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Abstract: Despite the subjective and error-prone nature of manual visual inspection procedures, this
type of inspection is still a common process in most construction projects. However, Automated
Construction Inspection and Progress Monitoring (ACIPM) has the potential to improve inspection
processes. The objective of this paper is to examine the applications, challenges, and future directions
of ACIPM in a systematic review. It explores various application areas of ACIPM in two domains
of (a) transportation construction inspection, and (b) building construction inspection. The review
identifies key ACIPM tools and techniques including Laser Scanning (LS), Uncrewed Aerial Systems
(UAS), Robots, Radio Frequency Identification (RFID), Augmented Reality (AR), Virtual Reality (VR),
Computer Vision (CV), Deep Learning, and Building Information Modeling (BIM). It also explores
the challenges in implementing ACIPM, including limited generalization, data quality and validity,
data integration, and real-time considerations. Studying legal implications and ethical and social
impacts are among the future directions in ACIPM that are pinpointed in this paper. As the main
contribution, this paper provides a comprehensive understanding of ACIPM for academic researchers
and industry professionals.

Keywords: automated construction inspection; automated progress monitoring; automated inspection
technologies; automation in construction; systematic literature review

1. Introduction

Construction inspection is currently a task performed mostly by human inspectors
through manual visual inspection procedures. In these traditional procedures, inspectors
refer to a set of plans, specifications, manuals, and standards to check different elements’
compliance with the criteria defined by these references. Depending on the type and size
of the project, inspectors from different specialties of civil, electrical, and mechanical are
involved in these manual inspections [1].

Despite the subjective and error-prone nature of these manual inspection proce-
dures [2–6], this type of inspection is still the common process in most construction projects.
However, in the last few decades, there have been attempts to utilize advancing tools and
technologies for automating the inspection processes in construction projects. Automated
techniques are also used for progress monitoring purposes to evaluate progress deviations.

Recent advancements in technology have significantly impacted the construction
industry, particularly in the areas of inspection and progress monitoring. The integration
of Automated Construction Inspection and Progress Monitoring (ACIPM) systems has
emerged as a pivotal factor in enhancing efficiency, accuracy, and safety in construction
projects. With the deployment of various tools such as Laser Scanning (LS), Uncrewed
Aerial Systems (UAS), and Building Information Modeling (BIM), the industry is witness-
ing a paradigm shift from traditional manual inspection methods to more sophisticated,
automated solutions. These technologies offer the potential to not only streamline the
inspection process but also provide real-time data, facilitating active decision making.
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However, the adoption of ACIPM in the construction industry is not without its
challenges. Issues related to data integration, interoperability, and the need for specialized
skills to operate and manage these technologies pose significant barriers to widespread
adoption [7]. Additionally, the construction industry must navigate the legal and regulatory
implications of adopting such technologies, ensuring compliance with standards and
addressing concerns related to privacy and data security. Despite these challenges, the
potential benefits of ACIPM in transforming the construction industry are immense. By
fostering collaboration between academia and industry, and investing in research and
development, the construction industry can overcome these challenges and fully harness
the capabilities of ACIPM technologies.

The objective of this paper is to systematically review the state of the art in ACIPM. The
reviewed literature consists of 138 journal papers, conference papers, theses, and reports
from 2002 to 2022. Five Research Questions (RQ) are defined to structure this review.
These questions investigate (a) application areas of ACIPM, (b) frequency of each domain,
(c) tools and techniques to enable ACIPM, (d) challenges and limitations of implementing
ACIPM, and (e) future directions to implement and benefit from ACIPM to its fullest extent.

2. Review Methodology

In comprehensively reviewing the existing literature, a systematic methodology was
employed in five steps. These steps are taken to (a) ensure the originality of the work,
(b) define RQs to better frame the review, (c) identify the main keyworks to conduct a search,
and (d) collect, filter, and store the articles. The last step is to (e) analyze the articles, before
answering the RQs. Each of these steps are explained in the following. Figure 1 summarizes
the review paper selection process, from identification to screening and final inclusion.
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2.1. Significance of Work (Originality)

Considering the novelty of ACIPM research in academia, there are no systematic
approaches to comprehensively review the existing literature, with the purpose of identify-
ing the gaps and recommending a direction for future research in this area. By creating a
comprehensive review on different publication categories, including journal and conference
papers, reports, and theses, this research paves the way to draw progress on this area and
enable further advancements.
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In this paper, ACIPM is defined as the use of advanced tools and technologies to auto-
mate the inspection processes and progress monitoring in construction projects. ACIPM
leverages different (a) data collection tools such as Radio Frequency Identifiers (RFID),
Laser Scanning (LS), and Uncrewed Aerial Systems (UAS), (b) data processing tools such as
Photogrammetry and Computer Vision (CV), and (c) data analysis tools such as Augmented
Reality (AR), Virtual Reality (VR), and Building Information Modeling (BIM).

