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Abstract: The expected development of the future generation of wireless communications systems
such as 6G aims to achieve an ultrareliable and low-latency communications (URLLCs) while maxi-
mizing the data rates. These requirements push research into developing new advanced technologies.
To this end, massive multiple input multiple output (MMIMO) is introduced as a promising trans-
mission approach to fulfill these requirements. However, maximizing the downlink-achievable sum
rate (DASR) in MMIMO with a frequency division duplex (FDD) transmission mode and limited
coherence time (LCT) is very challenging. To address this challenge, this paper proposes a DASR max-
imization approach using a feasible power allocation optimization method. The proposed approach
is based on smartly allocating the total transmit power between the data transmission and training
sequence transmission for channel estimation. This can be achieved by allocating more energy to
the training signal than the data transmission during the channel estimation process to improve the
quality of channel estimation without compromising more training sequence length, thus maximizing
the DASR. Additionally, the theory of random matrix approach is exploited to derive an asymptotic
closed-form expression for the DASR with a regularized zero-forcing precoder (RZFP), which allows
the power optimization process to be achieved without the need for computationally complex Monte
Carlo simulations. The results provided in this paper indicate that a considerable enhancement in the
DASR performance is achieved using the proposed power allocation method in comparison with the
conventional uniform power allocation method.

Keywords: 6G; URLLC; massive MIMO; frequency division duplex (FDD); downlink channel
estimation; training sequence design; limited coherence time; achievable downlink sum rate maximization;
correlated channels; optimum power allocation

1. Introduction

The existing wireless communications systems will face significant challenges due to
the rapid increase in the applications of the Internet of Things (IoT) that need ultrareliable
and low-latency communication (URLLC) [1]. In particular, widely expected future services,
such as smart healthcare systems, factory automation, and autonomous vehicles, will
be critically reliant on providing URLLC while maximizing the data rates [2–4]. This
necessitates finding massive communication systems with advanced techniques to meet the
extremely high data rate requirements. To this end, massive multiple input multiple output
(MMIMO) [5,6] is proposed as a promising technique to fulfill the aforementioned demands
of future wireless communication systems [7]. This is because MMIMO technology has the
potential to significantly increase both energy and spectral efficiencies.

However, from an information theoretic perspective, the system’s performance hinges
on the precision channel state information (CSI) estimation. The accuracy of CSI acquisition
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and the overhead in the systems rely on the duplexing mode of operation. For example, there
are the time division duplex mode (TDD) and the frequency division duplex (FDD) operation
modes. In the TDD mode, the uplink CSI estimate is used in the downlink precoder design
at the base station (BS) without the need for downlink CSI estimation. This is due to the
uplink/downlink channel reciprocity that is obtained in TDD operation systems [8]. In this
case, there is no overhead from CSI estimation, since it is proportional to the number of users
(K) and not to BS antennas N [9–12]. Despite the favorable outcomes of the TDD mode with
downlink CSI estimation, most of the existing mobile networks operate in the FDD operation
mode. For instance, the current wireless networks, which are advanced long-term evolution
(A-LTE) networks, mostly operate with the FDD mode [13]. In addition, calibration errors
in the uplink/downlink radio frequency (RF) chains and transceiver hardware limits are
usually the source of the limitations of TDD operation systems [14–17]. Hence, this research
concentrates on FDD transmission, where the downlink CSI estimation is determined using a
dedicated downlink training sequence during the CSI estimation phase. Specifically, to acquire
CSI estimation in the FDD mode, the BS needs to design a specific training sequence and direct
this sequence to the users [18,19]. However, the BS with a MMIMO system operates with a
large number of antenna elements, which poses a significant challenge in channel estimation,
especially in FDD operation with limited coherence time (LCT).

To this end, several research works have investigated the downlink CSI estimation in
FDD MMIMO systems, thereby taking into account the spatial correlation at the BS; see,
e.g, [20–28]. Another area of study has been on CSI estimation utilizing methods based on
compressed sensing (CS) [29–34]. In addition, a further advancement in CSI estimation is
the application of hybrid two-stage precoding techniques in FDD MMIMO systems [35–38].
However, in the aforementioned research works, a uniform power allocation has been as-
sumed, and the DASR has not been optimized with respect to power allocation. To the best
of our knowledge, maximizing the DASR with respect to the optimized energy allocation
has not been investigated in the literature.

