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Abstract: In this study, at ultra-wideband (UWB) frequency band (3.1–10.6 GHz), we propose the
use of compact 2:1 and 3:1 nonuniform transmission line Wilkinson power dividers (NTL WPDs) as
feeding networks for simple 2 × 1 linear UWB Vivaldi tapered and nonuniform slot antenna (VTSA
and VNSA) arrays. The 2:1 and 3:1 tapered transmission line (TTL) WPDs are designed and tested in
this work as benchmarks for NTL WPDs. The VTSA array provides measured S11 < −10.28 dB at
2.42–11.52 GHz, with a maximum gain of 8.61 dBi, which is 24.39% higher than the single element.
Using the VNSA array, we achieve 52% compactness and 6.76% bandwidth enhancement, with good
measured results of S11 < −10.2 dB at 3.24–13 GHz and 15.11% improved gain (8.14 dBi) compared
to the VNSA single element. The findings show that the NTL and Vivaldi nonuniform slot profile
antenna (VNSPA) theories are successful at reducing the size of the UWB WPD and VTSA without
sacrificing performance. They also emphasize the Vivaldi antenna’s compatibility with other circuits.
These compact arrays are ideal for high-resolution medical applications like breast cancer detection
(BCD) because of their high gain, wide bandwidth, directive stable radiation patterns, and low
specific absorption rate (SAR). A simple BCD simulation scenario is addressed in this work. Detailed
parametric studies are performed on the two arrays for impedance-matching enhancement. The
computer simulation technology (CST) software is used for the simulation. Hardware measurement
results prove the validity of the proposed arrays.

Keywords: ultra-wideband (UWB); Vivaldi tapered slot antenna (VTSA); Vivaldi nonuniform slot
antenna (VNSA); specific absorption rate (SAR); linear array and high gain

1. Introduction

The benefits of ultra-wideband (UWB) technology, in terms of a simple transceiver,
low profile, wide bandwidth (BW), low power consumption, and low interference with
the coexisting narrow band frequency technologies, are exploited in the recent wireless
communication system applications to satisfy consumer demand and reduce the system
budget [1]. These applications include an UWB see-through wall, microwave imaging,
ground penetrating radar, ground and space communication, vehicular wireless commu-
nication, radio astronomy or telecommunication, water communication, and microwave
moisture detection. To achieve these characteristics, Vivaldi or exponentially tapered slot
antenna (VTSA or ETSA) with a low profile, wide BW, directive radiation patterns, easy
integration with other circuits, and low cost is considered the best candidate for UWB
technology among other broadband antennas [1].

Generally, a group of individual elements (array) can be used to enhance the antenna
gain [2]. Various types of Vivaldi arrays are proposed by doubling slots or increasing the
number of single elements with or without feeding networks. The Wilkinson power divider

Telecom 2024, 5, 312–332. https://doi.org/10.3390/telecom5020016 https://www.mdpi.com/journal/telecom

https://doi.org/10.3390/telecom5020016
https://doi.org/10.3390/telecom5020016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/telecom
https://www.mdpi.com
https://orcid.org/0000-0002-0015-5972
https://orcid.org/0000-0002-0630-7885
https://doi.org/10.3390/telecom5020016
https://www.mdpi.com/journal/telecom
https://www.mdpi.com/article/10.3390/telecom5020016?type=check_update&version=2


Telecom 2024, 5 313

(WPD) is the most well-known microwave passive component, particularly as a feeding
network in antenna arrays. Harmonic suppression and compactness techniques for WPD
are addressed in [3]. Unequal split microstrip WPD is used as an alternative to a broadband
coupler and a phase shifter in designing a microwave distribution network such as in
antenna array beamforming [4]. Instead of adding a director to the Vivaldi antenna, its slot
is doubled (DSVA) to enhance the BW and directivity [5,6]. For UWB, target detection, and
high-speed 5G communication applications, BW and impedance matching improvement
are achieved by etching slots on the proposed DSVAs’ edges in [5,7,8]. Enhanced directivity
and gain required for UWB imaging and radar systems are achieved in the proposed
DSVAs in [9,10] by adding zero-index metamaterial (ZIM) unit cells and a parasitic element,
respectively. For the microwave imaging system, further improvement in gain and BW is
achieved by loading the DSVAs with parasitic and slot edges [11–13]. Based on a low-loss
substrate integrated waveguide (SIW) binary divider, a 1 × 8 Vivaldi array with enhanced
performance is proposed for see-through-wall imaging, indoor localization systems, and
breast tumor detection applications [14]. A wide scan angle (45◦) with enhanced BW is
achieved in [15] using a 1 × 8 phased array based on a dual-parabola-shaped tapered
slot antenna fed by WPD. For underwater communication and long-distance detection
applications, the gain is improved in [16,17] using 2 × 4 and 1 × 8 VTSA arrays fed by
Wilkinson and T-junction dividers, respectively. The feeding topology in [18] combined
with T-junction PD, frequency-independent phase shifter, and T-branch MS lines is used
to reduce the size and enhance the BW and gain of the 1 × 6 VTSA array proposed for
microwave sensing and communication applications. Further, 1 × 4 H-plane VTSA arrays
are designed in [19,20] using T-junction and flexible Microstrip–Slotline–Microstrip (MSM)
power dividers to improve the BW and gain for directional UWB system and satellite
communication applications, respectively.