The scope of this research covers any related research associated with ACIPM, applied
in both transportation construction and building construction domains. It also covers
research on progress monitoring, considering it within the scope of building construction.
This research excludes any research that does not involve at least one automated tool or
technique in at least one of three steps of data collection, data processing, and data analysis.

2.2. Frame Research Questions (RQs)

The next step after defining the scope of this systematic review, is to establish a set of
RQs as the foundation of this research. These questions facilitate the process of gathering
related scholarly work and analyzing it. Five RQs are designed as follows to structure
this research:

1. What are the different application areas of ACIPM?
2. What is the frequency based on construction domain and structure?
3. What are the tools and techniques that enable ACIPM?
4. What are the challenges of implementing ACIPM in construction projects?
5. What are the future directions to improve the application of ACIPM in construction

projects?

These RQs are answered in the following.

2.3. Identify Related Keywords

The next step after defining the RQs is to identify related keywords. All possible
combinations related to ACIPM are created. Some of these keywords include “Automated
Construction Inspection”, “Automated Bridge Inspection”, “Automated Highway Inspec-
tion”, “Automated Progress Monitoring”, “Automated Crack Detection” and “Automated
Building Inspection”. After defining these keywords, a keyword search is performed in
internet search engines. IEEE Xplore, Scopus, and Google Scholar were mainly used for
this purpose.

2.4. Collect, Store, and Filter Articles

In the next step, a broad top-down approach was taken to find as many articles as
possible that were relevant to the topic. Duplicated articles were filtered out. Also, any
article that was non-relevant to the ACIPM was filtered out, after reviewing its abstract and
keywords. A total of 196 articles were identified at this point to be collected. Inter Library
Loan (ILL) service was used to access these articles. After collecting the articles available
through ILL, magazines, manuals, and books were excluded, and a total of 138 resources
were collected and stored, after the final filtration.

2.5. Analyze the Data

The last step after collecting the articles was to categorize them into two categories
of (a) academic publications including journal and conference publications, and (b) other
publications including reports, and theses. Figure 2 illustrates the article breakdown, based
on type and year. After two rounds of screening, a total of 138 articles were analyzed in this
paper. As shown in this Figure, the research on ACIPM has increased in the last few years.
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Figure 2. Frequency of reviewed publications (type and year).

Table 1 illustrates the major areas of the reviewed academic publications, and the
journal/conference title and publisher within each area. There were further areas and pub-
lishers, with only one publication, which are not displayed in this Table. As shown in this
Table, Elsevier’s Automation in Construction journal has attracted the most publications,
followed by the Proceedings of the International Symposium on Automation and Robotics
in Construction (ISARC).

Table 1. Major research areas of reviewed publications.

Research Area Total Number Journal/Conference Title Publisher Frequency

Applications of Automation,
Robotics, and Digital Technologies 31

Automation in Construction Elsevier 21

Proceedings of the ISARC ISARC 10

Construction Engineering and
Management 6 CRC International Conference CRC 6

Advancement of Technology and
Engineering Fields 5 IEEE International Conference IEEE 5

Application of Advanced
Information and Communication

Technologies
5 Advanced Engineering

Informatics Elsevier 5

Application of Computing,
Information Technology, and Digital

Innovations
5

Computing in Civil Engineering ASCE 3

Journal of Computing in Civil
Engineering ASCE 2

Engineering and Computer Science 4
Procedia Engineering Elsevier 2

IEEE Access IEEE 2

Science and Technology of Sensors
and Sensing Systems 4 Sensors MDPI 4

Applied Sciences 2 Applied Sciences MDPI 2

Built Environment 2 Buildings MDPI 2

Energy Science 2 Energies MDPI 2

Transportation Engineering 2 Transportation Research Record SAGE 2
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3. RQ1: What Are the Different Application Areas of ACIPM?