1.1. Paper Contributions

This paper addresses the challenge of DASR maximization through power allocation
optimization with LCT. To this end, a viable solution to design the training sequence, which
is both low in complexity and suitable for LCT, is obtained. Additionally, a low-complexity
power allocation optimization technique is employed to maximize the DASR of FDD
MMIMO systems. The following is a summary of the main contributions of this research:

• This paper addresses the challenge of channel estimation with a very large antenna
and short coherence time with an objective to maximize the DASR.

• This paper proposes a low-complexity solution for CSI estimation by utilizing the
statistical information of the channel covariance matrix, which is considered to be
locally stationary and varying more slowly than the instantaneous channel.

• Unlike previous works that have considered mean square error (MSE) minimization
criteria, see, e.g., [20–24,39–44], this paper investigates the maximization of the DASR
in LCT, which is crucial for many wireless system applications.

• This paper proposes a power allocation optimization strategy that is based on divid-
ing the energy nonuniformly between the data transmission and training sequence
transmission with LCT, with an objective function to maximize the DASR of MMIMO
systems with the FDD transmission mode.

• We derive an analytical closed-form expression for the DASR with a regularized
zero-forcing precoder (ZFBF) using a theory based on the random matrix method.

• This paper conducts comparisons for the DASR performance results between the
proposed power optimization method and the conventional method with uniform
power allocation. The results show that the proposed low-complexity power allocation
optimization approach markedly improves the DASR over the conventional method
across a wide range of configurations considered. This success in maximizing the
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DASR signifies the feasibility of applying the proposed method in practical systems
utilizing URLLC and LCT scenarios.

1.2. Paper Organization and Notation

This work is delivered in the following organizational format. The system model
description and the characterization of the SINR and the DASR are presented in Section 2.
In Section 3, the CSI estimation and the training sequence design in the downlink MMIMO
with the FDD mode are discussed, and the related formals are provided. In addition,
the problem formulations of the DASR maximization are provided. Furthermore, the power
allocation optimization is also developed in this section. In Section 4, an analytical solution
of the RZFP is developed using the approach of random matrix theory. Section 5 presents
performance evaluation results for the DASR with proposed power allocation optimization
in comparison with the conventional method of uniform power allocation. Finally, Section 6
concludes the paper.

This research employs boldface symbols to represent matrices and lower boldface
symbols for vectors. The Gaussian distribution is symbolized as CN (0, H), thus indicating
a mean of zero and a covariance matrix of H. The notation E[·] is utilized for the expectation
operator, and |.|2 denotes the absolute square, which is the power in the signal. Various
mathematical operations are used in this paper, such as transpose, trace, and Hermitian
transpose, which are given as (·)T, tr(.), and (·)H, respectively.

2. System Model of Downlink FDD MMIMO

In this study, a single-cell wireless communication system is considered in which the
BS has an array of N antennas and connects with K single-antenna uncorrelated users in the
downlink. The users’ single-antenna assumption makes low-cost, straightforward hardware
with effective power consumption achievable as discussed in [10]. All users obtain the
downlink transmission concurrently via the same time frequency resources. The number of
users K is assumed to be limited and less than N, or N ≫ K, which is the typical assumption in
MMIMO systems as described in [5]. We consider a single-frequency band FDD transmission
mode in the downlink. In addition, this work also considers a block fading structure in
which τc ∈ Z+, where the channel with the LCT block is assumed as in the A-LTE mobile
networks [45]. In the training phase, the downlink channel is employed per each coherence
block, where the BS can transmit a training sequence in the downlink with a power of ρtr and
a length τtr. As a result, the remaining amount of power and time is dedicated for allocating
the useful transmission data. The channel should be estimated in the downlink to beamform
the data symbols correctly to the targeted uses. The main aim of this research is to investigate
maximizing the DASR when the power is optimized with respect to the downlink training
sequence and the data phase. A block diagram of the MMIMO systems at the BS with digital
precoding is shown in Figure 1. The kth user’s received downlink data signal at the user’s
side, which is denoted by zk, is provided as follows:

zk =
√

ρd hH
k x + nk, (1)

where the transmit power that is transmitted in the data phase is given as ρd. The downlink
transmit vector is represented by the parameter x. This transmit vector includes the
transmitting data symbols and the precoding vector that will be defined later in Equation (4).
The additive noise is represented by the parameter nk, which is defined here as a Gaussian
distribution with a zero mean. The actual downlink channel vector is denoted by hk ∈ CN .
It can be modeled as

hk = H1/2h̄k, (2)

where h̄k is the downlink channel vector, and the covariance matrix at the transmitter is
given as H = E