In [21], a cavity absorber material with corrugations is used to mount the 3 × 4 VTSA
array for protection and performance enhancement. In [22,23], a 3 × 4 metal Vivaldi
antenna array with wide BW (5 GHz), improved gain (14.84 dBi), and reduced side lobe
level (<−20 dB) are designed for airborne applications. Authors in [24] designed a 4 × 4
(1.21–1.57 GHz) VTSA array fed by WPD with improved gain for radar application (wind
profiler). In [25], two compact VTSAs with greater directivity are proposed to improve base
station diversity. An amount of 16 circularly connected VTSAs with wide fractional BW
(159.97%) are proposed in [26] to provide omnidirectional radiation for wireless communi-
cation systems.

With the Internet of Things’ (IoT) rapid expansion and the connectivity of all devices,
the primary concern in designing a modern wireless communication system is how to make
it more reliable, compatible with recent application requirements, and suitable for customer
needs. To that end, straightforward integration of equipment such as power dividers with
antennas will aid in decreasing the overall size and power budget of the system. For
this purpose, as a novelty of this work, at the UWB frequency band (3.1–10.6 GHz), the
proposed compact UWB unequal split NTL WPD [27] is exploited as a feeding network
for the compact UWB VTSA [1] and novel Vivaldi nonuniform slot antenna (VNSA) [28]
to design, fabricate, and test simple compact Vivaldi arrays. Array 1 is achieved by
integrating the designed compact UWB VTSA [1] and 2:1 unequal split NTL WPD [27].
Then, 52% compactness improvement with 6.76% BW enhancement is achieved in Array
2 by integrating the compact UWB VNSA and 3:1 unequal split WPD designed in [28]
and [27], respectively. This work is regarded as proof of concept for the effectiveness of
applying the NTL [27,29] and VNSPA [28] theories for compactness while maintaining
or improving performance. Due to the good characteristics of the proposed arrays in
terms of ease of integration, small size, wide BW, high gain, and stable directive radiation
patterns, they are good candidates for breast cancer detection (BCD) applications. To prove
that, a simple BCD scenario based on CST simulation is included in this work. The major
contributions of this work are arranged in Figure 1 below.
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Figure 1. The major contributions in this work.

In addition to this section, Section 2 describes the design of the proposed arrays.
Section 3 discusses the result. A simple BCD simulation scenario using the proposed arrays
is addressed in Section 4. Finally, Section 5 outlines the research conclusions.