ACIPM has been applied to several areas withing the construction industry, includ-
ing (a) transportation construction inspection, and (b) building construction inspection
(Figure 3). Each of these areas of applications are studied in this section to answer RQ1 and
investigate different applications of ACIPM.
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3.1. Automated Inspection in Transportation Domain

Transportation infrastructure plays a critical role in supporting the economic and social
progress of any country, as it ensures the reliable, safe, and efficient movement of people
and goods. However, as the population continues to grow and transportation structures
age, there is a pressing need for more efficient technologies and solutions for construction
inspection [7,8]. ACIPM is one of the proven solutions that has been adopted in the last
few decades.

This section reviews the state of the art in automated transportation inspection, in three
subsections of (a) pavement inspection, (b) bridge inspection, and (c) railway inspection.

3.1.1. Pavement Inspection

Vehicle traffic, weather conditions, and material aging are some of the reasons for
pavement surface deterioration [9]. A pavement inspection system is required to maintain
the optimal service of a road and guarantee its safety [10]. Several studies have studied the
application of ACIPM in pavement condition assessment and crack detection.

Automated Road Inspection Vehicles were one of the early tools that enabled ACIPM.
In this framework, cameras and sensors are mounted on a vehicle to acquire images and
videos of the road surface. One method to analyze the visual data is to use the Shadow
Moire method. Through this method, the image distortions are analyzed to identify the
road surface characteristics such as texture and roughness [11].

One recent approach for pavement distress inspection was creating an image- or video-
based automated inspection system, by collecting 2D and 3D information [9,10,12–14]. In
this approach, 2D pavement images are adjusted using the depth information retrieved
from 3D models. Then Convolutional Neural Networks (CNNs) are used to detect distress
patterns and classify the types of distress. For this purpose, the collected data must be
processed (resized, normalized, filtered, etc.) and labeled as an input for the training phase.
After training the model, it is evaluated using a separate set of images, and the model’s
performance is assessed based on its accuracy. Figure 4 illustrates this approach.
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Another approach is to use a Laser Crack Measurement System (LCMS) where 3D
laser profilers are mounted on an inspection vehicle [15]. The acquired 2D and 3D data
are processed to detect the types and severity of cracks. This approach is generally more
expensive than the image-based CNN system [9].

Automated Hot Mix Asphalt (HMA) thermal profiling is a further approach. In this
approach, different tools such as paver-mounted Infra-Red (IR) sensors [15], roller-mounted
GPS [16], and Uncrewed Aerial Systems (UAS) [17,18] are used to collect mat temperature
and create a thermal profile of the mat. As a result, thermal and density segregated areas
are detected on the mat, and the segregation impacts on the pavement’s performance is
reduced. Figure 5 illustrates this approach.
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E-ticketing is also another tool to support ACIPM. By installing GPS on construction
equipment, and integrating a GIS interface, it is possible to collect load and haul informa-
tion. Other technologies such as bar codes, magnetic stripes, RFDI, smart card, and voice
recognition devices are also used for E-ticketing [19]. E-tickets enable tracking the equip-
ment on the road, and acquire delivery and dump times, as well as documenting the load
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tonnage. This information assists the project managers in remote inspection and efficiently
managing the equipment on site [15]. Figure 6 illustrates the E-ticketing framework for
construction projects.
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3.1.2. Bridge Inspection

According to America’s 2021 Infrastructure Report Card, 42% of the nation’s bridges
are at least 50 years old, and 7.5% of these bridges are considered structurally deficient [20].
In a traditional inspection process, every bridge is inspected manually and visually at
regular intervals, to determine their physical and functional conditions [21]. The National
Bridge Inspection Standard by FHWA [22] is used as the main reference by certified bridge
inspectors, and bridge elements are assessed based on the inspectors’ observations [21].

Understanding the need for automated tools and procedures, several studies have
proposed automated methods to inspect bridges. Both steel and concrete bridges are
studied for (a) crack detection, (b) structural element detection, and (c) delamination
detection. Some other areas of research include (d) random inspection spot selection,
(e) coating inspection, and (f) route planning. In addition, there are few studies looking at
defect detection for masonry arch bridges.

The main approach in these studies is based on vision-based data collection. In this
approach, site images and videos are collected using UAS. Route planning is required
before flying the UAS to generate collision-free paths [23]. The collected data are then
analyzed to detect different defects, such as cracks and delamination. Several methods are
used for data analysis purposes, such as Image Processing (threshold segmentation and
edge detection) and Deep Learning (CNN). In addition, defects are located on the bridge,
and a damage map is created to visualize the results in a 3D BIM. The final results are
utilized for decision making (condition evaluation and maintenance strategy generation)
by related stakeholders. Figure 7 illustrates this framework.

