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Abstract: Efficient irrigation water use directly affects crop productivity as demand increases for
various agricultural products due to population growth worldwide. While technologies are being
developed in various fields, it has become desirable to develop automatic irrigation systems to reduce
the waste of water caused by traditional irrigation processes. This paper presents a novel approach
to an automated irrigation system based on a non-contact computer vision system to enhance the
irrigation process and reduce the need for human intervention. The proposed system is based on a
stand-alone Raspberry Pi camera imaging system mounted at an agricultural research facility which
monitors changes in soil color by capturing images sequentially and processing captured images
with no involvement from the facility’s staff. Two types of soil samples (sand soil and peat moss
soil) were utilized in this study under three different scenarios, including dusty, sunny, and cloudy
conditions of wet soil and dry soil, to take control of irrigation decisions. A relay, pump, and power
bank were used to achieve the stability of the power source and supply it with regular power to
avoid the interruption of electricity.

Keywords: automatic irrigation; computer vision; random forest algorithm; Raspberry Pi; color
image analysis

1. Introduction

Computer vision is considered an effective tool for the processing and analyzing
of images, which can be used in a wide array of applications such as manufacturing
automation and the medical sector [1], as well as in different agriculture applications [2,3]
such as automated irrigation systems and remote plant growth monitoring, in addition to
weed recognition [4], fruit grading [5], and food industry production [6].

In the last ten years, much research has been carried out on smart-automatic irriga-
tion systems to reduce water consumption, reduce the need for human resources, and
provide remote information via monitoring of plant growth, soil mixture, etc. Most of these
studies conduct irrigation monitoring utilizing different types of sensors, embedded mi-
crocontrollers [7], electromechanical devices such as water flow meters, and other process
control sensors to achieve better use of water through optimal irrigation management. Such
technology will enhance the productivity of crops in both greenhouses and the outdoors.
Every control system consists of three major parts: sensors for giving information about
soil moisture, a controller housing the logic and potentially the intelligence of the system,
and a water pump with a delivery system.

Recently, many studies about irrigation systems have been conducted using different
types of sensors planted into the soil to identify different parameters, such as the PH
sensor [8] for soil moisture, which indicates the level of acidity of the soil mixture, and thus
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the mineral and nutrient quantity available in the soil. Moreover, humidity sensors and
temperature sensors [9] describe environmental growing conditions. The microcontroller
provides an interface between the sensors and the delivery system; furthermore, it is
considered the system’s brain, responsible for processing data and making decisions. In
another study [10], a non-contact vision system using a feed-forward back propagation
neural network was proposed to predict the irrigation requirements of soil depends on
the analysis of images of loam soil captured by an RGB camera under natural lighting
conditions. This study is testing a new system based on computer vision technology to
analyze and process images taken of the outer surface of the soil and observe soil color
in different weather situations, such as dusty, cloudy, and sunny. Furthermore, this work
presents an exploration of the possibility of a non-contact approach being able to replace
arrays of contact sensors that are more subject to degradation in the harsh conditions
offered by wet soil, compost, salt, etc. In addition, this study provides fully automated
irrigation control without human involvement to overcome the challenges and weaknesses
presented in previous research and to test the feasibility of doing this with computer vision
techniques which can be used on modest computers, such as the Raspberry Pi.

The remainder of this paper is structured as follows: Section 2 presents related work.
Section 3 describes the materials and methods of the proposed automatic irrigation system,
including data collection, system framework, and hardware design, which discusses hard-
ware and soil image analysis. Section 4 presents the experimental results and discussion.
Finally, Section 5 presents the conclusion.