2. The Proposed Antenna Design
2.1. Simple Compact 2 × 1 UWB Linear VTSA Array (Array 1)

To design a compact and effective array for UWB applications, at 3.1–10.6 GHz, the
compact 2:1 NTL WPD [27] is chosen in this work as a feeding network to the 2 × 1 VTSA
array (Array 1). As a contribution and to demonstrate the performance of the NTL WPD
despite the 33.31% compactness in its λ/4 transformers, the designed 2:1 UWB tapered
transmission line (TTL) WPD based on the special TTL equation [30] is used here as
a benchmark as shown in Figure 2. In this work, Rogers RO4003C substrate material
(with a dielectric constant (εr) = 3.55, height (h) = 0.813 mm, dielectric loss tangent of
0.0027, and copper thickness = 0.035 mm) is chosen due to (1) its excellent performance at
high frequencies (low dielectric loss tolerance and loss), (2) excellent dimension stability,
and (3) stable electrical properties versus frequency. Figure 2 illustrates the 33.31% size
reduction of 2:1 NTL transformers (NTLTs) as compared to TTL transformers (TTLTs).
According to the design equations of WPD in [31], isolation between ports requires an
isolation resistor. As shown in Figure 2, three isolation resistors, R1 = 82 Ω (TTL) and 130 Ω
(NTL), R2 = 620 Ω (TTL) and 300 Ω (NTL), and R3 = 470 Ω (TTL) and 180 Ω (NTL) are used
to guarantee high isolation between the output ports (Port 2 and Port 3). These optimum
values are determined based on detailed parametric studies in [27,30] that examine the
effect of different resistor values on the divider’s matching, transmission, and isolation.
It should be noted that more resistors can enhance the isolation; however, only three are
selected in this work to avoid the difficulties in soldering and integrating the surface mount
resistors in the short distance between the two transformers (NTLTs or TTLTs). Detailed
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parametric studies of 2:1 TTL and NTL WPDs can be found in [30] and [27], respectively.
The comparison between their results (the values of S11, S22, S33, S23, S12, S13, S12 group
delay (GD), S13 GD, S12 phase and S13 phase) are demonstrated in Figures 3 and 4 and
Table 1.
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Figure 3a–f show that both dividers satisfy good input, output matching, and isolation
between output ports through the UWB frequency band where the measured insertion
losses S12 and S13 are close to the theoretical values, −1.76 dB and −4.77 dB, respectively. To
reduce the effect of fabrication errors [32], the SMA connector is considered in the simulation
of these dividers. The disturbance in the measured results shown in Figure 3d–f, especially
at high frequencies beyond 8 GHz, is due to the worse impedance mismatch and the
increased insertion loss (conductor and dielectric losses) for the non-pure TEM transmission
line at higher frequencies [31]. In addition, the difference between the simulation and
measurement environments contributes to this disturbance. To ensure that the radio
signal is transmitted successfully in UWB applications, GD should be flat through the
UWB frequency band [33]. As demonstrated in Figure 4a,b, the proposed dividers give
a nearly flat GD, with an increase in measured findings owing to manufacturing and
measurement tolerances, as well as the difference between the simulation and measurement
environments. Finally, it is observed from Figure 4c,d that there is a slight phase difference
between the NTL and TTL WPDs because of their transformers’ different lengths. This
slight phase difference and the acceptable values of return loss and isolation of NTL WPD
indicate the effectiveness of applying NTL theory [27,29] for compactness and performance
improvement (wide BW) without the need for additional components. This makes the NTL
WPD an excellent option for an antenna feeder.

Now, the NTL UWB WPD (in the dashed box in Figure 2) [27] is integrated with two
elements of compact UWB VTSAs [1] to obtain a compact 2 × 1 UWB linear VTSA array as
demonstrated in Figure 5, where r, Wmin, Wmax, LT, Lqw (LT/4), radsl(LT/2), Wa, Wp (50 Ω),
War, and Lar are the tapering rate, aperture opening, the aperture width, the taper slot
length, the quarter wavelength of both microstrip and slot lines in microstrip to slot (M/S)
transition, the radius of the slot, the antenna feed line width, the width of three ports of NTL
WPD, the width, and the length of the proposed antenna array, respectively. As illustrated in
Figure 5, the exponential tapering profile was obtained using ±Aerx where x is the position
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along LT and A = 0.5 × Wmin. Based on the design equations explained in [1], at the UWB
frequency band (3.1–10.6 GHz) with fC = 6.85 GHz, the calculated LT and Wmax are selected
to be 25 mm (>23.99 mm at fC = 6.58 GHz) and 22 mm (20.88 mm < Wmax < 23.07 mm),
respectively. sp is the space between the two elements and can be calculated using

sp= λ0 =
C

f0
√
εr
=

3 × 108

3.1 × 109
√

3.55
= 51.36mm, (1)

where c is the speed of light.
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Table 1. The simulated (Sim.) and measured (Meas.) results for UWB 2:1 unequal split TTL and
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Parametric Studies

To address the array’s mismatch caused by the integration of the antenna and power
divider, different parametric analyses are conducted as illustrated in Figure 6. The selected
parameters are within the red dashed box. Figure 6a shows that the matching at r = 0.174
(S11 < −10.11 dB at 2.507–10.414 GHz and maximum gain (MG) = 8.94 dBi) is better than
the optimized value for the single element, i.e., r = 0.17 (S11 < −9.69 dB) and at other
values (r = 0.166 (S11 < −9.11 dB) and r = 0.178 (S11 < −9.6 dB). Figure 6b illustrates
that the best obtained S11 is at LT = 26.3 mm (S11 < −10.11 dB at 2.507–10.414 GHz and
MG = 8.94 dBi), which is better than at the optimized value for the single element, LT =
25 mm (S11 < −8.98 dB at 2.62–10.483 GHz MG = 8.4 dBi). Since r and LT in the array are
higher than that of the single element, the value of Wmax is increased to 27.46 mm, which
also will enhance the antenna gain [34].