UAS route planning can be automated using different methods. Zou et al. have
studied this using BIM-GIS data [24]. Their study integrates GIS data with a BIM. In
the next step, surrounding environment information and geometry data for the bridge
are collected to be used as the input for the path planning algorithm. The final result is
the shortest closed polygon as the desired path. This path is used to collect data from a
case study bridge and create a 3D model of it using photogrammetry. Figure 8 illustrates
this framework.
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In another approach, robots are used for automated bridge inspection. In this approach,
a ground [3] or climbing [25] robotic platform is equipped with on-board computers to
create 3D point cloud maps. These point clouds can be later used to detect bridge defects
and their characteristics (area or volume). In a study by Charron et al. the overall scale
error of their designed ground robotic platform was only 1.3%, which was a considerably
low error [3].

McCrea et al. have also reviewed the steel bridge inspection methods in a systematic
review [26]. They have studied different areas of steel bridges, as well as different meth-
ods and equipment for automating the bridge inspection. The authors of [27] have also
conducted a review on fully automated bridge inspection. While their focus was on using
UAS, they have approached the research topic in three steps of (a) data collection, (b) data
analysis, and (c) decision making. In addition, they have studied the Level of Automation
(LoA) for each step, and identified the challenges associated with each step. Their study
also proposed visions on answering each challenge. Similar steps are taken by Zhang et al.
to systematically review the literature using UAS for bridge inspection [27].
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3.1.3. Railway Inspection

Railways are also another vital component of a transportation system. Due to the
increased demand for long-distance tunnels and subways, the railway sector has expanded
in recent years [28]. Despite the advancements in rail vehicle operations, railway inspection
still relies heavily on traditional manual inspection. In addition to common challenges of
manual inspection, railway tunnels are often located in dusty and humid environments,
with limited lighting, which increases the safety and health risks for inspectors [28]. As a
solution, there has been an interest in automating the inspection operations for railways.

One approach is to develop a robotic system for defect inspection on rail tunnels [28].
In this approach, visual images and videos are collected from rail surfaces, using cameras
mounted on a robot. A simulation is carried out to understand how the robot operates
before testing it on an actual project. The collected data are analyzed using Image Processing
algorithms to detect cracks on the images. MATLAB’s Image Processing Toolbox function
(Tubularity Flow Field (TuFF)) is one of the existing tools for processing collected images.
It detects different types of cracks on the rail surface. Figure 9 illustrates this framework.
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Figure 9. Robotic railway inspection framework.

Track images and videos can also be collected through manual data collection using
different cameras [29,30]. The next step after collecting the images is to create a point cloud
of the railway and generate a 3D mesh model. PhotosScan and RealityCapture are some of
the photogrammetry applications that can be used for 3D object reconstruction. Finally,
cracks are detected and classified on reconstructed images.

Another approach is to use Laser Scanning (LS) for detecting concrete spalling [28].
In this approach, 3D point clouds are generated to model the spatial position and surface
features of the spalling regions. Image Processing and Deep Learning methods including
CNN are used to interpret the collected data and report a 3D mesh model of the spalling
defects. Figure 10 illustrates this framework.

Last but not least, Panella et al. have conducted a cost–benefit analysis to compare two
approaches of using Photogrammetry and Laser Scanning for rail tunnel inspection [31].
Their study discovered that photogrammetry is a better option, in terms of cost and global
accuracy. It is also more versatile and easier in comparison to Laser Scanning.
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3.2. Automated Inspection in Building Domain

Building inspection using traditional methods has proven to be inefficient [32]. How-
ever, similar to the transportation domain, there are advanced technologies to support
automated building inspection, to overcome the inefficiencies.

This section studies the application of ACIPM in the building domain. Main categories
of (a) façade inspection, and (b) quality management, as well as (c) falsework inspection,
(d) energy assessment, and (e) occupancy authorization are among the main areas of appli-
cation within the building domain. Since the majority of progress monitoring applications
are related to the building domain, progress monitoring is studied under this section.

3.2.1. Progress Monitoring

In traditional progress monitoring, progress information is collected manually, to
act as an as-built record of the project. These as-builts are compared to the as-planned
quantities of the project, to detect progress discrepancies. On the other hand, ACIPM
enables automated progress monitoring, in three steps of (a) data collection, (b) data
processing, and (c) progress estimation and visualization. There are different tools and
techniques that support each of these steps. ACIPM benefits from at least one of the data
collection tools, to replace manual data collection with an advanced tool. A data processing
technique is also required to process the collected data, and ultimately estimate the project
progress and visualize it. Figure 11 is a schematic diagram for progress monitoring.

