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Abstract: This paper presents a quasi-static model-based control algorithm for controlling the motion
of a soft robotic exo-digit with three independent actuation joints physically interacting with the
human finger. A quasi-static analytical model of physical interaction between the soft exo-digit and a
human finger model was developed. Then, the model was presented as a nonlinear discrete-time
multiple-input multiple-output (MIMO) state-space representation for the control system design.
Input–output feedback linearization was utilized and a control input was designed to linearize the
input–output, where the input is the actuation pressure of an individual soft actuator, and the output
is the pose of the human fingertip. The asymptotic stability of the nonlinear discrete-time system for
trajectory tracking control is discussed. A soft robotic exoskeleton digit (exo-digit) and a 3D-printed
human-finger model integrated with IMU sensors were used for the experimental test setup. An
Arduino-based electro-pneumatic control hardware was developed to control the actuation pressure
of the soft exo-digit. The effectiveness of the controller was examined through simulation studies
and experimental testing for following different pose trajectories corresponding to the human finger
pose during the activities of daily living. The model-based controller was able to follow the desired
trajectories with a very low average root-mean-square error of 2.27 mm in the x-direction, 2.75 mm in
the y-direction, and 3.90 degrees in the orientation of the human finger distal link about the z-axis.

Keywords: wearable robots; soft robotic hand exoskeleton; physical human–robot interaction;
feedback control; quasi-statics model; nonlinear discrete-time system

1. Introduction

Every year, 800,000 people suffer a new stroke in the United States (this number glob-
ally is 13,000,000) [1]. Stroke remains the leading cause of long-term disability in the human
upper extremities (more than 80%), and only 10% can regain partial mobility [2]. Clinical
studies have shown that early access to physical and occupational therapy interventions
with intensive/repetitive movements, such as continuous passive motion (CPM), help
restore functionalities in the impaired hand of post-stroke individuals [3]. However, the
lack of patient compliance and limited availability of resources and therapists hinders the
efficacy and effectiveness of these approaches. On the other hand, robotic systems are
very effective in performing repetitive and labor-intensive tasks. Several robotic devices
have been developed and studied for upper limb rehabilitation [4]. Particularly, wearable
robots for upper-body rehabilitation and physical assistance have benefited from intrinsic
mechanical compliance inherited in soft robotic approaches. This feature makes them
suitable for safe physical interaction with the human body [5,6]. Additionally, soft wearable
robots for upper limb rehabilitation address the limitations of their rigid counterparts
(i.e., conventional rigid robots), including complex mechanisms, heavy weight, lack of
safety, and cost [7–11]. More than 50 soft exoskeletons have been developed over the past
15 years for hand rehabilitation [12,13]; these robots still provide limited capabilities for
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interacting with the human hand due to their simple control schemes, primarily based on
the kinematics of robots [14,15].

There has been significant progress in designing and developing robotic hand ex-
oskeletons for rehabilitation, and assistive tasks (more than fifty soft hand exoskeletons
have been developed over the past 15 years [12,13,16]). Soft robotics provides potential
solutions to address the complex mechanisms, heavy weight, bulky size, high cost, and
safety issues involved in conventional (rigid) robots [4,9,13,17–20]. Three major groups of
soft robotic hand exoskeletons have emerged: (1) fluid-actuated elastomeric/textile-fabric
robots (e.g., the pneumatic artificial muscle-based gloves [15,21], Harvard’s soft robotic
glove [9,22], fabric-based gloves [23–25], elastomeric gloves [26–30]); (2) cable/tendon-
driven robots (e.g., GraspyGlove [31], and Exo-Glove Poly [32,33]); and (3) hybrid soft-
and-rigid robots (e.g., REHAB Glove developed at UTARI [10,11,14,34], Exo-Glove PM [35]
developed at SNU, and SeptaPose Assistive and Rehabilitation (SPAR) developed at Rice
University [20]). Despite the simple mechanisms of the exoskeletons in group 1, their
major drawbacks are the low generated force/torque and the lack of controllability over
distinct human finger joints [6,11,20,36]. On the other hand, cable/tendon-driven mecha-
nisms [31–33,37–45] generate higher force/torque; however, friction and backlash effects,
as well as the need to maintain constant tension for the tendons, are some of the challenges
for their control [46]. Hybrid designs, combining soft components with partially rigid
structures, have recently emerged and been studied to address the shortcomings of other
exoskeletons [11,20,35,36,47,48]. These designs have individual joint control to some extent,
bidirectional motion, and can move freely in 3D space. However, their control functionality
is rather limited for a wide array of real-world scenarios [19,20].