2. Related Work

In this section, a summary of some of the research studies that have focused on the
design of automatic irrigation systems in the agricultural field are presented. For example,
a design of an auto-drip system was proposed in [11], allowing users to control the drip
irrigation process remotely by sending on/off email message commands via a Raspberry Pi
and receiving them through an Arduino via an XBee module to obtain feedback information
about the water level in a tank to control the water flow by activating a solenoid valve.
Another study provided a web page design to interface between a user and a system to
monitor soil moisture and soil temperature and to control water remotely through a mesh
of node sensors connected wirelessly via a ZigBee and a Raspberry Pi [12]. A study by
Dhanekula and Kumar [13] implemented a control system based on a GSM module and
web application that enabled monitoring of soil temperature, soil moisture, and water level,
as well as control of an irrigation process using a Raspberry Pi 2 with 8051 microcontroller
that communicated with sensor nodes via a Zigbee module. Another study [14] presented
an auto-drip irrigation system using an Arduino microcontroller to collect data acquired
by sensors transmitting the signal to the Raspberry Pi via the Zigbee module, where the
resulting data were uploaded to the cloud by the Raspberry Pi to control solenoid valves
with the help of ultrasonic level sensors. Another study by Sharma et al. [15] used a
webcam, a custom capacitive sensor, and a soil moisture sensor connected with an Android
application through a Raspberry Pi using the Java programming language to control water
flow by detecting the capacitive threshold value of soil. A remote automatic irrigation
monitoring system using a mobile telephone’s webcam, Wi-Fi, and Raspberry Pi with
temperature and soil moisture sensors was proposed by [16] to indicate the irrigation water
quantity needed. Another monitoring system could track the water level after the irrigation
process to maintain the plant’s required water quantity by monitoring the soil’s moisture
level. The proposed system included a Raspberry Pi model 3, Arduino microcontroller,
Wi-Fi module, GSM shield, and sensors that provide analog data via the Arduino, which in
turn translates the data into a digital signal and transmits it via a Wi-Fi module to the Pi
to provide the user with the required information; moreover, the user could interact with
the system via GSM by sending a specified message. Another study [17] examined soil
pH based on sensors attached to the microcontroller, thereby determining the soil’s acidity
(which indicates the circumstances for plant growth) and analyzing images taken by mobile
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telephone cameras to estimate the condition of the plant. In [17], a smart water management
system was proposed based on a smartphone and PHP web interface application with a
Raspberry Pi to control individual valves after receiving a signal from the serial UART of
an Arduino. The flow meter was used to provide feedback about water flow by calculating
the mechanical speed of the magnet on the turbine, which translated to pulses in the RPi, in
addition to connecting humidity, rain, and temperature sensors to give more information
about the soil and enhance the irrigation control process. A Graphical User Interface (GUI)
based on an Android application was proposed by [18] to control a water delivery system
by controlling a solenoid valve using a Raspberry Pi microcontroller. Multiple sensors,
including ultrasonic sensors, soil moisture sensors, and light sensors, were included in
the design of this system. In addition, the proposed system could automatically send an
email message to notify the user of a normal or abnormal situation. Another study by
Padyal et al. [19] connected an Arduino microcontroller with a hygrometer, temperature
sensors, and humidity sensors to provide soil moisture status. The readings were recorded
and saved in individual files over the cloud to enable the user to access and track the
soil status at any time. Another design for an automatic irrigation-based IoT system was
proposed by [20] to monitor crops using several sensors, such as soil moisture, humidity,
and temperature sensors that wirelessly interfaced with the Raspberry Pi microcontroller.
In [21], the environmental information around plants was collected by many sensors based
on an IoT interface to transmit many parameters, including humidity, temperature, soil
moisture, and light intensity, that could all be observed by the user via a web app. An
infrared sensor was also used to check if an object had entered the agriculture field via an
audible alert. Another smart irrigation system based on the IoT and a Raspberry Pi was
proposed by [22] to control an irrigation process depending on sensor signal information
such as temperature, humidity, and rain sensors. The user could also monitor the process
live through a webcam using a Wi-Fi network. The IoT technology was also used in a
special automatic irrigation system designed for monitoring the reading of sensor values,
such as soil moisture, water pH, temperature, and humidity, via the cloud and a dashboard.
A laser and an IP camera were also utilized for irrigation zone security, where the Android
application integrated the overall system through Wi-Fi. Another work by Kuswidiyanto
et al. [23] proposed an automatic water level measurement system in an irrigation channel
using computer vision technology to monitor the water level using a gauge placed in a water
canal where a color detection technique was used to measure the length of the pixels on the
gauge to estimate the water level in a canal. However, each proposed work presented above
has its strengths and weaknesses with different assumptions, leading to several issues to be
considered. Therefore, this work proposed a real-time smart imaging system for directly
analyzing soil color and identifying whether the soil needs to be irrigated or not, where cost,
soil type, and weather conditions are the main considerations. The current challenges faced
by the industry and future prospects are noted to guide scholars and engineers. Hence,
every piece of farmland is important to enhance crop production by dealing with every
inch of land using sustainable IoT-based sensors and communication technologies.

