulations. The
main parameters to adjust are the weights in the quadratic cost considered and the dither
noise variance added to the control variable. The dither noise variance must be chosen
according to a trade-off between not disturbing optimality (meaning that the variance
must be small) and providing enough excitation to identify the parameters of the quadratic
function that approximates the Q-function (which requires increasing the dither variance).
The Rc weight adjusts the controller bandwidth and must be selected to ensure that the
inner loop is much faster than the outer loop.

In order to avoid singularities in the model, the references are such that the attitude
angle deviates by only a maximum value with respect to the vertical.

Eng 2024, 5 553

5.1. Experiment 1

The first test attempts to improve a controller that is tuned with the following weights
in relation to the quadratic cost defined above are:

1. Position controller: Qc = diag(200,1), Rc = 100;
2. Attitude controller (except ϕ): Qc = diag(100,1), Rc = 10;
3. Attitude controller (ϕ): Qc = diag(10,5), Rc = 10.

This calibration affects the attitude control of the angle ϕ, where a poor selection of
weights is chosen so it can be improved.

The algorithm has the parameters shown in Table 1.

Table 1. Algorithm parameters for the first test.

Weight matrices Qc =

[
100 0

0 1

]
, Rc = 10

γ 0.99

Update step 1000 (10 s)

λ f 0.99

σDN 0.5

w
[
0 0 0 0 0 0

]⊺

P0 107

Preset 104

The learning process (during which a priori chosen controller gains are used) lasts
400 s, and the trajectory in the form of a lemniscate has cycles of 20 s, meaning that each
learning cycle of 10 s comprises half a curve. The starting point is (2,0,0) at rest. The
lemniscate has been selected as a test reference since it combines approximated straight
and curved stretches.

Simulation results for the trajectory tracking improvement are presented in Figure 3.
To test the performance of both the initial and learned gains, a single cycle of the lemniscate
curve is used.

Eng 2024, 1 11

Figure 3. Trajectory before and after RL; first case.

0 50 100 150 200 250 300 350 400

Time (t)

0

0.5

1

1.5

2

2.5

3

3.5

G
a

in
s

Time evolution of gains

Figure 4. Evolution of the learned attitude controller gains with time (first case: dither covariance
σDN = 0.5); the blue line represents the first gain and the red the second gain.

With these updates, a new simulation rendered the results in Figure 5, which shows
the evolution of the gains with time. Even though the learning process slows down as
expected, improvements are still achieved. Figure 6 demonstrates that good trajectory
tracking was obtained.

For a starting point at (2,0,3) that coincides with the beginning of the lemniscate curve,
the controller performs reference tracking with a score (as defined in Equation (31)) of
0.0175 after the learning process, whereas the untuned controller produced a score of 0.1204,
with the input torque nx acquiring smaller values as a direct consequence of the reduction
in the dither noise.

Figure 3. Trajectory before and after RL; first case.

For a starting point at (2,0,3) that starts right at the beginning of the lemniscate curve,
the controller, after learning a better set of gains, has a score (as defined in Equation (31))
of 0.0177, whereas the untuned controller produced a score of 0.1203. These results show

Eng 2024, 5 554

a clear improvement in the trajectory tracking performance. The corresponding gain
evolution in time is presented in Figure 4. The symbol t denotes discrete time. Hence, the
scale is the number of samples, and continuous time elapsed since the beginning of the
simulation is obtained by multiplying by the sampling period h.

Eng 2024, 1 11

Figure 3. Trajectory before and after RL; first case.

0 50 100 150 200 250 300 350 400

Time (t)

0

0.5

1

1.5

2

2.5

3

3.5

G
a

in
s

Time evolution of gains

Figure 4. Evolution of the learned attitude controller gains with time (first case: dither covariance
σDN = 0.5); the blue line represents the first gain and the red the second gain.

With these updates, a new simulation rendered the results in Figure 5, which shows
the evolution of the gains with time. Even though the learning process slows down as
expected, improvements are still achieved. Figure 6 demonstrates that good trajectory
tracking was obtained.