Well-known control techniques used in robotics have mainly been derived for rigid
multibody systems with a limited number of degrees of freedom (DoF) in order to accom-
plish specific and repetitive tasks. However, these techniques are not directly applicable
to control soft robots due to their continuously deforming nature, large deformation,
and nonlinearity in both materials and geometries, leading to complex kinematics and
dynamics [7,8,49,50]. Even with recent extensive studies and promising results in soft
robots’ control, particularly bio-inspired soft robotic arms [51], the control of soft wear-
able robots (e.g., hand exoskeletons) is still limited to simple control schemes such as
open-loop, model-free, and low-level sensor-enabled closed-loop control [8,9,36,52–54].
Current control algorithms are mainly designed from the perspective of robotic exoskele-
ton operation to apply the desired position/force to the human hand for gross motion
and grasp. Low-level feedback control algorithms have been introduced by integrating
internal/external sensors into soft robots, which helps to partially correct their dynam-
ical responses in real time [7,9–11,13,55–58]. A proportional-integral position controller
was used for the power-assisted glove to assist functional grasping activities for stroke
survivors [15]. A model-free sliding-mode controller was used to regulate the pressure
applied to the soft actuators [9] in Harvard’s robotic glove. Although these model-free
techniques [59] eliminate the explicit need for the dynamic model of these highly compliant
systems, their performance strongly depends on the consistency and robustness of the
system, making their successful implementation limited to repetitive tasks. Tang et al.
proposed a probabilistic model-based learning control approach to address the challenges
with model-based control approaches while learning through the human-robot interaction
to perform tasks [52]. Some exoskeletons used impedance/admittance of the tendon-driven
mechanism as the basis of control. Jeong et al. [38] proposed a position-based impedance
control (admittance control) for the Exo-Glove with soft tendons [32], which made the
tendons act as a virtual compliant spring; however, it does not provide individual control
for each joint. Studies have shown that abnormalities in impedance and motor control may
vary from joint to joint such that independent control of each joint through the exoskeleton
may be beneficial for an effective operation [60]. Human intents, as reference inputs, have
been integrated to guide the operation of exoskeletons [9,15]. Biological sensors, such as
surface electromyography (sEMG) [9,15,20,43,59,61,62] and electroencephalography (EEG);
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motion sensors, such as inertial measurement units (IMUs) [10,14], electromagnetic track-
ing [9], and infrared distance sensors [31]; internal pressure and tactile force sensors; or
a combination of these sensors [15] have been used. Though these approaches provide
intuitive gross hand and finger motion control, the aforementioned algorithms are mainly
for a pure sensor-based position or grip force control, which lacks the required hybrid
force-position-based dexterous manipulation to perform fine motor skills. Additionally,
extensive reviews of literature on soft robotic hand exoskeletons [52–54,63] have shown
that current control algorithms do not consider multi-joint control and the multi-contact-
point interaction of the human fingers and the interaction of soft wearable robots, thereby
impeding the achievement of complex fine motor functional tasks. Thus, a new control
paradigm from a human-robot interaction perspective (i.e., a bilateral approach to facilitate
performing collaborative tasks) is needed to take into account the physical interaction
between the soft robot and the human hand.

The effective operation of soft robotic hand exoskeletons for physical therapy and
assistive motion requires the utilization of a multi-joint control scheme that takes into
account the physical interactions between the robot and the human hand [34,64,65]. The
highly nonlinear nature of soft robots’ dynamics and control, along with the complexity
of pHRI and users’ biomechanical variation, have impeded the research related to soft
wearable robots’ control [8,64,65]. Some early works in this field have developed dynamic
models and simple control algorithms for soft pneumatic actuators in the form of a contin-
uous fluidic elastomer actuator (FSA) [66,67]. Physical interactions between an FSA and
a human finger model were experimentally studied [66] using tactile sensors embedded
between the human finger model and the soft robot. In another work, the interactions of a
fabric-based pneumatic exoskeleton with a human finger were studied through modeling
and experimental validation [35]. None of these works has considered multi-contact-point
interaction between the soft robotic digit and the human finger. Our previous work in-
cludes extensive studies of design, modeling, and kinematic-based control algorithms on a
hybrid soft-and-rigid actuator-based hand rehabilitation robot (REHAB Glove) [10,11,34];
modeling and characterization of physical human-robot interaction (pHRI) in wearable
soft hand robots [68,69]; a kinematic-based adaptive control of a bilateral rehabilitation
robot [14]; and simulation-based quasi-static force and position control [70]. In our re-
cent work, single-input single-output (SISO) quasi-static model-based adaptive position
control of soft exo-digit and the human finger physical interaction was developed and
experimentally verified for a step input and trajectory tracking cases [63].

This work presents a multi-joint quasi-static model-based control algorithm for con-
trolling the motion of a soft robotic exoskeleton digit (exo-digit) with three individually
controlled joints while physically interacting with the human finger. The contributions of
this work are listed as follows,

• Analytical modeling formulation of quasi-static physical interaction between the
human finger model and a soft robotic exo-digit with individually controlled joints
was derived.

• A feedback linearization control algorithm was derived for a nonlinear discrete-time
multiple-input multiple-output (MIMO) state-space representation.

• The feedback linearizability and stability conditions of the nonlinear discrete-time
state-space model of soft exo-digit and human finger physical interaction were studied.

• Experimental testing of the soft exo-digit interacting with a human finger model for
tracking a desired trajectory was carried out.

The structure of this paper is set as follows: The quasi-static analytical model is derived
in the Section 2 with the forward and inverse kinematics formulations of the human finger
model and the Jacobian of each model. Section 3 presents the nonlinear discrete-time
state-space model of a soft robot and the human finger physical interaction. Additionally, a
model-based control law was derived based on the input-output feedback linearization
for trajectory tracking of the human fingertip pose while assisted by the soft exo-digit.
Section 4 describes the implementation of the electro-pneumatic control system hardware
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for testing the trajectory tracking cases, and finally, Section 5 discusses the results obtained
from simulations and experimental testing, which validated the presented model-based
controller.