3. Materials and Methods
3.1. Data Collection and Experimental Setup

The soil data set in this experiment was gathered in a domestic garden over three
months according to weather status at different times. Sand flies serve as vectors for
leishmaniosis, a major health concern, but a neglected tropical disease. The risk of vector
activity was governed by climatic factors that vary in different geographic zones in the
country. A digital Raspberry Pi 4 camera compatible with modules 2, 3, and 4 was mounted
at the research zone in the range of 1~1.5 m from the 2 sample soil types at a 45-degree angle.
The Pi camera took images using an image sensor: OV5647 with a resolution of up to 5 MP
in JPG format on a Raspberry Pi mini-computer with a resolution of 2592 × 1944 pixels, as
shown in Figure 1.
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Furthermore, improving the quality and reliability of collected data involved choos-
ing the appropriate sensor type and installing it correctly. Yet, in order to be helpful in 
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cally or manually. To obtain data manually, one must go to the sensor location and utilize 

Figure 1. The experimental setup of the proposed imaging system.

The experimental setup of the proposed imaging system depended on the observation
and analysis of soil color through processing images taken using an algorithm written
in the Python 3.10 programming language. The experiment was undertaken using two
samples of soil (sand soil and peat moss soil) under three different scenarios, as shown in
Figure 2 and Table 1, where every scenario had over 300 sample images. The first scenario
was executed on a dusty day, the second scenario was cloudy, and the last scenario was
sunny. All images in this experiment were taken in real-time through an RPi 4 camera for
processing to decide whether irrigation was required.
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Table 1. Data collection scenarios.

No. of Soil Types per Scenario Exp. Scenario Conditions

1, 2 Dusty
Dry

Wet

1, 2 Cloudy
Dry

Wet

1, 2 Sunny
Dry

Wet

Furthermore, improving the quality and reliability of collected data involved choosing
the appropriate sensor type and installing it correctly. Yet, in order to be helpful in making
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timely and well-informed irrigation decisions, the data needed to be available. Accessing
the data gathered by soil moisture sensors can be performed either automatically or manu-
ally. To obtain data manually, one must go to the sensor location and utilize the integrated
gauges and screens to read the data, or they can connect a reader, laptop computer, or
other portable device to download the data. Since there are fewer data transmission units
with manual access, it is typically less expensive than automatic access. Wireless signal
transmission may be impeded by towering foliage, as shown in Figure 3a. Extending the
antenna may be a solution in this case. With shorter vegetation, signals can be transferred
more easily, as shown in Figure 3b.

Automation 2024, 5, FOR PEER REVIEW 5 
 

 

automatically or manually. To obtain data manually, one must go to the sensor location 

and utilize the integrated gauges and screens to read the data, or they can connect a 

reader, laptop computer, or other portable device to download the data. Since there are 

fewer data transmission units with manual access, it is typically less expensive than auto-

matic access. Wireless signal transmission may be impeded by towering foliage, as shown 

in Figure 3a. Extending the antenna may be a solution in this case. With shorter vegetation, 

signals can be transferred more easily, as shown in Figure 3b. 

Automated data access via websites and mobile applications is available at any time, 

based on wireless data transfer to servers. Nearly real-time monitoring is made possible 

by the databases, which are typically updated every five to thirty minutes. Wireless data 

transfer can occur at the sensor location via a communication tower or at a base station 

that connects to several nodes where sensors are located. Certain producers of drip and 

sprinkler irrigation systems additionally provide the option of connecting soil moisture 

sensors to the irrigation system’s control panel, after which the data, along with other 

details like system pressure and flow rate, are sent wirelessly to servers. 

 
(a) (b) 

Figure 3. Data transmission with (a) Tall vegetation may block the transfer of the wireless signal, 

and (b) Extending the antenna may be a solution in this case (with shorter vegetation, signals can 

be transferred more easily). 