As shown in Figure 6c, the best impedance matching is achieved at Lqw = 5.5 mm
(S11 < −10.11 dB at 2.507–10.414 GHz and MG = 8.94 dBi), which is better than that at
the optimized value for the single element, Lqw = 5.7 mm (S11 < −9.84 dB). As illustrated
in Figure 6d, Wmin = 0.34 mm (S11 < −10.11 dB at 2.507–10.414 GHz and MG = 8.94 dBi)
gives the best impedance matching and highest gain (related to Wmax), which is better
than that at the optimized value for the single element, Wmin = 0.3 mm (S11 < −9.57 dB
at 2.62–10.38 GHz and MG = 8.72 dBi). Figure 6e shows that as radsl increases, the BW
decreases, and the gain increases. However, the best S11 is obtained at radsl = 2.35 mm
(S11 < −10.11 dB at 2.507–10.414 GHz and MG = 8.94 dBi), which is better than that at the
optimized value for the single element, i.e., at radsl = 1.89 mm (S11 < −7.96 dB). Although
at radsl = 2.58 mm (S11 < −10 dB at 3.03–10.419 GHz and MG = 8.96 dBi), the gain is 0.78%
higher, radsl = 2.35 mm is selected because of its improved impedance matching and
broader BW. Since dis is related to the antenna width of a single element, Want = dis + Lqw,
it affects the BW. As dis increases, the BW enhances as shown in Figure 6f. The best
impedance matching is obtained at dis = 45 mm (S11 < −10.11 dB at 2.507–10.414 GHz
and MG = 8.94 dBi), which is better than at the optimized value for the single element,
dis = 37.2 mm (S11 < −8.85 dB).
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The best impedance matching is found, as shown in Figure 6g at Wa = 0.96 mm
(S11 < −10.11 dB at 2.507–10.414 GHz and MG = 8.94 dBi), which is better than at the opti-
mized value for the single element, Wa = 1.2 mm (S11 < −8.81 dB). As shown in Figure 6h,
the obtained impedance matching is not satisfactory at the calculated sp = 51.36 mm
(S11 < −7.12 dB at 3.11–10.43 GHz and MG = 8.6 dBi); however, as sp increases (>51.36 mm),
the impedance matching and gain improve, and the best matching is achieved at sp = 83.8 mm
(S11 < −10.11 dB at 2.507–10.414 GHz and MG = 8.94 dBi). Finally, the optimum impedance
matching level is reached, as seen in Figure 6i at WP = WP1 (for port 1) = WP2 (for port 2) =
WP3 (for port 3) = 1.85 mm (S11 < −10.11 dB at 2.507–10.414 GHz and MG = 8.94 dBi), which
outperforms the calculated one at WP = 1.819 mm (S11 < −9.16 dB). The optimized values
for Array 1 with its single element (VTSA) are illustrated in Table 2.
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Table 2. Calculated and optimized parameters of Array 1 with its single element (VTSA).

Parameters Calculated Optimized (VTSA [1]) Optimized (Array 1)

r - 0.17 0.174

Wmax (mm) 24.45 21.03 27.46

LT (mm) 27 25 26.3

Lqw (mm) 6.57 5.7 5.5

Wmin (mm) - 0.3 0.34

radsl (mm) 3.285 1.89 2.35

Dis (mm) - 37.2 45

sp 52.36 - 83.3

Wa (mm) 1.819 1.2 0.96

Wp1 (mm) 1.819 - 1.85

Wp2 = Wp3 (mm) 1.819 - 1.85

Lar (mm) - - 56

War (mm) - - 135

2.2. Ultra Compact 2 × 1 UWB Linear VNSA Array (Array 2)

At the UWB frequency band (3.1–10.6 GHz), the compact UWB 3:1 NTL WPD [27]
is selected here only to show its applicability as an antenna array’s feeding network. As
a contribution and to test the 3:1 NTL WPD performance, a 3:1 TTL WPD is designed,
fabricated, and tested using the same concept as in [30]. The 33.31% size reduction of
3:1 NTLTs as compared to TTLTs is shown in Figure 7a. The prototype of 3:1 TTL WPD is
shown in Figure 7b. Based on the detailed parametric values on the effect of the isolation
resistors on the divider performance, the R1, R2, and R3 values for 3:1 TTL WPD are 180 Ω,
910 Ω, and 240 Ω, respectively. However, they are equal to 270 Ω, 390 Ω, and 240 Ω,
respectively, for 3:1 NTL WPD. The results of the two dividers are demonstrated in Table 3
and Figures 8 and 9, which show the effectiveness of using NTL theory [27,29] to compact
the 3:1 NTL WPD without degrading its performance. In terms of matching, isolation,
and group delay, both dividers operate well over the UWB frequency spectrum. It can be
observed that the measured insertion losses for both dividers, S12 and S13, are close to the
theoretical values, −1.24 dB and −6 dB, respectively.