There are several approaches to automate progress monitoring. The first approach
is to collect digital images and videos of project sites using handheld cameras. Another
solution is to use UAS. While handheld fixed cameras have limited views, using multiple
cameras or cameras mounted on a UAS provides a more comprehensive depiction of the
project progress. Collected data are analyzed (a) manually or (b) automatically using
photogrammetry and Computer Vision, to estimate the project progress. In automated data
analysis procedures, different features such as color, shape, and texture are extracted for
different activities. Project progress is estimated using these features. BIM is also used
in some projects to better visualize the progress of the project. Image-based systems are
inexpensive in comparison to most data collection tools, such as Laser Scanners [33].

Another prevalent approach is to use LS to collect 3D point clouds and generate an
as-built BIM for the project. While the accuracy of this method is high, it has several
disadvantages in comparison to image-based approaches. Some of these disadvantages are
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(a) high initial and maintenance costs, (b) requiring trained operators, (c) slow warm-up,
and (d) noisy data [33]. Furthermore, processing the point clouds for object detection
purposes is cost- and time-consuming [33]. To improve these disadvantages, there has been
some research [34] on combining photogrammetry and LS to enhance the data quality.
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A different method is to use RFID to detect equipment and material and collect related
information. In this method, tags are placed on construction equipment and material. By
scanning these tags, it is possible to track equipment and material and estimate the project
progress. One major disadvantage of this method is the need for installing tags on the
target equipment and material in the dynamic environment of any construction project [33].

3.2.2. Façade Inspection

Building facades are one of the critical components of a building and can cause
serviceability and safety concerns if deteriorated [35]. Façade deterioration is caused
by loading and environmental factors. In manual practices, façade inspection is carried
out in two steps of (a) initial visual inspection and (b) closer inspection of potentially
damaged areas. To improve the safety and efficiency of these inspections, several automated
approaches are designed by [32,35–38].

The most common approach is to use UAS for collecting high-quality images of the
building façade [35,38]. Proper flight planning is necessary to ensure compliance with
safety and legal requirements. A Structure from Motion (SfM) technique is later used to
reconstruct the images into a 3D model. This approach is supported by Machine Learning
algorithms which detect defects on collected images, as well as their extent and other
features. Finally, a list of existing defects is created, and defects are ranked based on
predefined severity criteria to prioritize the maintenance process for more severe defects.
Building on this approach, [39] have developed an open-source software for exterior crack
inspection on buildings.

3.2.3. Quality Control

Quality control in construction projects relies heavily on construction specifications.
These specifications are complex, due to the existing cross-referencing and the large number
of criteria. One approach is to automate processing of these specifications to extract
requirements associated with each product or process. In this approach, formal framework
is developed to utilize the project information extracted from highly semantic project
models. By integrating this framework with reality-capturing technologies, it is possible to
compare the building’s as-built information with the deducted requirements. This results in
a list of deviations for each building component. This list is ultimately used for correcting
the defects [40].

Similar to bridges, crack detection is also carried out for buildings in quality con-
trol procedures. These procedures can be automated using CNN. As explained before,
this involves image learning through a labeling process for one dataset and testing the
trained model on another dataset to evaluate its accuracy [41]. Figure 12 schematically
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illustrates this crack detection framework in four steps of (a) data collection, (b) 3D model
reconstruction, (c) data analysis, and (d) post-processing.
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BIM can also be used for quality control applications [42]. In these applications, BIM
is utilized to present 4D data (3D design data + schedule). This 4D model visualizes the
construction sequences to identify any issue or clash. It results in timely identification of
defects and resolves them, without future rework and claims. However, the increased cost
and complexity of implementation have been the main drawbacks on using BIM for quality
control purposes.

3.2.4. Falsework Inspection

Falsework inspection is another area that can benefit from automation. Atherinis
et al. have designed a smart system to use RFID for falsework inspection [43]. Their
system identifies different members using RFID and compares them with a 3D model
represented by AutoCAD 360 drawing viewer. This system locates members significantly
faster than manual inspectors and resulted in higher accuracy. Figure 13 illustrates their
proposed methodology. It consists of two systems of quantification and positioning, which
communicate with the database, and identify falsework members that are equipped with
RFID tags. The results are shared with the inspection team, on their portable devices such
as tablets and smartphones.
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3.2.5. Energy Assessment