2. Quasi-Static Model of Physical Human-Soft Robot Interaction

The physical interaction between a human finger and a soft-wearable robot is studied
using a model of soft robotic exo-digit and a corresponding human finger model, as shown
in Figure 1a. Continuous passive motion (CPM) therapy is the main application of this
human-robot interaction. In CPM, the robot actively applies slow, repetitive motions to the
user’s hand while the user is passive. Thus, the physical interaction can be modeled as a
quasi-static process. The soft robotic exo-digit consists of three soft continuous actuating
sections (i.e., half-bellow shape hollow structures) representing the joints of the soft-bodied
robot and four semi-rigid blocks linked through those pseudo joints. The human finger
is modeled as an articulated rigid multi-body with three revolute joints representing the
metacarpophalangeal (MCP), proximal interphalangeal (PIP), and distal interphalangeal
(DIP) joints of the human finger. Rotational (torsional) springs are integrated at each joint of
the human finger model to replicate the biomechanical stiffness of the human joints. The
torsional springs are selected from the vendor with a stiffness of k1h = 5.9× 10−4 N·m/deg,
k2h = 3.83× 10−4 N·m/deg, and k3h = 1.07× 10−4 N·m/deg for MCP, PIP, and DIP joints,
respectively. The semi-rigid links of the soft robotic exo-digit are attached to the links of
the human finger model (as shown in Figure 1a), where the physical interaction occurs; see
Figure 1b. Frames are attached to each soft-bodied link to describe the kinematic motion
of each segment. The quasi-static interaction of the soft robotic digit and the human finger
model were decoupled to derive the equations of motion (balance) for each body where the
physical interaction (contact forces) is distributed along the length of the two bodies. It is
assumed that the reaction force between the human finger and the soft robotic digit happens
at the center of each link and is dominant in the direction normal to the soft-bodied links.
Figure 2 shows the workspace of the human finger model and the soft exo-digit. In both
cases, the joint angles range from 0–90◦ for MCP, 0–100◦ for PIP, and 0–70◦ for DIP, and the
link length is measured by the distance from one joint to another. The biomechanical range
of motion of a human finger served as the basis for setting these ranges.

Figure 1. (a) Physical setup of a soft robotic exo-digit and a 3D-printed human finger model and (b) a
schematic of the soft robotic digit interacting with a human finger.

From Figure 2 it can be seen that the shape of the workspace for both the human finger
model and the soft exo-digit is the same.
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Figure 2. Workspace of the human finger model and the soft exo-digit.

2.1. Kinematics of the Human Finger Model

The human finger was modeled as a serial kinematic chain of three moving rigid links
and a fixed-base link with a single-degree-of-freedom hinge joint connecting adjacent links
as shown in Figure 1. The motion of the joints is described by qH = [qH,1, qH,2, qH,3]

T .
The forward kinematics of the human finger model, L(qH), can be described similar to
a classical planar three-link robotic arm where the pose of the tip of the human finger,
(x, y, θ), with respect to the reference frame is given as follows,

x = 2`1c1 + 2`2c12 + `3c123 (1)

y = 2`1s1 + 2`2s12 + `3s123 (2)

θ = qH,1 + qH,2 + qH,3 (3)

where the following notations are used in the entire paper for sine and cosine functions,
si = sin(qi), ci = cos(qi), sij = sin(qi + qj), cij = cos(qi + qj), sijk = sin(qi + qj + qk), and
cijk = cos(qi + qj + qk).

Additionally, the Jacobian matrices, JH,i, which map the joint velocities q̇H to the linear
υH,i and angular ωH,i velocities of each link can be obtained as

υ̂H,i = [vHy,i vHx,i ωHz,i]
T = JH,iq̇H (4)

JH,1 =

−`1s1 0 0
`1c1 0 0

1 0 0

 (5)

JH,2 =

−2`1s1 − `2s12 −`2s12 0
2`1c1 + `2c12 `2c12 0

1 1 0

 (6)

JH,3 =

−2`1s1 − 2`2s12 − `3s123 −2`2s12 − `3s123 −`3s123
2`1c1 + 2`2c12 + `3c123 2`2c12 + `3c123 `3c123

1 1 1

 (7)

where υ̂H,i is a vector that combines the planar linear and angular velocity components, `i
is the length of ith link. Note these Jacobian matrices are derived for the center point of
each link where the interaction force applies.
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2.2. Coupled Human–Robot Interaction Quasi-Static Model

The multi-contact points quasi-static models of the human finger and the soft robotic
exo-digit, developed separately, are presented here. For simplifying the form of equations,
the contact forces, expressed in the reference frame, are written in terms of body-fixed
frames as follows: fRH,i = 0

iR
ifRH,i and fHR,i = 0

iR
ifHR,i where ifRH,i = −ifHR,i =

[0, fi, 0]T are the contact forces expressed in the body frame {i}. Introducing a special
human–robot contact force vector of f∗RH = −f∗HR = [ f1, f2, f3]

T , which combines the body-
fixed frame forces, the quasi-static equations can be written in the following compact form,
where the quasi-static equations for the human finger model are defined as follows:

KHqH − (J∗H)
Tf∗RH = 0 (8)

where the special Jacobian matrix (J∗H)
T and the joint stiffness matrix KH are defined

as follows:

(J∗H)
T =

`1 `2 + 2`1c2 `3 + 2`2c3 + 2`1c23
0 `2 `3 + 2`2c3
0 0 `3

,

KH =

k1h 0 0
0 k2h 0
0 0 k3h

.