As a novelty in this work, the advantage of NTL [27,29] and VNSPA [28] theories is
exploited to design the compact version of Array 1 by integrating two elements of the
predesigned compact UWB VNSA [28] with 3:1 unequal split NTL WPD (in the dashed
box of Figure 7) [27], resulting in the compact VNSA array (Array 2), as illustrated in
Figure 10. Since the size of VNSA [28] is 51.94% smaller than VTSA [1], 52% compactness
is achieved in the resulting array with a 6.76% BW enhancement and this illustrates the
efficiency of applying the NTL and VNSPA theories to miniaturize the size of UWB WPD
and VTSA, respectively, while maintaining good performance. The next section explains
the parametric studies performed on Array 2 for performance enhancement.
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Table 3. The simulated (Sim.) and measured (Meas.) results for UWB 3:1 unequal split TTL and
NTL WPDs.

Parameters
Sim. Meas.

NTL TTL NTL TTL

S11
<−10 dB at 2.2 to over

12 GHz
<−11.23 dB at 2.1 to over

12 GHz
<−13.4 dB at 1.96 to

11.1 GHz
<−10.6 dB at 2.46 to over

12 GHz

S22
<−10 dB at below 1 to

11.3 GHz
<−10.34 dB at below 1 to

over 12 GHz
<−11.53 dB at below 1 to

12 GHz
<−10 dB at 3 to over

12 GHz

S33
<−10.4 dB at 3.4 to over

10.25 GHz
<−11.91 dB at 2.91 to over

12 GHz
<−10 dB at 3 to over

12 GHz
<−10.35 dB at 3.48 to over

12 GHz

S23
<−11.38 dB at 3.3 to over

12 GHz
<−14.49 dB at 1.74 to

over GHz
<−12.15 dB at 2.8 to over

12 GHz
<−14.3 dB at 1.88 to over

12 GHz

S12 −1.24–1.15 dB −1.24–1.15 dB −1.24–1.15 dB −1.24–2 dB

S13 −6 ± 0.7 dB −6 ± 0.7 dB −6 ± 0.7 dB −6 ± 0.7 dB

S12 GD around 0.23 ns around 0.25 ns around 0.43 ns around 0.5 ns

S13 GD around 0.25 ns around 0.25 ns around 0.45 ns around 0.5 ns

“<”: less than.
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Parametric Studies

As a result of the Vivaldi antenna’s ease of integration with other circuits, it provides
good impedance matching of (S11 < −10.44 dB at 3.22–12.85 GHz and maximum gain of
8.4 dBi) with dimensions: radsl = 1.35 mm, dis = 21.8 mm, Wa = 1.34 mm, sp = 50 mm,
Wp1 = 2.07 mm, and Wp2 = 1.7 mm, as shown in Figure 11. According to [28], it is worth
mentioning here that the nonuniform slot length (LN) is 33.33% reduced from LT in [1]
and r, Wmin, and Wmax cannot be changed here, as they are used in the constraints of the
optimization MATLAB code to satisfy the equivalency between VTSA [1] and VNSA [28].
As illustrated in Figure 11a, 11b, and 11c, the impedance matching at radsl = 1.35 mm,
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dis = 21.8 mm, and sp = 50 mm are better than that at (radsl = 1.135 mm (S11 < −8.49 dB),
1.505 mm (S11 < −9.29 dB), and 1.69 mm (S11 < −8.51 dB)), (dis = 19.8 mm (S11 < −9.34 dB),
23.8 mm (S11 < −10.28 dB) 25.8 mm (S11 < −10.14 dB)), and (sp = 40 mm (S11 < −8.02 dB),
60 mm (S11 < −6.98 dB), and 70 mm (S11 < −7.66 dB)), respectively. Also here, the antenna
feedline and divider port widths at the calculated value, Wa = 1.82 mm (S11 < −7.87 dB
at 2.42–12.85 GHz and maximum gain of 8.4 dBi), Wp1 = 1.82 mm (S11 < −8.63 dB)
and Wp2 = 1.82 mm (S11 < −9.74 dB) are not good as compared to the optimized ones,
Wa = 1.34 mm, Wp1 = 2.07 mm and Wp2 = 1.7 mm in terms of impedance matching, as
shown in Figure 11d, Figure 11e, and Figure 11f, respectively.
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As compared to Array 1, the values of LT, dis, and sp are reduced from 26.3 mm to
16.75 mm, 45 mm to 21.8 mm, and 83.3 mm to 50 mm, respectively, which helps in reducing
the size of Array 2 by more than 50% and enhancing the BW by 17.76% with only a 6.2%
reduction in gain as compared to Array 1. The optimized values for Array 2 with its single
element (VNSA) are illustrated in Table 4. The prototypes of the proposed arrays are shown
in Figure 12.
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Table 4. Calculated and optimized parameters of Array 2 with its single element (VNSA).