The building sector requires immediate action to prioritize energy efficiency [44]. A
detailed building inspection can help improve energy efficiency. A vision-based energy
inspection approach is proposed by Mirzabeigi et al. (2022) [45]. In that approach, UAS



CivilEng 2024, 5 277

is used to collect thermal images from building sites, and the collected data are analyzed
using Image Processing. Finally, thermal anomalies of the building envelope are detected
for a case study. The proposed methodology can be integrated with building simulation
processes to generate a comprehensive building energy assessment. Figure 14 illustrates
this framework in five steps of (a) flight planning, (b) data collection, (c) pre-processing,
(d) thermal anomaly detection, and (e) post processing.
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3.2.6. Occupancy Authorization

Building occupancy inspection is the final step in the permitting process. This process
can be automated using advanced technologies. Lee et al. have proposed an ACIPM
framework to use UAS for occupancy authorization inspection. Their framework uses
photogrammetry to process the UAS collected images and create a BIM for the building.
The created BIM can be used for occupancy authorization purposes and complements
the traditional inspection processes. Their study has been successful in inspecting several
elements of a case study building [46].

4. RQ2: What Is the Frequency Based on Construction Domain and Structure?

While the first RQ investigated different applications of ACIPM, it did not study
the frequency of each domain structure type (bridge, road, railway, building, etc.). For
this purpose, the second RQ investigated different structures and reviewed the frequency
of scholarly work on each sub-domain. This information offers two potential benefits.
Firstly, it provides valuable insights into the structures that are well suited for ACIPM
implementation. Secondly, it serves as a guide for future researchers, pointing out areas in
the existing literature where gaps exist and further exploration is needed.

As Table 2 shows, bridges have been the most frequent structure in the transportation
domain, while roads and railroads are placed at the second rank. The high interest in
applying ACIPM in bridge inspection is because of several reasons, such as (a) complex-
ity of bridges, (b) safety and accessibility challenges, (c) larger inspection scale, (d) cost
effectiveness of ACIPM, and (e) continuous health monitoring needs of bridges.
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Table 2. Domain and sub-domain (structure based) comparison for reviewed papers.

Domain Sub-Domain (Structure) Frequency Publications

Transportation
(Total Reviewed: 58)

Bridge Inspection 31 [2–6,21,23–27,47–64]

Highway Inspection 13 [7,10–17,65–69]

Railway Inspection 14 [28–31,70–79]

Building
(Total Reviewed: 70)

Progress Monitoring 52 [18,80–130]

Quality Inspection 9 [1,40–42,45,127,128,131,132],

Façade Inspection 5 [25–28,38]

Crack Inspection 3 [32,37,39]

Energy Assessment 1 [44]

Falsework Inspection 1 [43]

Occupancy Authorization 1 [46]

Others (Related to both Domains) 8 [133–140]

Total Reviewed 138

Under the building construction inspection domain, progress monitoring is a prevalent
area of research. Some reasons for widespread adoption of ACIPM for progress monitoring
are (a) time efficiency, (b) labor saving, (c) improved accuracy, (d) enhanced consistency,
(e) real-time availability, (f) comprehensive documentation, and (g) safety benefits of using
ACIPM in this sub-domain.

5. RQ3: What Are Data Collection and Processing Tools and Techniques?

In this section, all tools and techniques enabling ACIPM are reviewed. Table 3 sum-
marizes each tool, its brief description, and the frequency of using it in the reviewed
literature. As shown in this table, handheld cameras are the most utilized data collection
tools for collecting visual site data. LS, AR, CV, Deep Learning, and UAV are some other
tools that enable data collection and processing. The advancement of these tools, from
simple handheld devices to complicated analytical algorithms, showcases the construction
industry’s dedication to enhancing operational efficiency and fostering innovation in the
field of ACIPM.

Table 3. Tools and techniques utilized for ACIPM.

Tools and Techniques Description Frequency

Handheld Cameras A traditional camera to capture optical images and videos
from jobsite. 39

Laser Scanning (LS) A technology that uses laser light to digitally capture the exact
size and shape of a target object. 31

Augmented Reality (AR) A computer technology to add visual, auditory, haptic, and
somatosensory data on top of the current real world. 28

Computer Vision (CV)
An interdisciplinary tool for processing and analyzing visual
data (digital images/video). This tool seeks to simulate, an
interpreting process performed by a human visual system.

24

Deep Learning
Subset of machine learning that uses artificial neural networks
with multiple layers to process and analyze complex patterns

in data.
24
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Table 3. Cont.