Similarly, the quasi-static equations for the soft robotic exo-digit are defined as

τ(qR) + BRp− (J∗R)
Tf∗HR = 0 (9)

where

(J∗R)
T =

e11 e12 e13
0 e22 e23
0 0 e33



e11 =
ˆ̀1

q2
1
(1− c1) + d1 e22 =

ˆ̀2

q2
2
(1− c2) + d2 e33 =

ˆ̀3

q2
3
(1− c3) + d3

e23 =
d3q2

2q3 + ˆ̀2q3c3 + ˆ̀3q2
2s3 − ˆ̀2q3c23 − ˆ̀2q2q3s3 + 2d2q2

2q3c3

q2
2q3

e12 = d2 + 2d1c2 + c12(ζ1 + ζ3) + s12(ζ1 − ζ3)

e13 = d3 + 2d2c3 + 2d1c23 + c123(ζ4 + ζ1 + ζ3) + s123(−ζ5 + ζ2 − ζ3)

ζ1 =
ˆ̀1(c1 + q1s1 − 1)

q2
1

ζ2 =
ˆ̀2(s1 − q1c1)

q2
1

ζ3 =
ˆ̀2(c12 − c1)

q2

ζ4 =
ˆ̀3(s123 − s12)

q3
ζ5 =

ˆ̀3(c123 − c12)

q3

and p = [p1, p2, p3]
T is the actuation pressure vector (control inputs), and BR is a diagonal

matrix of the first moment of the cross-section area of each soft segment where the internal
pressure actuation pi acts on them,

BR =

rp1 Ap1 0 0
0 rp2 Ap2 0
0 0 rp1 Ap3

.

It is obvious that both upper triangular special Jacobian matrices (J∗H)
T and (J∗R)

T

are invertible by assuming q 6= 0. Now, Equations (8) and (9) are combined to derive a
collective model for pHRI. The combined model will be used for the control algorithm
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development. Eliminating the force vectors, f∗RH and f∗HR between Equations (8) and (9)
with qR = qH = q yields

τ(q) + BRp− (J∗R)
T(J∗H)

−TKHq = 0 (10)

which represents the coupled quasi-statics of the human–robot model. The torque term is
given as τ(q) = [τs1(q1), τs2(q2), τs3(q3)]

T , where

τsi(qi) =
∑13

k=0 ab,kqk
i

∑7
j=2 bb,jq

j
i

+
∑17

k=0 ah,kqk
i

∑12
j=2 bh,jq

j
i

+
∑14

k=1 at,kqk
i

∑8
j=0 bt,jq

j
i

. (11)

The coefficients of the polynomials of the rational functions in Equation (11) are given
in the Appendix file of the Supplementary Materials folder. Note that these coefficients are
functions of material properties (i.e., the Yeah third-order hyperelastic model [11]) and the
geometry of the soft actuator segments).

3. Feedback Linearization Control
3.1. Nonlinear Discrete-Time State-Space Representation

Control problem: a square multiple-input multiple-output (MIMO) tracking control
problem is considered here such that the pose of the human fingertip (i.e., (x, y, θ)) follows
the reference inputs using the soft robotic exo-digit. For this purpose, the coupled quasi-
static equation, shown in Equation (10), can be written into a nonlinear discrete-time
state-space form with affine control as follows for position control,{

xk+1 = f(xk) + ∑3
j=1 gj(xk)pj

k
yk = h(xk)

(12)

where xk = q(k) is the state vector at time index k, pj
k is the jth control input at time index

k in pk = [p1
k , p2

k , p3
k ]

T , and the targeted output vector yk = h(xk) is defined as the position
vector of the human fingertip [x(k), y(k)]T = L(xk), given in Equations (1) and (2), and
the bending of the human finger distal end (i.e., θ(k) = x1

k + x2
k + x3

k). f(xk) and gj(xk) are
given as follows:

f(xk) = ((J∗R)
T(J∗H)

−TKH)
−1τ(xk) (13)

and
G(xk) = [g1, g2, g3] = ((J∗R)

T(J∗H)
−TKH)

−1BR. (14)

We assume that there is an equilibrium point (xe
k, pe

k) that satisfies xk+1 = 0 in
Equation (12).

3.2. Input–Output Feedback Linearization

Using the notion of input–output linearization [71,72], the discrete derivative of the
output yk in Equation (12) yields

yk+1 =
∂h(xk)

∂xk
f(xk) +

3

∑
j=1

∂h(xk)

∂xk
gj(xk)pj

k

= Lfh(xk) +
3

∑
j=1

Lgj h(xk)pj
k (15)

where

Lfh(xk) =
∂h(xk)

∂xk
f(xk)
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and

Lgj h(xk) =
∂h(xk)

∂xk
gj(xk) j = 1, 2, 3

are Lie derivatives of h(xk) with respect to the field functions f(xk) and gj(xk), respectively.
A remarkable result from the work by Jayaraman and Chizeck [73] has shown that a
nonlinear discrete-time system like Equation (12) with dimension n is feedback linearizable
if it has vector relative degree {r1, . . . , rm}, where m is the dimension of the control input
pk, such that r1 + r2 + · · ·+ rm = n. Note that the MIMO system has a uniform relative
degree of one given that Lgj h(xk) 6= 0 in Equation (12) for j = 1, 2, 3 in the neighborhood
of xe

k. The details of analysis on the value of Lgj h(xk) and its variation with respect to the
configuration space (q1, q2, q3) of the soft exo-digit are given in Appendix A.