When selecting a wireless data transfer method, keep in mind that tall, thick canopies 

may prevent the antennas from transmitting a signal. In certain situations, longer anten-

nas might be required. There may be situations where even the extended antennas are 

unable to transmit a wireless signal, necessitating the use of additional signal relay capa-

bilities (as well as the related expenditures and equipment). 

3.2. System Framework and Hardware Design 

This paper proposes an automatic irrigation system that recognizes soil images as 

wet or dry. The captured soil image passes through three stages before achieving the clas-

sification result that includes the following: the preprocessing stage, which includes ROI 

detection, segmentation, and storage; and the feature extraction stage. The mean value is 

computed for every channel individually to create a dataset for use in the next stage. Fi-

nally, the classification stage uses a random forest algorithm to classify the soil image. The 

block diagram of the proposed imaging system is shown in Figure 4. The system frame-

work consists of two main parts: the hardware design for capturing images and control-

ling irrigation processes and the software for analyzing soil image color and undertaking 

irrigation control. 

Figure 3. Data transmission with (a) Tall vegetation may block the transfer of the wireless signal,
and (b) Extending the antenna may be a solution in this case (with shorter vegetation, signals can be
transferred more easily).

Automated data access via websites and mobile applications is available at any time,
based on wireless data transfer to servers. Nearly real-time monitoring is made possible
by the databases, which are typically updated every five to thirty minutes. Wireless data
transfer can occur at the sensor location via a communication tower or at a base station
that connects to several nodes where sensors are located. Certain producers of drip and
sprinkler irrigation systems additionally provide the option of connecting soil moisture
sensors to the irrigation system’s control panel, after which the data, along with other
details like system pressure and flow rate, are sent wirelessly to servers.

When selecting a wireless data transfer method, keep in mind that tall, thick canopies
may prevent the antennas from transmitting a signal. In certain situations, longer antennas
might be required. There may be situations where even the extended antennas are unable
to transmit a wireless signal, necessitating the use of additional signal relay capabilities (as
well as the related expenditures and equipment).

3.2. System Framework and Hardware Design

This paper proposes an automatic irrigation system that recognizes soil images as
wet or dry. The captured soil image passes through three stages before achieving the
classification result that includes the following: the preprocessing stage, which includes
ROI detection, segmentation, and storage; and the feature extraction stage. The mean
value is computed for every channel individually to create a dataset for use in the next
stage. Finally, the classification stage uses a random forest algorithm to classify the soil
image. The block diagram of the proposed imaging system is shown in Figure 4. The
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system framework consists of two main parts: the hardware design for capturing images
and controlling irrigation processes and the software for analyzing soil image color and
undertaking irrigation control.
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Figure 4. The block diagram of the proposed imaging system.

The automatic selection of the region of interest (ROI) detection and ROI segmentation
are shown in Figure 5. In an open loop system, the operator makes the decision on the
amount of water to be applied and the timing of the irrigation event. The controller is
programmed correspondingly and the water is applied according to the desired schedule.
Open loop control systems use either the irrigation duration or a specified applied volume
for control purposes. Open-loop controllers normally come with a clock that is used to start
irrigation. Termination of the irrigation can be based on a pre-set time or may be based on
a specified volume of water passing through a flow meter (Boman et al. 2006).
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Figure 5. Detection and segmentation of ROI.

3.2.1. Soil Image Dataset

The entire frame size of the captured image is shown in Figure 5. It was designed
to preprocess and segment only soil samples, considering all soil types (4 planting pots).
These segmented images were stored sequentially to create a dataset including different
soil appearances captured at different times. Using the Hough transform technique [24] to
detect and segment planting pot by replacing the detected circle with a rectangle border,
the center of the detected shape was then taken as a reference point to crop the soil sample
by holding a fixed pixel size around 227 × 180 pixels of detection border as shown in
Figure 5c.

The next step was loading cropped-stored images, as shown in Figure 6, to calculate
the mean values of (R, G, B) and (Y, Cb, and Cr) channels for every single image and
saving these values in Excel format sequentially to create the dataset used in the machine
learning model. The total number of stored images in the overall collected samples was
900 feature rows and 6 columns. The equations below represent the mean value calculations
of all channels.
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The intensity ic was obtained by averaging all image pixel values within the selected
ROI as follows:

ic =
∑x,y∈ROI I(x, y)

|ROI1|
(1)

where I(x, y) is the intensity pixel value at the image location (x, y) and |ROI1| is the size
of the selected ROI for the soil type. Similarly, for Gm, Bm, Ym, Cbm, and Crm channels,
Rm is the red channel. The mean value, k, is the number of image pixels, and rn represents
pixel value.