Parameters Calculated Optimized (VNSA [28]) Optimized (Array 2)

r - 0.17

Wmax (mm) 24.45 21.03

LT (mm) 27 LN (mm) = 16.75

Lqw (mm) 6.57 5.76 5.74

Wmin (mm) - 0.286

radsl (mm) 3.285 1.505 1.32

dis (mm) - 23.8 21.8

sp 52.36 - 50

Wa (mm) 1.819 1.25 1.34

Wp1 (mm) 1.819 - 2.07

Wp2 = Wp3 (mm) 1.819 - 1.7

Lar (mm) - - 44.755

War (mm) - - 81.08
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3. Results and Discussion

Both arrays provide good measured and simulated results, as summarized in Table 5
and illustrated in Figure 13. Arrays 1 and 2 provide good, measured input impedance
matching of <−10.28 dB (Sim. < −10.11 dB) and <−10.2 dB (Sim. < −10.29 dB) through
3.24–13 GHz (Sim. 3.22–12.85 GHz), respectively, as shown in Figure 13a, which implies
the effectiveness of integrating the UWB VTSA [1] and VNSA [28] and UWB 2:1 and
3:1 unequal split NTL WPDs [27] for compactness and gain enhancement. As can be
observed from Figure 13a and Table 5, with the 52% size reduction and 6.76% (Sim. 17.96%)
BW improvement provided by Array 2, only 5.46% (Sim. 6.26%) of the MG is reduced.
This implies the effectiveness of the VNSPA theory [28] for compactness and performance
enhancement. Due to the difference in the signal path through the VTSA and VNSA in
Array 1 and 2, respectively, there is a slight phase difference, as shown in Figure 13b.
Fabrication tolerance, human and lab error, improper soldering of SMA connectors, and
the difference between the simulation and actual measurement environment are the causes
of the discrepancy between the results from the simulation and the findings from the
measurements. It can be noticed from Table 5 and Figure 13c that the MG of the proposed
Array 1 and 2 is enhanced by 23.39% (Sim. 25.84%) and 15.11% (Sim. 15.38%) as compared
to the VTSA and VNSA single elements, respectively. Also, it can be noticed that the
gain for Array 1 and Array 2 after reaching their peak values at around 8.8 GHz (Array
1: 8.61 dBi and Array 2: 8.1 dBi) reduces to 7.9 dBi and 7.8 dBi, respectively, at 9–10 GHz.
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These fluctuations mainly result from high-order modes at high frequency. Also, Figure 13d
and Table 5 indicate that Arrays 1 and 2 achieve good efficiencies between 68.92% and
81.39% (Sim. 70.98% and 93.52%) and 73.17% and 92.11% (74.75% and 94.77%), respectively,
at UWB. The good impedance matching of the proposed arrays can be expressed also
in terms of the simulated input impedance, as shown in Figure 13d, where its real and
imaginary parts oscillate around 50 Ω and 0 Ω, respectively.

Table 5. Simulated and measured results of UWB Array 1 and 2 as compared to single elements:
UWB VTSA and VNSA.

Antenna, Area (mm2) S11(dB),
Frequency Band (GHz), BW (GHz)

Peak Realized Gain (dBi)
% Improvement Total Efficiency (%) Range

Meas. Sim Meas. Sim Meas. Sim.