The goal is to find a coordinate transformation, zk = T(xk) and a feedback control pk =
γ(xk, υk) to linearize Equation (12) for the mapping between the inputs and outputs for the
trajectory tracking problem. Thus, zk = yk − yd

k , i.e., the trajectory tracking error, is selected
where yd

k is the vector of the reference inputs (i.e., the desired outputs) which the human
finger controlled by the soft exo-digit must follow. Given the discrete derivative of zk,

zk+1 = yk+1 − yd
k+1, (16)

and substituting Equation (15) into Equation (16) yields the new state space model in the
new coordinates expressed by a set of scalar equations for i = 1, 2, 3 given as follows:

zi
k+1 = Lfhi(xk) +

3

∑
j=1

Lgj hi(xk)pj
k − yd,i

k+1 (17)

if the inverse of LGh(xk),

LGh(xk) =
∂h(xk)

∂xk

[
g1(xk), g2(xk), g3(xk)

]
(18)

exists, then the control input vector (pk) (i.e., the actuation pressure of the soft segments)
can be derived as a nonlinear state feedback control [73],

pk = L−1
G h(xk)

(
−Lfh(xk) + υk + yd

k+1

)
(19)

to linearize the input–output map which transforms Equation (12) to its equivalent linear
system as follows:

zk+1 = υk. (20)

Invertibility of Equation (18) is shown in Appendix A. The additional control input υk
will be defined by a linear full-state feedback control as follows:

υk = −Kυzk, (21)

where Kυ ∈ R3×3 is a diagonal feedback gains matrix. Choosing Kυ to be positive-
definite guarantees exponentially asymptotic stability of the input–output linear system,
Equation (20), and consequently, guarantees the stability of the original nonlinear state-
space system, Equation (12), to follow the reference signal yd

k . The control block diagram is
shown in Figure 3.
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Figure 3. Feedback linearization control block diagram for pressure-based pose control.

4. Control System Implementation

An electro-pneumatic control system was developed to examine the model-based
control algorithms derived in Section 3. The control system is based on modulating the
actuation pressure, where the control action will be determined based on the error between
the desired trajectories (pose of the finger distal end) and the actual feedback (i.e., deter-
mined through IMU sensors reading and the forward kinematics of the human finger) as
shown in Figure 4a. An Arduino (Arduino, MEGA 2560, Arduino LLC, Piscataway, NJ,
USA) is used as the microcontroller for controlling the overall operation, receiving sensing
information, and transmitting control commands based on the control algorithms. Four
inertial measurement units (IMUs, 6-DOF, 3 Gyros and 3 Axes Accelerometer, DFRobot,
San Francisco, CA, USA) are integrated into the rigid links of the human finger model
(one at the fixed base as the reference and the other three in each moving link) to measure
the angular position and velocity of moving links and determine the joint positions and
velocities. An algorithm combines the gyro and accelerometer measurement to calculate a
stable angular position with very low drift. Additionally, in-line pressure sensors (ASDX-
ACX030PG, Honeywell, Richardson, TX, USA) are used for measuring the internal pressure
of each soft actuator segment. The output of the IMU sensors is used to determine the pose
of the fingertip based on the forward kinematics of the human finger model expressed in
Equations (1)–(3). The actual poses were compared against the desired input to calculate
the errors which are used in the position control law to determine the actuation pressures
of each individual soft joint. The final control action (air pressure p) is obtained by a com-
bination of change in actuation pressure/vacuum (∆p), and the current internal pressure
(pc) measured by in-line pressure sensors, p = pc + ∆p, where the pressure change (∆p) is
associated with the tracking error and quasi-static model of the human-robot interaction
and will be determined by Equation (19). A PWM control scheme was used, as shown
in Figure 4b, through an Arduino to control the opening and closing cycles of three-way
solenoid valves proportional to the input control value for achieving the pressure change.
A two-way valve is integrated into the exhaust port of each three-way valve to control
the pressure relief process. A PWM signal was sent to the two-way valves for closing and
opening. Note that the positive change in pressure leads to pressurizing the soft actuator
while the negative change in pressure causes vacuuming (or air bleeding). Each soft ac-
tuator segment (soft exo-digit module) is individually controlled, while their collective
controlled actuation leads to tracking the desired movement of the human finger by the
soft exo-digit. Table 1 provides the description and justification of each component used in
the experiment.

Figure 4c shows the actual electro-pneumatic board, the soft-robotic exo-digit, and the
human finger model experimental setup with each component labeled according to the
corresponding number in Table 1.
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Figure 4. (a) Control system block diagram for pressure-based pose control and (b) schematics of
the electro-pneumatic diagram with control components and (c) the actual control setup where each
component labeled according to the corresponding number in Table 1.
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Table 1. Description of the experimental components.

No. General
Name Specification Amount Description Justification

1. Arduino MEGA
2560 1

Controls overall
operation, receives and
transmits commands
using control algorithms

Provides 5 V power to
the I/O pin necessary
to operate the valves

2. 3-way
valve FA0520E 3

Provides proportional
input control value
(pressurized air) to
achieve the pressure
change

Suitable for the logic
of the system

3. 2-way
valve FA0520D 3 Controls the pressure

relief process
Suitable for the logic
of the system

4. Pressure
sensor

MPRLS,
Honeywell 3

Measures the internal
pressure of each soft
actuator segment

Suitable to measure
inside air pressure of
the tube

5. IMU 6-DOF
MPU6050 4

Measures the angular
position and velocity of
moving links

Provides enough data
for planar finger
motion’s angular
position and velocity
calculation

6. I2C Mul-
tiplexer TCA9548A 1

Connects the pressure
sensors and the IMUs
with the Arduino

Ideal for IMU,
pressure sensor, and
Arduino with I2C
interface
communication

7. MOS
module

HM MOS
module 6 Turns on and off the

3-way and 2-way valves
Suitable for the logic
of the sytem

8. Finger
model

Human
finger
model

1
3D-printed human finger
model that interacts with
the soft exo-digit

Remains passive,
provides only resistive
reaction force to the
soft exo-digit’s motion,
ideal for testing
current control
algorithm