For a starting point at (2,0,3) that coincides with the beginning of the lemniscate curve,
the controller performs reference tracking with a score (as defined in Equation (31)) of
0.0175 after the learning process, whereas the untuned controller produced a score of 0.1204,
with the input torque nx acquiring smaller values as a direct consequence of the reduction
in the dither noise.

Figure 4. Evolution of the learned attitude controller gains with time (first case: dither covariance
σDN = 0.5); the blue line represents the first gain and the red the second gain.

Despite some oscillations, the convergence is quick. This happens due to the selection
of high variance for the dither noise. However, this procedure can be a problem, given
that, in real life, quadrotors have limitations on the actuators that might render such high
values impossible. The magnitudes of the input during the learning stage can induce big
oscillations in the quadrotor, since the angular velocity and the angle get excited by the
effect of the dither noise.

In order to be able to reduce the dither noise power and still obtain satisfactory results,
an alternative is to increase the number of steps required for an update of the learned
controller gains. However, this approach slows down the learning process. Another
possibility is to increase the values of the covariance matrix of the LS estimator at each
update so that the updates are less influenced by previous updates. This comes at the price
of bigger oscillations. The new parameters are shown in Table 2.

Table 2. Algorithm parameters for the second test.

Weight matrices Qc =

[
100 0

0 1

]
, Rc = 10

γ 0.99

Update step 1000 (10 s)

λ f 0.99

σDN 0.1

w
[
0 0 0 0 0 0

]⊺

P0 107

Preset 106

With these updates, a new simulation rendered the results in Figure 5, which shows
the evolution of the gains with time. Even though the learning process slows down as

Eng 2024, 5 555

expected, improvements are still achieved. Figure 6 demonstrates that good trajectory
tracking was obtained.

Eng 2024, 1 12

0 50 100 150 200 250 300 350 400

Time (t)

0

1

2

3

4

5

6

G
a

in
s

Time evolution of gains

Figure 5. Evolution of the learned ϕ attitude controller gains with time (second case: dither covariance
σDN = 0.1).

Figure 6. Trajectory before and after RL; second case.

Table 2. Algorithm parameters for the second test.

Weight matrices Qc =

[
100 0
0 1

]
, Rc = 10

γ 0.99

Update step 1000 (10 s)

λ f 0.99

σDN 0.1

w
[
0 0 0 0 0 0

]⊺

P0 107

Preset 106

Figure 5. Evolution of the learned ϕ attitude controller gains with time (second case: dither covariance
σDN = 0.1).

Eng 2024, 1 12

0 50 100 150 200 250 300 350 400

Time (t)

0

1

2

3

4

5

6

G
a

in
s

Time evolution of gains

Figure 5. Evolution of the learned ϕ attitude controller gains with time (second case: dither covariance
σDN = 0.1).

Figure 6. Trajectory before and after RL; second case.

Table 2. Algorithm parameters for the second test.

Weight matrices Qc =

[
100 0
0 1

]
, Rc = 10

γ 0.99

Update step 1000 (10 s)

λ f 0.99

σDN 0.1

w
[
0 0 0 0 0 0

]⊺

P0 107

Preset 106

Figure 6. Trajectory before and after RL; second case.

For a starting point at (2,0,3) that coincides with the beginning of the lemniscate curve,
the controller performs reference tracking with a score (as defined in Equation (31)) of
0.0175 after the learning process, whereas the untuned controller produced a score of 0.1204,
with the input torque nx acquiring smaller values as a direct consequence of the reduction
in the dither noise.

5.2. Experiment 2

The previous two tests aim to improve the controller gains starting from non-optimum
values. The following three tests try to improve on already optimized results.

The starting point for the controller gains corresponds to the following configuration
of weights:

Eng 2024, 5 556

1. Position controller: Qc = diag(200,1), Rc = 100;
2. Attitude controller: Qc = diag(100,1), Rc = 10.

The difference between experiments is the value of the moment of inertia J1,1, which is
assumed in each experiment to be:

1. Third experiment J1,1 = 0.04 Kg·m2;
2. Fourth experiment J1,1 = 0.005 Kg·m2;
3. Fifth experiment J1,1 = 0.01 Kg·m2.

The actual value of J1,1 is 0.01 Kg·m2. This means that each experience has its ϕ
attitude controller gains with values that are different from the optimal ones.