3.2.2. Soil Image Analysis

In an image processing context, every image is composed of intensity and color that
combine to form an integrated picture. The image color space [25,26] can be classified ac-
cording to the types of channels included, such as RGB, HSV, YUV, CMYK, and YCbCr [27]
color spaces and so on. This study utilized RGB images captured by the Pi 4 camera, which
were converted to YCbCr images to extract three different channels: R (red channel), G
(green channel), and B (blue channel). Also, Y-luminance (luma), Cb (blue-difference), and
Cr (red-difference) can be used for analyzing soil color easily. The soil color brightness
values are affected by different weather conditions, such as dusty, cloudy, and sunny. On
the other hand, the surface color of wet soil is also different from the surface color of dry
soil. These different situations are considered to help us analyze the soil color to estimate if
it needs to be irrigated or not. The brightness effect can be observed in Figure 6 by taking a
histogram for the same sample of peat moss-type soil in the cases of wet and dry, giving
two different mean values.

After that, the ROI of the soil samples was cropped and saved individually and
automatically using an algorithm written in Python 3.10. In the next step, the system
read the stored images to calculate the mean value for each channel individually, which
ranged from 0 to 255 and was computed using the Stat function from the Image Stat library
installed in the virtual Python environment using the PyCharm program.
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The threshold value was selected based on the mean value of each channel of the color
image through the use of over 300 sample images for each scenario under the (wet, dry)
conditions where the total number of image samples became over 900 sample images. This
threshold, for every case, is used as a reference value (collected from 900 sample images) to
compare the real-time computed results for (R, G, B and Y, Cb, Cr) channels with reference
to pre-computed results (R, G, B and Y, Cb, Cr) channels. The threshold values for each
scenario are illustrated in Table 2. Finally, the system works fully automatically by taking
out the soil image in real time and extracting features that compare with the data set feature
to make the irrigation decision.

Table 2. The threshold values under different scenarios.

Soil Type Exp.
Scenario Condition Threshold Value for RGB and YCbCr

Channels, Respectively

Peat moss soil

Dusty

Dry
(146, 90, 57, 87, 106, 161)

Sandy soil (213, 140, 92, 134, 98, 172)

Peat moss soil
Wet

(77, 9, 2, 15, 118, 163)

Sandy soil (45, 39, 6, 30, 110, 136)

Peat moss soil

Cloudy

Dry
(99.58, 96.39, 95.27, 96.43, 127.20, 129.70)

Sandy soil (133.89, 144.22, 146.62, 143.74, 129.98, 122.50)

Peat moss soil
Wet

(51.98, 56.20, 55.99, 55.68, 128.28, 126.09)

Sandy soil (84.41, 90.64, 85.24, 88.43, 125.78, 125.86)

Peat moss soil

Sunny

Dry
(126.38, 127.12, 125.08, 126.3, 126.96, 127.99)

Sandy soil (96.46, 99.26, 102.29, 99.88, 129.82, 126.18)

Peat moss soil
Wet

(84.70, 83.86, 87.57, 85.06, 129.84, 127.79)

Sandy soil (90.74, 87.47, 86.31, 87.45,126.94, 129.67)

From Table 2, the variation of the mean value of the same soil sample in different
scenarios can be observed. For example, the first row of dusty/dry conditions contains
RGB and YCbCr mean values, respectively, of peat moss soil samples, which are different
in cloudy/dry conditions and sunny/dry conditions. This concept is the same in all other
cases caused by variations in the luminance value.