9. Robotic
exo-digit

Soft
silicone
exo-digit

1
Soft silicone module
fabricated with RTV
silicone rubber

Suitable for safe
physical interaction
with human body

5. Results and Discussion
5.1. Analysis of the Control Law

The control law obtained for the actuation pressure of the soft robotic exo-digit ex-
pressed in Equation (19) was examined for the configuration space of the robot where
yd

k+1 = 0. This examination provides insights into how the controlled pressure of each soft
actuator segment varies with respect to the variation of joint angles q = [q1, q2, q3]

T . Note
that the actual movement of the soft robotic exo-digit along with the human finger (i.e.,
particularly the pose of the tip of the finger) in the Cartesian space will be corresponding
to a subset of this full configuration space of the soft robot. Understanding the overall
behavior of required control pressure helps to better determine the constraints on the
physical human–robot interaction and the design of the control system for experimental
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testing. As mentioned before, the range of each joint angle is set based on the biomechanical
range of motion of the human finger (MCP: 0–90◦, PIP: 0–100◦, and DIP: 0–70◦). The plots
are provided for each actuation pressure in Figures 5–7. The color variation in these plots
corresponds to changes in pressure, with blue indicating the lowest pressure and yellow
indicating the highest. The exact pressure values can be determined from the vertical line on
the right side of each figure. It is shown that the pressure actuation for the first joint varies
with respect to the change of all three joint angles, although this behavior is different for
the other two joints where they are independent of the variation of q1 (see Figures 6 and 7).
Additionally, for the third joint actuation pressure p3

k , it seems its value does not depend on
the variation of the second joint angle q3. These trends are consistent with the coupling in
the quasi-static model of the soft robotic exo-digit and the human finger interaction, where
most of the matrices are upper-triangles that make the third joint to be decoupled from the
other two joints, and consequently, the second joint is only coupled with the third joint. In
contrast, the first joint is coupled with both the second and third joints as it is expected.
Additionally, Figure 5 shows that the actuation pressure for the first joint becomes constant
(i.e., it is independent of the variation of the other two joints) after a certain value of the
second joint (q2). The threshold for the start of the constant pressure region decreases (i.e.,
it occurs at a lower q2) with an increase in the first joint angle (q1). The reason for this
behavior could be due to the counter-effect of the second and third joint motions and their
coupled quasi-static torque reactions after reaching certain joint angles that decouples the
effect of the last two joint motion from the actuation pressure of the first soft actuator.

Figure 5. Variation of the pressure of the first soft actuator segment with respect to the configuration
space of the soft robotic exo-digit.
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Figure 6. Variation of the pressure of the second soft actuator segment with respect to the configura-
tion space of the soft robotic exo-digit.

Figure 7. Variation of the pressure of the third soft actuator segment with respect to the configuration
space of the soft robotic exo-digit.
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5.2. Trajectory Tracking of the Desired Fingertip Pose in Simulation

In this part, we theoretically examined the performance of the controller by following
the desired fingertip pose for two different trajectories. Figure 8a shows the desired
path (xd and yd) of the fingertip in Cartesian space, and the corresponding joint angles
(motions) are depicted in Figure 8b. The path is arbitrary, but we considered a smooth curve
function. Based on the latter, we can determine the desired orientation of the fingertip (i.e.,
θd = q1 + q2 + q3). The desired continuous trajectories (xd, yd, and θd) are discretized into a
series of discrete points, and the collective set of these values was used in Equation (19)
to calculate the required actuation pressure at each soft actuator joint in order for the soft
robotic exo-digit to move the human finger along the desired trajectories. The results are
shown in Figure 9 for the varying values of the three joint angles. The color of each point
in the plots represents the values of the pressure magnitude according to the provided
color map. The results show that the control input solutions exist for tracking these specific
trajectories in the configuration space of the soft robotic exo-digit with a trend of increasing
pressure. The required theoretical pressure inputs are in the range of 0–30 kPa, 0–35kPa,
and 0–80 kPa for MCP, PIP, and DIP joints, respectively, which are achievable by the control
hardware system (Figure 4c).

In the second case, we used the experimental data of an actual human finger movement
(flexion) to generate the desired trajectories, as shown in Figure 10a. The corresponding
joint angles are determined based on the inverse kinematics of the human finger model,
which will be used to calculate the desired orientation of the fingertip (i.e., θd = q1 + q2 + q3)
for this case. Similar to the first case, these continuous functions were discretized into a
series of way-points where the actuation pressure of each soft actuator was determined, as
shown in Figure 11. The result shows the existence of the control solutions for following the
second desired trajectory, while the magnitude of the required actuation pressure can be
obtained from the provided color map. Note that the magnitude of the actuation pressures
is higher compared to the first case as the desired trajectory requires more joint variation
close to the full range of human finger range of motion. The maximum pressures (160 kPa)
are beyond the range of our control hardware. Additionally, the rate of change of joint
motion (joint velocities) is selected to be slow in order to be consistent with the quasi-static
motion assumption. This is required by the therapeutic interventions for stroke patients
as the fast movement of their fingers leads to spasticity, a condition in which there is an
abnormal increase in muscle tone or stiffness of muscle [14].

Figure 8. (a) The first desired trajectory of the tip of the human finger in the Cartesian space and
(b) corresponding joint angles.
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Figure 9. Variation of the controlled pressure of (a) the first soft actuator segment, (b) the second soft
actuator segment and (c) the third soft actuator segment with respect to the configuration space of
the soft robotic exo-digit in following the first desired trajectory (see Figure 8).