The algorithm has the same parameters throughout all three experiences, as presented
in Table 3.

Table 3. Algorithm parameters for the third, fourth, and fifth tests

Weight matrices Qc =

[
100 0

0 1

]
, Rc = 10

γ 0.99

Update step 1000 (10 s)

λ f 0.99

σDN 0.05

w
[
0 0 0 0 0 0

]⊺

P0 107

Preset 500

The dither is now significantly reduced, since less excitation is required.
The third experiment rendered the results shown in Figures 7 and 8. A closer look at the

trajectories reveals that improvements do occur, with the improved gains producing a better
tracking performance. The score for the non-optimized version is 0.0202, whereas the version
with learned gains scored 0.0175, reflecting a small improvement over the original configuration.

Eng 2024, 1 14

0 50 100 150 200 250 300 350 400

Time (t)

0

0.5

1

1.5

2

2.5

3

3.5

G
a
in

s

Time evolution of gains

Figure 7. Evolution of the learned attitude controller gains with time (third case: dither covariance
σDN = 0.05, Preset = 500).

Figure 8. Detail of the trajectory before and after RL; third case.

Figure 7. Evolution of the learned attitude controller gains with time (third case: dither covariance
σDN = 0.05, Preset = 500).

Eng 2024, 5 557

Eng 2024, 1 14

0 50 100 150 200 250 300 350 400

Time (t)

0

0.5

1

1.5

2

2.5

3

3.5

G
a
in

s

Time evolution of gains

Figure 7. Evolution of the learned attitude controller gains with time (third case: dither covariance
σDN = 0.05, Preset = 500).

Figure 8. Detail of the trajectory before and after RL; third case.Figure 8. Detail of the trajectory before and after RL; third case.

The simulation of the fourth experiment rendered the results in Figures 9 and 10.
Eng 2024, 1 15

0 50 100 150 200 250 300 350 400

Time (t)

0

0.5

1

1.5

2

2.5

3

3.5

G
a
in

s

Time evolution of gains

Figure 9. Evolution of the learned ϕ attitude controller gains with time; fourth case.

Figure 10. Detail of the trajectory before and after RL; fourth case.

Figure 9. Evolution of the learned ϕ attitude controller gains with time; fourth case.

Eng 2024, 5 558

Eng 2024, 1 15

0 50 100 150 200 250 300 350 400

Time (t)

0

0.5

1

1.5

2

2.5

3

3.5

G
a
in

s

Time evolution of gains

Figure 9. Evolution of the learned ϕ attitude controller gains with time; fourth case.

Figure 10. Detail of the trajectory before and after RL; fourth case.Figure 10. Detail of the trajectory before and after RL; fourth case.

The score for the performance metric before the gains computed with RL are applied
is 0.01781 and, after applying the algorithm, the score becomes 0.01765. In this case, the
improvement is almost negligible. This can be seen in Figure 10, where both trajecto-
ries practically overlap each other, ending up having the same distance to the reference
lemniscate curve.

The simulation of the fifth experiment rendered the results in Figures 11 and 12.

Eng 2024, 1 16

0 50 100 150 200 250 300 350 400

Time (t)

0

0.5

1

1.5

2

2.5

3

G
a
in

s

Time evolution of gains

Figure 11. Evolution of the learned ϕ attitude controller gains with time; fifth case.

Figure 12. Detail of the trajectory before and after RL; fifth case.

6. Conclusions

The development of a reinforcement learning-based adaptive controller for a quadrotor,
which includes an adapted version of the Q-learning policy iteration algorithm for linear-
quadratic problems, was performed. The particular class of RL-based controllers considered
is such that it allows adaptation in real time.

Disturbances affecting the system input and output have a big effect on the correct
functioning of the algorithm. A careful choice of algorithm parameters and balance between
the estimation algorithm parameters is the solution to this problem. However, when big
disturbances are present, it is only possible to make the gains converge close to optimality.