3.2.3. Random Forest Classifier Model

A random forest is a meta-estimator that fits many decision tree classifiers on various
sub-samples of the dataset and uses averaging to improve predictive accuracy and control
over-fitting. The RF classifier model can be applied in the classification stage to recognize
the soil class. The soil training dataset was used as an input feature with their corresponding
classes and the testing dataset, where the output is the soil class in the testing soil dataset.
The RF is considered a suitable machine learning tool with higher stability by combining
multiple de-correlated decision trees, especially when dealing with a large dataset which
consists of a cluster of tree estimators based on a bagging technique using a training
dataset randomly sampled through all tree branches in the forest, where every tree gives an
estimated result which determines the class, as shown in Figure 7. The randomized samples
affect the tree’s construction when selecting the node and the coordinate of dividing the
tree [28]. The RF algorithm mechanism is as follows:

• Drawing M-tree bootstrap samples from the training data.
• For each of the bootstrap sample data entries, growing an un-pruned classification tree.
• At each internal node, randomly selecting an entry from the N predictors and deter-

mining the best split using only those predictors.
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• Saving the tree as-is, alongside those built thus far (not performing cost complex-
ity pruning).

• Forecasting new data by aggregating the forecasts of the M-tree trees.
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RF is ideally suited for the analysis of complex ecological data. RF predictors are
an ensemble-learning approach based on regression or classification trees. Instead of
building one classification tree (classifier), the RF algorithm builds multiple classifiers
using randomly selected subsets of the observations and random subsets of the predictor
variables. The predictions from the ensemble of trees are then averaged in the case of
regression trees, or tallied using a voting system for classification trees. RF is efficient
to support flexible modelling strategies. RF is capable of detecting and making use of
more complex relationships among the variables. RF is unexcelled in accuracy among
current algorithms and does not over-fit. It also generates an internal unbiased estimate
of the generalization error as the forest building progresses. Potential applications of RF
to ecology include the following: classification and regression analysis, survival analysis,
variable importance estimate, and data proximities. Proximities can be used for clustering,
detecting outliers, multiple dimensional scaling, and unsupervised classification. RF can
interpolate missing values and maintain high accuracy even when a large proportion of the
data are missing. RF can handle thousands of input variables without variable exclusion.
It runs efficiently on large databases. RF can also handle a spectrum of response types,
including categorical, numeric, ratings, and survival data. Another advantage of RF is
that it requires only two user-defined parameters (the number of trees and the number of
randomly selected predictive variables used to split the nodes) to be defined. These two
parameters should be optimized in order to improve predictive accuracy. In recent years,
RF has been widely used by ecologists to model complex ecological relationships because
they are easy to implement and easy to interpret.

3.3. Evaluation Metrics

Confusion matrix, accuracy, precision, recall, F1 score, and MCC are a few of the
common assessment measures that were used to assess the RF model’s performance. The
confusion matrix, which displays the quantity of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions, offers a tabular depiction of the
model’s performance. The ratio of correct forecasts to total forecasts is known as accuracy.
The precision, also referred to as a positive predictive value, represents the percentage of
TP forecasts among all of the model’s positive predictions. Recall, often called sensitivity
or TP rate, is the percentage of true positive cases among all TP forecasts. The balance
between accuracy and recovery is captured by the F1 score, which is a harmonic measure
of both. It offers a single metric to evaluate the accuracy and recall of the model at the same
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time. Last, the MCC is a quality metric for binary classification models that takes TP, TN,
FP, and FN predictions into account. It assesses the degree of agreement between the true
and predicted labels overall, with a score of +1 denoting a perfect prediction, 0 a random
prediction, and −1 a total disagreement. The definitions of these variables are as follows:

Accuracy = (((TP + TN)))/(((TP + TN + FP + FN))) (2)

Precision = TP/(((TP + FP))) (3)

Recall = TP/(((TP + FN))) (4)

F1Score = ((2 × (Precision × Recall)))/(((Precision + Recall))) (5)

MCC = (((TP × TN − FP × FN)))/
√

(((TP + FN)(TN + FP)(TP + FP)(TN + FN))) (6)

4. Experimental Results
4.1. Hardware

The Raspberry Pi 4 Model B that was used in this study can be used as a stand-
alone mini-computer, having a Quad-core Cortex-A72 processor (ARM v8) 64-bit SoC
@1.5GHz and 2GB LPDDR4-3200 SDRAM, wireless, Bluetooth 5.0, BLEGigabit Ethernet,
and standard 40 pin GPIO headers. The GPIO 4 pin was used to drive the relay circuit
to activate an AC submersible water pump. The Pi 4 microcontroller is suitable for many
advanced applications because of its small size, efficient interrupt structure, and ease of
programming with open-source Python software (IDE). Also, the Pi can be easily linked
to a computer through an Ethernet cable or wirelessly to receive and transmit data. The
hardware design for the proposed imaging smart irrigation system is shown in Figure 8.
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Figure 8. The hardware design of the proposed imaging system.