VTSA <−11.15,
3.14−13.48, 10.34

<−10.84,
2.95–12.71, 9.76 2.2–6.51 2.1–6.63 83.72–91.93 84.7–96.1

Array 1, 7560 mm2 <−10.28,
2.42–11.52, 9.1

<−10.11,
2.51–10.41, 7.9

3.36–8.61
(VTSA: 24.39%↑)

3.49–8.94
(VTSA: 25.84%↑) 68.92–81.39 70.98–93.52

VNSA <−10.89,
2.9–13.55, 10.65

<−10.32,
2.34–12.88, 10.54 1.8–6.91 2.16–7.1 81.14–91.98 87.5–97.3

Array 2, 3628.33 mm2

(52%↓)

<−10.2,3.24–13,
9.76 (Array1:

6.76%↑)

<−10.29,
3.22–12.85, 9.63

(Array1: 17.96%↑)

2.51–8.14 (Array1:
5.46%↓, VNSA:

15.11%↑)

2.83–8.39
(Array1: 6.26%↓,
VNSA: 15.38%↑)

73.17–92.11 74.75–94.77
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Figure 13. Simulated and measured (a) S11, (b) phase, (c) gain, and (d) simulated input impedance 
of the proposed arrays. 

A nearly flat group delay within the UWB frequency band is an important feature for 
UWB applications, to guarantee satisfaction of signal transmission. The measurement 
setup to obtain the face-to-face (F 2 F) group delay between two samples of Array 1 and 
Array 2 with R = 400 mm and 800 mm, respectively, are shown in Figure 14a. Figure 14b 
depicts that the approximate measured flat measured group delay provided by Arrays 1 
and 2 are around 3.5 ns (Sim = 2.5 ns) and 2.3 ns (Sim = 1.7 ns). The measured group delay 
is greater than the simulated one due to the fabrication and measurement tolerance in 
which the signal will face more losses during its propagation. 
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Figure 13. Simulated and measured (a) S11, (b) phase, (c) gain, and (d) simulated input impedance of
the proposed arrays.

A nearly flat group delay within the UWB frequency band is an important feature
for UWB applications, to guarantee satisfaction of signal transmission. The measurement
setup to obtain the face-to-face (F 2 F) group delay between two samples of Array 1 and
Array 2 with R = 400 mm and 800 mm, respectively, are shown in Figure 14a. Figure 14b
depicts that the approximate measured flat measured group delay provided by Arrays
1 and 2 are around 3.5 ns (Sim = 2.5 ns) and 2.3 ns (Sim = 1.7 ns). The measured group
delay is greater than the simulated one due to the fabrication and measurement tolerance
in which the signal will face more losses during its propagation.
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Figure 14. (a) Measurement setup and (b) simulated and measured group delay of the pro-
posed arrays.

The normalized simulated and measured radiation patterns of Array 1 and 2 are
displayed in 2D polar plots and illustrated in Figure 15a–f at f = 5.85 GHz, 8.2 GHz, and
10.45 GHz for E-plane (XY-plane) and H-plane (XZ-plane). Due to higher-order modes and
losses associated with fabrication errors and measurement tolerance, side lobe levels (SLLs)
are introduced to patterns at high frequencies (8.2–10.45 GHz), which makes the measured
pattern shape differ from the simulated one and it is more severe at the H-plane.

Finally, Table 6 illustrates other recent related work in the literature on different UWB
VTSA arrays and DSVA. As illustrated in Table 5, Array 1 and Array 2 are the smallest,
among others (for the 1 × N array, only the size of 1 × 2 is taken for comparison), and they
provide wider BW than [5,9,11,12,18,20] and moderate high gain without any enhancement
techniques. Although the size (1 × 2 case) of the VTSA arrays in [18,26] is smaller than
Array 1 and Array 2, they provide higher gain and wider BW, respectively.

Table 6. Other related VTSA arrays and DSVA at different wide and ultra-wide frequency bands in
the literature.

Ref. εr S11 (dB) at Freq Band
(GHz), BW (GHz) Gain (dBi) Antenna, Feeding Volume

mm × mm, mm

Array 1

3.55

<−10.28,
2.42–11.52, 9.1 3.36–8.61 1 × 2 VTSA array, NTL WPD 135 × 56 × 0.813

Array 2 <−10.2, 3.24–13, 9.76 2.51–8.14 1 × 2 VNSA array, NTL WPD 88.08 × 44.755 ×
0.813

[7] 2.65 <−11.55,
2.25–11.1, 8.85 10.1–14.81 (2 layers) DSVA with diagonal

rectangular-shaped corrugations 150 × 100 × 0.5

[9] 4.3 <−12.7, 4–>10, 6 Directivity
(3.96–12.54) DSVA with loaded ZIM unit cells 90 × 85 × 1