Figure 11. Evolution of the learned ϕ attitude controller gains with time; fifth case.

Eng 2024, 5 559

Eng 2024, 1 16

0 50 100 150 200 250 300 350 400

Time (t)

0

0.5

1

1.5

2

2.5

3

G
a
in

s

Time evolution of gains

Figure 11. Evolution of the learned ϕ attitude controller gains with time; fifth case.

Figure 12. Detail of the trajectory before and after RL; fifth case.

6. Conclusions

The development of a reinforcement learning-based adaptive controller for a quadrotor,
which includes an adapted version of the Q-learning policy iteration algorithm for linear-
quadratic problems, was performed. The particular class of RL-based controllers considered
is such that it allows adaptation in real time.

Disturbances affecting the system input and output have a big effect on the correct
functioning of the algorithm. A careful choice of algorithm parameters and balance between
the estimation algorithm parameters is the solution to this problem. However, when big
disturbances are present, it is only possible to make the gains converge close to optimality.

Figure 12. Detail of the trajectory before and after RL; fifth case.

The simulation of the fifth experiment rendered the results in Figures 11 and 12.
The score metric for the original set of gains is 0.01811 and, after applying the algorithm,

the score becomes 0.01765. In this last experience, a small improvement was achieved. A
good tuning of the algorithm allowed for a small performance improvement over a very
optimized controller.

6. Conclusions

The development of a reinforcement learning-based adaptive controller for a quadrotor,
which includes an adapted version of the Q-learning policy iteration algorithm for linear-
quadratic problems, was performed. The particular class of RL-based controllers considered
is such that it allows adaptation in real time.

Disturbances affecting the system input and output have a big effect on the correct
functioning of the algorithm. A careful choice of algorithm parameters and balance between
the estimation algorithm parameters is the solution to this problem. However, when big
disturbances are present, it is only possible to make the gains converge close to optimality.
Increasing the influence of prior estimations allows for a greater degree of robustness, with
the drawback of deviating the convergence process to nearby values of the original optimal
gains. Nonetheless, that is necessary to prevent harsh oscillations in the learned gains,
which are still present in the quadrotor tests, most likely due to the non-linear nature of the
rotational dynamics and other unmodeled dynamics besides the perturbations.

Still, the algorithm produced good results provided that the drone is kept working
within the near-linear zone of operation, that is, where safe maneuvers with the quadrotor
close to the hovering position are prevalent.

The selection of the dither noise power to inject must solve a dual problem. Indeed, the
solution to the control problem requires a dither noise power as small as possible (ideally,
zero), while the solution to the estimation problem requires a high value for the dither
noise variance. The exact solution to this problem of finding the dither noise power value
that fits the best compromise can be found by using multi-objective optimization, but it
is computationally very heavy. Good approximations, such as the one proposed in [16],
are available for predictive adaptive controllers. A possibility is then to try to adapt this
approach to RL adaptive control, but a much more complicated algorithm is expected to
arise. Although promising as future work, such a research track is outside the scope of the

Eng 2024, 5 560

present work. Instead, in this article, the approach followed was to adjust the dither noise
power by trial and error in order to obtain the best results.

Author Contributions: D.L.: research, implementation, writing; R.C.: research, methodology, writing;
J.M.L.: research, methodology, writing. All authors have read and agreed to the published version of
the manuscript.

Funding: Part of this work was supported by INESC-ID under project UIDB/50021/2020 and by
LARSyS under project UIDB/50009/2020, both financed by Fundação para a Ciência e a Tecnolo-
gia (Portugal).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are not publicly available. The data files are stored in
corresponding instruments in personal computers.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:
RL Reinforcement Learning
LQR Linear Quadratic Regulator
VFA Value Function Approximation
TD Temporal Difference
RLS Recursive Least-Squares
MDP Markov Decision Process
ZOH Zero-Order Hold

References
1. Kangunde, V.; Jamisola, R.S.; Theophilus, E.K. A review on drones controlled in real-time. Int. J. Dyn. Control 2021, 9, 1832–1846.