The classification result was interpreted as a command sent via the GPIO pin of Pi4
to control the relay driving circuit to turn on/off the submersible water pump through
the irrigation process. The proposed system’s experimental results were achieved using
PyCharm Community Edition 2022.1 supported with library access (OpenCV, NumPy,
Image Stat, pandas, sklearn, and matplot libraries) and implemented in the Raspberry
Pi4 operating system Debian version: 11 (bullseye). The soil state prediction is based on
image gradient familiarity using R, G, B and Y, Cb, Cr information in the RF classifier that
provides an accurate correlation between the tested image and its class. The 900 samples of
the soil color dataset were split with 90% being randomly sampled into the decision trees
for model training and the remaining 10% for testing. The histogram of the wet and dry
case of the same soil sample is shown in Figure 9.
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4.2. Evaluation of the RF Classifier Model

The adopted RF classifier parameters were six input layers per sample image utilized
with 25 tree estimators. The performance of the RF model was evaluated for classifying soil
images into six classes as shown in Table 2. The color intensity data for RGB and YCbCr
from each soil’s selected ROI were collected and recorded in an Excel file named “train.csv”
to assess the acquired data. First, to assess how well a classification model was performing,
a confusion matrix was used to compare the actual results to the predictions made by the
RF model, as shown in Figure 10.

Automation 2024, 5, FOR PEER REVIEW 11 
 

 

 

Figure 9. The histogram of the wet and dry case of the same soil sample.  

4.2. Evaluation of the RF Classifier Model 

The adopted RF classifier parameters were six input layers per sample image utilized 

with 25 tree estimators. The performance of the RF model was evaluated for classifying 

soil images into six classes as shown in Table 2. The color intensity data for RGB and 

YCbCr from each soil’s selected ROI were collected and recorded in an Excel file named 

“train.csv” to assess the acquired data. First, to assess how well a classification model was 

performing, a confusion matrix was used to compare the actual results to the predictions 

made by the RF model, as shown in Figure 10. 

 

Figure 10. Confusion matrix for testing data. 

Figure 10 provides insights into the model’s ability to predict each class correctly for 

all six cases of both soil types in the different categories of “dusty”, “cloudy”, and “sunny” 

with a prediction accuracy of 0.921. Furthermore, it is possible to compute a number of 

performance indicators using the values given from the confusion matrix, including pre-

cision, recall, F1 score, and MCC. These indicators offer several viewpoints on how well a 

categorization model is performing. The precision provides a broad indication of correct-

ness with an accuracy of 0.92 and an F1 score of 0.91, which compromises between 

Figure 10. Confusion matrix for testing data.

Figure 10 provides insights into the model’s ability to predict each class correctly for
all six cases of both soil types in the different categories of “dusty”, “cloudy”, and “sunny”
with a prediction accuracy of 0.921. Furthermore, it is possible to compute a number of per-
formance indicators using the values given from the confusion matrix, including precision,
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recall, F1 score, and MCC. These indicators offer several viewpoints on how well a cate-
gorization model is performing. The precision provides a broad indication of correctness
with an accuracy of 0.92 and an F1 score of 0.91, which compromises between precision
and recall, whereas the MCC of 0.9 reflected a strong positive correlation, suggesting that
RF was a highly effective classification model in this application.

An illustration of the trade-off between recall and precision for a classification model
at different thresholds is a Precision-Recall (PR) curve. The PR curve is an evaluation metric
that works with unbalanced datasets when one class is significantly more abundant than
the other. This is important because even high accuracy may not signify anything if the
model can only predict the majority class in imbalanced datasets. On the other hand, PR
curves let the viewer comprehend how well the model performs in comparison to the
minority class. Figure 11 illustrates the PR curve for different classification thresholds.
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Figure 11. PR Curve on the proposed created dataset.