Figure 10. (a) The second desired trajectory of the tip of the human finger in the Cartesian space and
(b) corresponding joint angles.
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Figure 11. Variation of the controlled pressure of (a) the first soft actuator segment, (b) the second
soft actuator segment and (c) the third soft actuator segment with respect to the configuration space
of the soft robotic exo-digit in following the second desired trajectory (see Figure 10).

5.3. Trajectory Tracking of the Desired Fingertip Pose

A desired trajectory of a human fingertip is provided in the form of equations
x = 0.002002t3 − 0.1278t2 − 1.848t + 99.72, y = 0.0002511x3 − 0.0407x2 + 2.728x− 150.5,
θ = −4t− 36. With the given pose (x, y, θ) of the fingertip, where each parameter varies
with time, t, the three joint angles associated with the finger are calculated using inverse
kinematics. The experimental setup includes an Arduino Mega 2560, four IMUs MPU6050
to measure the angular position of each joint in a human finger model, three MPRLS
pressure sensors to measure the pressure buildup in three joints, three FA0520E three-way
air valves to increase the pressure in each joint, three FA0520D two-way valves to release
pressure from the joints, and six HM MOS modules for opening and closing the valves.
An I2C Multiplexer (TCA9548A) is used to connect the pressure sensors and IMUs to the
Arduino. The system is controlled by an Arduino program that adjusts the pressure applied
to the joints to match the desired joint angles. The code starts by defining the output pins
of the valves, reading the IMUs to obtain the joint angles, calculating the desired joint
angles using inverse kinematics and comparing the actual and desired angles. If the desired
angle is greater than the actual angle, the three-way valve of the joint opens to increase
the pressure. If the desired angle is less than the actual angle, the two-way valve releases
air from the joint, causing the red point in the fingertip, as shown in Figure 12, to move
along the desired trajectory. Figure 13 depicts the joint angles for three joints (MCP, PIP,
and DIP) and compares the actual angles with the desired angles for experiment-1. The
outcomes reveal that the finger was able to accurately trace the desired joint angle for
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all three joints, with a root-mean-square error (RMSE) of 1.32, 1.46, and 0.86 degrees for
each joint, respectively. The actual joint motions show an oscillating behavior around the
desired joint trajectories. This behavior is due to the use of solenoid valves and a pulse
width modulation (pwm) scheme for modulating the pressure of the soft actuators based on
the presented control law. Replacing the solenoid valves with proportional valves, which
operate with continuous opening and closing rather than pulsing, could help eliminate
the chattering responses of the soft actuators. Additionally, the range of motion of the
trajectory tracking can be increased by using a pressure sensor that measures in a higher
range compared to the current sensors; the current pressure sensors in the control system
measure in about the 0–70 kPa range, which led to a limited range of motion available for
each soft actuator. Figure 14 demonstrates the expected and actual path of the fingertip as
measured by both the IMU-based tracking and the camera. The IMU-based tracking uses
the measured joint angles of the human finger and the forward kinematics equations to
determine the fingertip pose. The picture confirms that the fingertip followed the desired
path closely, with an RMSE of 7.49 mm in the x direction and 12.35 mm in the y direction
for the camera measurement, 1.98 mm in the x direction, and 2.79 mm in the y direction
for the IMU measurement. The deviation between the camera and IMU-based tracking is
mainly due to the error of the camera software to accurately and consistently detect the
exact location of the center of the marker attached to the fingertip.

The experiment was repeated for the second time, and the results for the joint angle
and the tip trajectory are shown in Figure 15 and Figure 16, respectively. The obtained
results confirm the repeatability of the control algorithm and the hardware. Once again, the
actual joint angles followed the desired joint angles with a low RMSE of 1.63, 1.60, and 0.92
degrees for each joint, respectively. The RMSE for the camera measurement was 6.77 mm
in the x direction and 11.15 mm in the y direction, while for the IMU measurement, it was
2.55 mm in the x direction and 2.71 mm in the y direction. Note that the resulting RMSE for
IMU-based tracking and the camera-based tracking are very close and consistent between
the two cases.

The Supplementary Materials folder contains the videos for both experiment-1 and
experiment-2.

Figure 12. Close-up picture of the human finger model in the experimental setup.
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Figure 13. The actual and desired joint angle of (a) MCP, (b) PIP, (c) DIP of experiment-1.
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Figure 14. The actual and desired trajectory of the fingertip of experiment-1.

Figure 15. Cont.
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Figure 15. The actual and desired joint angle of (a) MCP, (b) PIP, (c) DIP of experiment-2.

Figure 16. The actual and desired trajectory of the fingertip of experiment-2.

6. Conclusions

An algorithm for regulating the motion of a soft robotic exo-digit with three separate
actuation joints that physically interact with a human finger is presented in this research
using a quasi-static model-based approach. The motion of the soft exo-digit was controlled
by regulating the position of the tip of the human finger model. The physical interaction
between the soft exo-digit and a model of a human finger was developed using a quasi-
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static analytical model. The model was provided as a nonlinear discrete-time MIMO
state-space representation for the control system design. The actuation pressure of a
single soft actuator was used as the input, and a control input was created to linearize
the input–output, with the output being the position of a human fingertip. The nonlinear
discrete-time system for trajectory tracking control’s asymptotic stability is examined.
The experimental test setup included a soft robotic exo-digit and a 3D-printed model
of a human finger that was integrated with IMU sensors. For regulating the actuation
pressure of the soft exo-digit, Arduino-based electro-pneumatic control hardware was
developed. The controller’s performance was evaluated through simulated research and
experimental testing for following various position trajectories similar to the human finger
pose throughout daily tasks. The experiment was repeated twice, verifying the control
algorithm’s repeatability. With a low average root-mean-square error of 2.27 mm in the
x-direction, 2.75 mm in the y-direction, and 3.90 degrees in the orientation of the human
finger distal link about the z-axis, the model-based controller was able to follow the
desired trajectories.