Tools and Techniques Description Frequency

Uncrewed Aerial System (UAS)

An aircraft without a human pilot on board. A system
consisting of a UAV, a ground-based controller, and a

communication system between these is called an Unmanned
Aerial System (UAS). Cameras and sensors are mountable on

a UAS to capture different types of data.

23

Building Information Modeling (BIM) A process that integrates different tools and technologies to
generate visual/functional models of a built asset/facility. 21

Robots
Mechanical or virtual devices that perform tasks

autonomously or semi-autonomously and are often able to
mimic human actions.

14

Radio Frequency Identification (RFID)

RFID is a system consisting of a radio transponder, a radio
receiver, and a transmitter. This system utilizes

electromagnetic fields to detect and track the tags/smart
labels attached to the target objects.

8

Geographic Information System (GIS)
Technology to captures, analyzes, and visualizes spatial data

to understand patterns, relationships, and make informed
decisions about the real world.

5

Geographic Positioning System (GPS)
Satellite-based navigation system to provide positioning data.

GPS is one of global navigation satellite systems (GNSS) to
provide geo-location and time information to a GPS receiver.

4

Point Cloud Collection of 3D data points in space, typically obtained
through laser scanning or 3D imaging techniques. 3

Photogrammetry

Technique for processing and interpreting the visual data
collected using different data collection technologies, such as

aerial images collected with UAS. It allows 2D/3D digital
model generation of a target object.

3

Paver Mounted Thermal Profiler
Device mounted on a paver to capture temperature profiles of
the asphalt pavement during construction to ensure proper

quality and compaction.
1

Smartphone

Mobile device that combines the functionalities of a cellular
phone with advanced features such as internet connectivity,
touchscreen interface, multimedia capabilities, and a wide

range of applications for various tasks

1

Internet of Things (IoT)

Network of interconnected physical devices, vehicles,
appliances, and other objects embedded with sensors,

software, and connectivity capabilities, to remotely collect and
exchange data.

1

Mobile Computing
Using portable computing devices, such as smartphones,
tablets, and laptops, to access and process information,

perform tasks, and communicate while moving.
1

Virtual Reality (VR) A computer technology that uses software to produce images
/sound and create the sensation of presence at a target place. 1

Ultra-Wide Band (UWB)

Radio communication technology for target sensor data
collection and tracking and precision locating. UWB

consumes low level of energy, and creates short-range,
high-bandwidth communication data.

1

6. RQ4: What Are the Challenges?

This RQ addresses the limitations and challenges of using ACIPM. Each publication
is reviewed to collect a pool of challenges. These challenges are then categorized in
categories of (a) limited generalization and adaptability, (b) data quality and variability,
(c) integration and compatibility, (d) real-time data analysis, (e) complex construction
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contexts, (f) human–technology interface, (g) cost and efficiency, and (h) computation
optimization. The frequency of each category is also investigated, and the results are
summarized in Table 4.

Table 4. Challenges of implementing ACIPM.

Category Frequency Challenge Publications

Limited Generalization and
Adaptability 9 Models might lack generalization. [17,35,37–39,41,59,63,76]

Data Quality and Variability 8

Data formats and quality are inconsistent
across construction projects. [7,12,24,39]

Data accuracy is affected by different factors,
including lighting and weather conditions. [5,43]

There are no standardized data
collection methods. [27,39]

Integration and Compatibility 7

It is difficult to integrate ACI systems with
existing construction processes

and technologies.
[27,40]

Different ACI platforms might not be
compatible or interoperable with each other. [7]

Real-time Data Analysis 4 It is challenging to capture and analyze the
data in real time. [5,35,39,42]

Complex Construction
Contexts 2

Complexity due to dynamic and diverse
construction, as well as irregularity in

geometry and design environment needs to
be studied.

[39,43]

Cost and Efficiency 2 Cost–benefit and efficiency analysis need to
be studied, especially for smaller project. [24,43]

Human-Technology Interface 1 It is challenging for construction personnel to
operate the ACIPM tools. [7]

Computation Optimization 1 Computation burden is high for the
developed ACI models. [6]

Enhancements in data processing algorithms, interoperability standards, and user
interface design are crucial for overcoming the limitations of generalization, integration,
and human-technology interaction. Furthermore, addressing the variability in data quality
demands the development of robust, adaptive models capable of accurate performance un-
der diverse conditions. By focusing research efforts on these strategic areas, it is possible to
improve the efficacy, reliability, and user-friendliness of ACIPM systems, thereby enabling
their broader adoption and more effective application in the construction industry.