A Receiver Operating Characteristic (ROC) curve is another curve to illustrate how
well the model can distinguish between different classes. When a discriminating threshold
is changed, the ROC curve visually depicts the trade-off between the true positive rate
(sensitivity) and false positive rate (specificity) for a binary classification system. It is a
useful tool to assess how well a classification model performs at different threshold settings.
Figure 12 illustrates the ROC curve for different classification thresholds.
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The histogram of predicted probabilities for all six classes is illustrated in Figure 13,
providing insights into the distribution of model confidence scores. Plots of histograms
display the distribution of the expected values. The intended outcome is well-defined
forecasts that are near 0 or 1, signifying a strong likelihood for any of the two groups. The
dataset yielded highly precise estimates, with nearly all probabilities falling between 0 and
1. Even if there is a backdrop of predictions across the range, here the first class generated a
larger frequency of probability near 0 or 1 than the other classes.
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The bar chart in Figure 14 represents the importance of each feature in the RF model.
Features are sorted in descending order based on their contribution to the model’s decision-
making process, where the soil image features such as Cr-channel and Cb-channel are the
most dependent in the classification process rather than (R, B, G, and Y) channels via the
RF classifier.
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The box plot in Figure 15 illustrates the distribution of a specific feature between
different classes, offering insights into the feature’s discriminatory power.

Automation 2024, 5, FOR PEER REVIEW 14 
 

 

 

Figure 14. Feature importance. 

The box plot in Figure 15 illustrates the distribution of a specific feature between dif-

ferent classes, offering insights into the feature’s discriminatory power.  

 

Figure 15. Box plot of feature distribution among classes. 

5. Conclusions 

This study explored the feasibility of using computer vision technology to evaluate 

an automatic soil irrigation system by extracting soil sample images in real-time using a 

Raspberry Pi4 camera in an agricultural environment and classifying these images to iden-

tify whether the soil needs to be irrigated or not. In other words, the need for soil irriga-

tion, while taking into consideration the cost, soil type, and weather conditions, is deter-

mined by directly analyzing the soil color using a real-time smart imaging system. 

The implementation results were satisfactory and achieved the goal of this study, 

although it presents some limitations, such as the need to implement the experiment on 

bare ground or locations such as orchards of trees or nurseries of seedlings rather than 

fields of wheat and barley or similar agricultural applications. Four different soil samples 

were utilized in this study, two with different types of peat moss soil and others with 

Figure 15. Box plot of feature distribution among classes.

5. Conclusions

This study explored the feasibility of using computer vision technology to evaluate
an automatic soil irrigation system by extracting soil sample images in real-time using
a Raspberry Pi4 camera in an agricultural environment and classifying these images to
identify whether the soil needs to be irrigated or not. In other words, the need for soil
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irrigation, while taking into consideration the cost, soil type, and weather conditions, is
determined by directly analyzing the soil color using a real-time smart imaging system.

The implementation results were satisfactory and achieved the goal of this study,
although it presents some limitations, such as the need to implement the experiment on
bare ground or locations such as orchards of trees or nurseries of seedlings rather than
fields of wheat and barley or similar agricultural applications. Four different soil samples
were utilized in this study, two with different types of peat moss soil and others with sandy
soil where the color was slightly different, but every type gave a different mean value
based on RBG, YCbCr channel analysis. The proposed system can be installed individually
in an environment by providing a power source covering the Pi4 requirement and that
of the water pump switch, where the Pi4 is responsible for implementing the software
and controlling irrigation. Significant power savings are possible by putting the system
into sleep mode and only waking it twice a day, which would allow a small solar cell and
battery to provide power for the computer and pump control electronics. In future work,
the Raspberry Pi should be connected to a network via Wi-Fi to allow remote monitoring
and control, and additional soil moisture and humidity sensors could be used to achieve
larger training datasets and a lower need for supervision. Hence, for future direction, it
is recommended to use the capabilities and availability of cheaper, more sensitive, and
sophisticated sensors for gases, particulates, water quality, noise, and other environmental
measurements. These types of sensors have improved and are enabling researchers to
collect data in unprecedented spatial, temporal, and contextual detail, optimize irrigation
algorithms, and/or explore applications beyond traditional agriculture.
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