[CrossRef] [PubMed]
2. Azar, A.T.; Koubaa, A.; Ali Mohamed, N.; Ibrahim, H.A.; Ibrahim, Z.F.; Kazim, M.; Ammar, A.; Benjdira, B.; Khamis, A.M.;

Hameed, I.A.; et al. Drone deep reinforcement learning: A review. Electronics 2021, 10, 999. [CrossRef]
3. Elmokadem, T.; Savkin, A.V. Towards fully autonomous UAVs: A survey. Sensors 2021, 21, 6223. [CrossRef] [PubMed]
4. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
5. Koch, W.; Mancuso, R.; West, R.; Bestavros, A. Reinforcement learning for UAV attitude control. ACM Trans.-Cyber-Phys. Syst.

2019, 3, 1–21. [CrossRef]
6. Deshpande, A.M.; Minai, A.A.; Kumar, M. Robust deep reinforcement learning for quadcopter control. IFAC-PapersOnLine 2021,

54, 90–95. [CrossRef]
7. Deshpande, A.M.; Kumar, R.; Minai, A.A.; Kumar, M. Developmental Reinforcement Learning of Control Policy of a Quadcopter

UAV With Thrust Vectoring Rotors. In Proceedings of the Dynamic Systems and Control Conference, American Society of
Mechanical Engineers, Pittsburgh, PA, USA, 4–7 October 2020; Volume 2, p. V002T36A011.

8. Koh, S.; Zhou, B.; Fang, H.; Yang, P.; Yang, Z.; Yang, Q.; Guan, L.; Ji, Z. Real-time deep reinforcement learning based vehicle
navigation. Appl. Soft Comput. 2020, 96, 106694. [CrossRef]

9. Ramstedt, S.; Pal, C. Real-Time Reinforcement Learning. In Proceedings of the Advances in Neural Information Processing
Systems, Vancouver, BC, Canada, 8–14 December 2019; Curran Associates, Inc.: Red Hook, NY, USA, 2019; Volume 32.

10. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2019, arXiv:1509.02971.

11. Lewis, F.L.; Vrabie, D. Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits Syst. Mag.
2009, 9, 32–50. [CrossRef]

12. Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics; Advanced textbooks in control and signal processing; Springer: London,
UK, 2009.

13. Franklin, G.F.; Powell, J.D.; Workman, M.L. Digital Control of Dynamic Systems; Addison-Wesley: Reading, MA, USA, 1998; Volume 3.
14. Recht, B. A tour of reinforcement learning: The view from continuous control. Annu. Rev. Control Robot. Auton. Syst. 2019, 2,

253–279. [CrossRef]

https://doi.org/10.1007/s40435-020-00737-5
https://www.ncbi.nlm.nih.gov/pubmed/33425650
https://doi.org/10.3390/electronics10090999
https://doi.org/10.3390/s21186223
https://www.ncbi.nlm.nih.gov/pubmed/34577430
https://doi.org/10.1145/3301273
https://doi.org/10.1016/j.ifacol.2021.11.158
https://doi.org/10.1016/j.asoc.2020.106694
https://doi.org/10.1109/MCAS.2009.933854
https://doi.org/10.1146/annurev-control-053018-023825

Eng 2024, 5 561

15. Kulhavý, R. Restricted exponential forgetting in real-time identification. Automatica 1987, 23, 589–600. [CrossRef]
16. da Silva, R.N.; Filatov, N.; Lemos, J.; Unbehauen, H. A dual approach to start-up of an adaptive predictive controller. IEEE Trans.

Control. Syst. Technol. 2005, 13, 877–883. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/0005-1098(87)90054-9
https://doi.org/10.1109/TCST.2005.854318

	Introduction
	Motivation
	Problem Definition, Objectives, and Contribution

	Dynamics Modeling
	Controlling the Quadrotor
	Controller Structure
	Position Controller
	Attitude Controller
	Underlying LQ Control

	Reinforcement Learning
	Introduction
	Dynamic Programming and Q-Function
	Approximate Dynamic Programming
	Q-Learning Policy Iteration

	Simulation Study
	Experiment 1
	Experiment 2

	Conclusions
	References