7. RQ5: What Are the Future Directions?

The last RQ to address is to define the future direction for implementing ACIPM in
the construction industry. A main area of further study is to enable continuous training for
models to generate reliable results for different projects. This includes exploring different
data processing techniques and algorithms to improve the adaptability of the ACIPM
models to various construction contexts, and the development of robust frameworks that
facilitate the integration of diverse data sources to enhance model accuracy and versatility.

Another prevalent area is the integration of BIM and ACIPM. While there have been
several studies on integrating BIM for as-built generation and project status visualization
purposes, there is still a gap in utilizing BIM for real-time monitoring and visualization
of the project. Enhancing the interoperability between BIM and ACIPM could lead to
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more efficient project management and execution, by providing a more dynamic and
comprehensive understanding of project progress and potential issues.

One of the novel directions is to study legal and regulatory considerations. Within the
context of ACIPM, legal implications of automated inspections need to be examined. In
addition, liability in case of differences between ACIPM and manual inspection needs to be
determined by project stakeholders, and prior to the implementation of ACIPM. It is also
critical to establish clear standards for ACIPM implementation to ensure compliance and
protect all parties involved.

Last but not least, is the ethical and social implications of using ACIPM. The effect of
automation on the workforce needs to be studied. Furthermore, ethical considerations and
data privacy, as well as transparency needs in decision making, must be defined to fully
enable ACIPM. It is crucial to consider the human aspect of ACIPM adoption, including the
potential for job displacement and the need for retraining programs to equip the workforce
with the skills necessary for new roles created by ACIPM technologies.

8. Conclusions

The objective of this paper was to systematically review the state of the art in ACIPM.
This paper presented the first comprehensive literature review on ACIPM, distinguishing
itself by exploring applications, challenges, and future directions of ACIPM, not previously
addressed in the existing reviews. Through a comprehensive analysis of existing research,
it filled a significant gap in the academic discourse, offering new insights and frameworks
that promise to advance the field of construction inspection and progress monitoring.

A total of 138 journal papers, conference articles, theses, and reports were collected,
filtered, and stored for the review purpose. Five RQs were defined and answered based on
this collection of the literature. The first RQ investigated application areas of ACIPM in two
different domains of transportation and building. Pavement inspection, bridge inspection,
and railway inspection were studied as the main application areas in the transportation
domain. Progress monitoring, quality control, façade inspection, falsework inspection,
energy assessment, and occupancy authorization were studied in the building domain.

The second RQ tested frequency of each domain. It was concluded that ACIPM
has been mostly applied in the building domain, in comparison to the transportation
domain. Progress monitoring, followed by bridge inspection, are the two sub-domains
where ACIPM is mostly implemented.

Tools and techniques to enable ACIPM were studied in the third RQ. Handheld
cameras that collect site images and videos are the most frequently used data collection
tools. LS, AR, CV, Deep Learning, and UAV are some other frequently used tools and
techniques for data collection, processing, and visualization purposes.

The fourth question investigated challenges and limitations of implementing ACIPM.
Limited generalizations and adaptability was identified as the main challenge of using
ACIPM. Data quality and variability, and integration and compatibility, were also other
frequent challenges.

The last RQ prompted future directions to implement and benefit from ACIPM to
its fullest extent. Improving the data processing algorithms that expand the adaptability
of ACIPM to different construction contexts was the first major area for future work.
Integration of BIM was also identified as another future direction.

It must be noted that, while this research is pioneering in its systematic review of
ACIPM across transportation and building construction domains, it operates under certain
limitations. Primarily, the scope of the literature included is limited to academic publi-
cations including journal and conference publications, and other publications including
reports and theses that are accessible through academic institutional channels, excluding
potentially relevant magazines, books, and manuals, and references not available via these
means. Additionally, while the review comprehensively analyzes existing methodologies,
tools, and applications, it acknowledges the rapid evolution of technologies and method-
ologies in ACIPM, which may outpace this review’s findings. Such limitations underscore
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the importance of ongoing research to continuously update and expand the understanding
of ACIPM’s applications, challenges, and future directions.

Last, but not least, while this paper contributes to the state-of-knowledge by sys-
tematically investigating the existing literature, future work will focus on reviewing the
state-of-practice and implementations of ACIPM by Departments of Transportation (DOTs)
and government agencies. It will concentrate on studying real-world projects where ACIPM
has been implemented, aiming to identify and analyze the tangible impacts and outcomes
of these technologies in improving project efficiency, reducing costs, and enhancing safety
standards across various construction projects.
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