[
hkhH

k
]
∈ CN×N , which can be decomposed as in [46]:

H = UΣUH, (3)
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Therein, we use the eigenvalue decomposition (EVD) method with eigenvectors of
U = [u1, . . . , uN ] ∈ CN×N and eigenvalues of Σ. Note that the eigenvalues are given as
σ1 ≥ σ2 ≥ · · · ≥ σN . In practice, obtaining the channel covariance matrix involves either
estimating it at the BS or determining the feedback of a quantized version of it from the users.
Inaccuracies in estimating or defining the feedback of the covariance matrix can impact
the system performance, thereby leading to suboptimal solutions and reduced overall
system performance. Since the covariance matrix is represented by an expectation of the
instantaneous channel vectors and relies on the scattering environment and the propagation
geometry, it can be considered as locally stationary and varies much more slowly than the
instantaneous channel of the coherence time [47–49]. Therefore, the channel covariance
matrix can be accurately obtained in both the TDD and FDD transmission modes [50–53].
To this end, several research works have investigated the system performance when the
channel covariance matrix is assumed to be unknown. For example, the work of [54]
proposed a resampling method for obtaining the channel covariance matrix using cubic
splines. In addition, a dictionary of known uplink/downlink covariance matrices was
proposed in [55]. In this approach, upon encountering a new uplink covariance matrix,
the associated downlink covariance matrix was approximated by interpolating across a
Riemannian space, thereby utilizing the elements present in the dictionary. The works
of [43,56,57] proposed a potential approach for estimating a high-dimensional covariance
matrix with limited observations involving the application of regularization to the sample
covariance matrix. The work of [58] proposed a spatial spectrum method for the quantization
and the feedback of the covariance matrix. The work of [59] proposed a codebook-based
approach to feedback quantized information with respect to the effective eigenvectors and
eigenvalues of the channel covariance matrix. The work of [60] proposed an angle estimation
with a power angular spectrum (PAS) that can be extracted from the instantaneous uplink
channel estimate to obtain the uplink channel covariance matrix. Then, the downlink
channel covariance matrix is reconstructed using the inference of the uplink one. Recently,
a limited channel covariance feedback approach was proposed in [61], where the user
feedback provided only partial information regarding the covariance matrix of the BS.

Figure 1. Block diagram of MMIMO systems with precoder at BS.

The investigations above have shown that the system performance using partial channel
covariance knowledge suffers from minor losses compared to perfect channel covariance
knowledge. It is worth noting that the proposed approach in this paper does not necessitate
full knowledge of the channel covariance matrix. Instead, only the effective eigenvectors need
to be obtained. Indeed, obtaining this partial information about the channel covariance matrix
is more straightforward compared to dealing with the entire (complete) covariance matrix.
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Therefore, a more precise evaluation of the performance degradation under different levels of
covariance matrix estimation errors can be investigated in the future. The transmitted signal
is given by the vector x ∈ CN , which is placed in Equation (1) and defined here as follows:

x =
√

ϖVa, (4)

where a = [a1, . . . , aK]
T ∈ CK denotes the useful data vector, which is modeled with a zero

mean and a variable unit to satisfy
[
aaH] = IK, and V = [V1, . . . , VK] ∈ CN×K represents

the precoder at the BS, where the type of precoder used in this paper is defined later in (6).
This precoder depends on the channel estimation. We need to normalize the power in order
to satisfy E

[
∥x∥2] = K and ensure the power used for the transmit data as ρd. As such,

the parameter ϖ given in Equation (4) is defined here, which represents the normalization
coefficient to meet the above requirement as described in [11] so that

ϖ =
K

E
[
tr
(
VVH)] . (5)

In this paper, a RZFP technique is used. To this end, the precoder matrix can be
formulated as in [11]:

V = ĤH(ĤĤH + NϱIK
)−1, (6)

where Ĥ ∈ CK×N represents the estimated channel with Ĥ = [ĥ1, ĥ2, . . . , ĥK]
H ∈ CK×N ,

and ϱ denotes the regularization parameter of the RZFP, which is considered to be 1/ρd,
as given in [11]. The received signal at the kth user, which has been defined previously in
Equation (1), can be written as

zk =
√

ρdϖE[hH
k vk]ak +

√
ρdϖ

(
hH

k vk −E[hH
k vk]