[26] 2.55 <−10, 1.28–11.51,
10.23 0.5–4 1 × 16 VTSA array circularly connected,

T-junction PD π × 882 × 1

[11] 2.65 <−10, 2.4–12, 9.6 0.7–14.2 DSVA with ZIM unit cells and pair
of DGS 130 × 80 × 1

[20] 10.2 <−10, 3.4–8.3, 4.9
<−8.4, at 4.6 6.25–12.3 H-plane 1 × 4 VTSA, MSM PD NA

[12] 3.55 <−9.84, 4.2–11, 6.8 8–13.3 (Sim) DSVA with director and corrugated slots 130 × 80 × 0.813

[18] 4.3 <−10, 2.5–6.8, 4.3
& 7.5–9.5, 2 6.5–14.12 1 × 6 VTSA array, T-junction PD 167.48 × 158.25 × 0.6

VTSA: Vivaldi tapered slot antenna, VNSA: Vivaldi nonuniform slot antenna, NTL: nonuniform transmission
line, WPD: Wilkinson power divider, ZIM: zero-index metamaterial, DSVA: double-slot Vivaldi antenna, MSM:
Microstrip–Slotline–Microstrip and DGS: defected ground slot.
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Figure 15. Simulated (dashed) and measured (solid) radiation patterns of the proposed compact
UWB Vivaldi tapered and nonuniform arrays at f = 5.85 GHz (a) E and (b) H; f = 8.2 GHz (c) E and
(d) H and f = 10.45 GHz (e) E and (f) H.

4. Application of The Proposed Antenna Design for Cancer Detection Scenario

Transmitting UWB signals to the breast (with and without tumor) and monitoring the
backscattered S-parameters allow microwave imaging to detect the electrical differences
between normal and malignant cells. Based on this approach, four samples of the proposed
Array 2 are placed around a hemispherical breast phantom (radius = 50 mm) at a 10 mm
distance in front of it. The phantom consists of skin, fat, and fibroglandular tissues including
a tumor (diameter of 10 mm) deeply inside it, as shown in Figure 16a. Based on [35–37], the
densities and electric properties of the breast phantom tissues, respectively, are illustrated
in Table 7. As demonstrated in Figure 16a–e, the Robust Time Reverse (RTR) method [38]
reconstructs the tumor’s 2D images from the antennas’ reflected and scattered signals with
various considerations such as a smaller tumor, an off-center tumor, and more than one
tumor (two and three). The features of the suggested antenna and the reconstructed images
in Figure 16a–e demonstrate the antenna’s capacity to detect any tumor at any location
inside the breast.
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Figure 16. Simulation setup of simple BCD using Array 2 (four samples) and reconstructed 2D im-
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Figure 16. Simulation setup of simple BCD using Array 2 (four samples) and reconstructed 2D image
using RTR algorithm of (a) one breast tumor at the center, (b) one smaller breast tumor at the center,
(c) one breast tumor off the center, (d) two breast tumors off the center, and (e) three breast tumors off
the center.
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Table 7. Densities and electric properties of the breast phantom tissues.

Parameters Skin Fat Fibroglandular Tumor

Mass density (Kg/m3) 1090 950 1000 440

εr 34.2 4.32 39.65 54.9

Conductivity (S/m) 4.67 0.509 7.65 4

Finally, to guarantee the safety of the body from harmful electromagnetic radiation,
the specific absorption rate (SAR) distribution of Array 2 (four samples) within the breast
phantom, including the tumor, is calculated for an input power of 0.1 W at different
resonance frequencies. The results are illustrated in Figure 17 where they do not exceed the
safety limit and are less than the limit recommended by the council of the European Union
(2 W/kg averaged over 10 g of actual tissue).
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5. Conclusions

As proof of concept in the application of the NTL and VNSPA theories for compactness,
while maintaining or enhancing good performance, the novelty of this work is achieved by
designing, fabricating, and testing simple 2 × 1 linear compact VTSA and VNSA arrays
at UWB frequency band (3.1–10.6 GHz). The compact VTSA array (Array 1) and VNSA
array (Array 2) outperform the VTSA and VNSA single components in terms of enhanced
impedance and gain by 24.39% and 15.11%, respectively. Array 2 achieves 52% compactness
with 6.76% BW enhancement as compared to Array 1. The suggested compact arrays with
high gain, wideband, stable radiation patterns, and low SAR are good candidates for high-
resolution medical applications such as breast cancer detection (BCD), which is addressed in
this paper using Array 2 based on the CST simulator. Detailed simulation and measurement
setups for breast and brain cancer detection using N × 1 VTSA or VNSA arrays are aimed
to be considered in our future work.
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