In this study, we considered a model of human-robot interaction with simplifying
assumptions such as linear torsional springs with a constant stiffness at the joint of the
human finger model and the soft exo- digit’s soft actuation segments with a constant length
and curvature. Moreover, model parameters uncertainties involved in both the soft robotic
exo-digit and human finger model as well as variation of biomechanical parameters of the
human finger model (i.e., joint stiffness and damping, rigid links’ inertia, and overall size),
have not been considered. Apart from that, the human finger model was passive, so it
only contributed a resistive force to the motions of the soft exo-digit. In contrast, the active
participation of the human hand in daily activities is inevitable. These factors are ascribed
to the study’s limitations. Considering all these limitations, future research will adopt a
more realistic model of pHRI, develop adaptive robust hybrid force-position control laws
to accommodate multi-task aspects (i.e., required simultaneous force and position controls)
of the human hand fine motor motion, adaptability to variations in the biomechanics of the
users, and robustness against uncertainties of the models.
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SISO single-input single-output
MIMO multi-input multi-output
MCP Metacarpophalangeal
DIP Distal Interphalangeal
PIP Proximal Interphalangeal
kPA kilo Pascal
PWM Pulse Width Modulation
IMU Inertial Measurement Unit
RMSE Root mean square error

Appendix A. Lie Derivatives

Appendix A.1. Invertibility of Lgi h(xk)

The Lie derivative terms are presented here

Lg1 h(xk) =
Ap1 l1 x2

1 rp1

σ1

−(2 l2 s12 + 2 l1 s1 + l3 s123)
(2 l2 c12 + 2 l1 c1 + l3 c123)

1

 (A1)

where
σ1 = kh1

(
l̂1 + d1 x2

1 − l̂1 c1

)

Lg2 h(xk) =
1

k2σ3σ5Ap2x2
1x3rp2(σ1 + 2l1s1 + l3σ8)σ4kh2σ5 − Ap2l2x2

1x2x3rp2(σ1 + l3σ8)σ3
Ap2l2x2

1x2x3rp2(σ2 + l3σ7)σ3 − Ap2x2
1x3rp2(σ2 + 2l1c1 + l3σ7)σ4k2σ5

Ap2l2x2
1x2x3rp2σ3 − Ap2x2

1x3rp2σ4kh2σ5

 (A2)

where σ1,...,σ8 are given in the appendix file of the Supplementary Materials folder.

Lg3 h(xk) =
Ap3rp3x2

3
k3k2x2σ9σ8σ5 −l2

3σ11k2σ8σ5 − (σ1 + l3σ11)σ4k3σ5 − (σ1 + 2l1s1 + l3σ11)σ3k3k2σ9σ8
l2
3σ10k2σ8σ5x2 + (σ2 + l3σ10)σ4k3σ5x2 + (σ2 + 2l1c1 + l3σ10)σ3k3k2x2σ9σ8

l3k2x2σ8σ5 + σ4k3σ5 + σ3k3k2x2σ9σ8

 (A3)

where σ1,...,σ8 are given in the appendix file of the Supplementary Materials folder.
The determinant of LGh(xk) is provided here, and the values of the determinant are

obtained for the configuration space of the soft robotic exo-digit as illustrated in Figure A1
where the pseudo joint bending angles varied in the range of motion of the human finger
joints. The results are presented for varying values of q1, while the surface demonstrates
the variation of the determinant for variation q2 and q3. Excluding the q2 = 0, which is
the singularity of LGh(xk), the determinant stayed finite and there is a trend of increasing
values towards the upper limit of q2 and q3 for the range of 0 < q1 ≤ 50◦. As shown in
Figure A1, after q1 larger than 60◦, there is a discontinuity in the determinant manifold
towards the upper limit q2 and q3. The discontinuity is displayed on the 2D projection of
the manifold in Figure A2. Despite the discontinuity,

‖LGh(xk)‖ =

−
4Ap1 Ap2 Ap3rp1rp2rp3l2

1 l2
2 l3x4

1x2x3
3s1

k1k2k3σ4σ5

(
x2

1(x3c1 l̂2σ9 + x2 l̂3σ7) + x2x3(l̂1σ6 + x1(l̂1σ8 + x1σ3))
) (A4)

where σ1,...,σ9 are given in the appendix file of the Supplementary Materials folder.
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Figure A1. Variation of ‖LGh(xk)‖ of with respect to q2 and q3 for different values of q1.

Figure A2. 2D plot of surface plots in Figure A1, the red arrow shows the discontinuity in ‖LGh(xk)‖
for that region of the configuration space.
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Appendix A.2. Symbolic Equations of Lfh(xk)

Lfh(xk) =


− l2

3 x2
3 τs3 σ11
k3 σ9

− q3 (σ1+l3 σ11) σ4
k2 q2 σ9 σ8

− (σ1+2 l1 s1+l3 σ11) σ3
σ5

l2
3 q2

3 τs3 σ10
k3 σ9

+ q3 (σ2+l3 σ10) σ4
k2 q2 σ9 σ8

+ (σ2+2 l1 c1+l3 σ10) σ3
σ5

l3 q2
3 τs3

k3 σ9
+ σ3

σ5
+ q3 σ4

k2 q2 σ9 σ8

 (A5)

where σ1,...,σ11 are given in the appendix file of the Supplementary Materials folder.
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