)
ak +

√
ρdϖhH

k

K

∑
i ̸=k

viai + nk. (7)

The DASR can be expressed as

ASR =

(
τc − τtr

τc

) K

∑
k=1

log2
(
1 + SINRk

)
, (8)

where the received signal SINRk, by taking into account (7), can be written as [11,62]

SINRk =
ϖ | E[hH

k vk] |
2

1
ρd

+ ϖ E
[
|hH

k vk −E[hH
k vk] |2

]
+ ϖ ∑K

i ̸=k E
[
|hH

k vi |2
] , (9)

where the nominator denotes the desired signal power, and the denominator represents
the interference introduced by other users and the noise introduced at the user side that
affects the received signal. Further details about the derivation of expression Equation (9)
can be found in [62]. Furthermore, various channel realizations are used to calculate the
expectations in Equation (9); these realizations are performed independently using massive
Monte Carlo simulations. This is often considered to be a computationally intensive
operation, because it is necessary to evaluate the SINR and the DASR for a range of values
of N, where N ≫ 1. However, the theory of the random matrix yields computationally
realistic solutions for the SINR and the DASR, which are developed here to find an analytical
solution for the SINR with RZFP. The downlink channel estimation, power allocation
optimization procedure, and the problem formulation of the DASR in MMIMO systems
with the FDD mode are provided in the following section.

3. Power Allocation Optimization and Problem Formulations

As presented in Equation (9), the performance of the DASR depends on the statistical
information of the channel and the CSI estimation. The following subsection discusses
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channel estimation using the MMSE estimation method. The CSI estimation presented here
differs from the channel estimation procedure performed in the uplink transmission such
as in the TDD operation mode. In this case, channel reciprocity can be exploited to provide
the precoder with the estimated channel.

3.1. MMSE Channel Estimation in Downlink FDD Systems

To obtain a CSI estimate in the downlink, in the training phase, the BS is required
to transmit the training sequence with length τtr to the users. Accordingly, the received
signal, which is denoted here by zk ∈ Cτtr , at the kth user side when the training phase is
performed can be expressed as

zk =
√

ρtrSH
tr hk + nk, (10)

where nk is the noise introduced at the training stage, which is modeled here as CN (0, Iτtr),
and Str denotes the training sequence matrix and satisfies the power constraint with
tr
(
SH

tr Str
)
= ρtrτtr. The training matrix depends on essential parameters, which are the

training sequence stricture, training sequence power ρtr and training sequence length τtr.
By taking advantage of traditional linear processing, the MMSE CSI estimate can be used as
provided in [63]. Performing Bayesian channel estimation, such as minimum mean square
error (MMSE) filters based on channel and noise statistics [63], can lead to a considerable
improvement in the quality of channel estimation. To this end, the MMSE estimation can
be expressed as

Gk =
√

ρtrHStr
(
ρtrS

H
tr HStr + Iτtr

)−1. (11)

Upon applying the MMSE CSI estimate, the downlink CSI estimate is expressed as

ĥk = Gk zk, (12)

where the received training signal is zk ∈ Cτtr and given according to Equation (10).
The error vector of the channel estimation can be represented as

h̃k = hk − ĥk, (13)

where the CSI estimation of the MMSE covariance matrix can be given as Θ = E
{

ĥkĥH
k
}

,
which is as expressed as

Θ = Gk
√

ρtrS
H
tr H. (14)

Our main objective in this paper is not to minimize the estimation error in the equation
above but rather to maximize the DASR of FDD MMIMO systems. In particular, this paper
investigates the maximization of the DASR of the MMIMO system through the optimization
of the power allocation with respect to ρtr and ρd.

3.2. Training Sequence Design in Downlink FDD Systems

The formulation in (14) describes the outcome of a channel estimator designed to
minimize channel estimation error, and this outcome is contingent on the structure of the
correlation matrix at the transmitter. This has led to the exploration of optimizing the
training sequence by leveraging the statistical structure of the channel covariance matrix
H. Therefore, Str ∈ CN×τtr is constructed using the eigenvectors of length H equal to τtr.
These eigenvectors represent the largest eigenvalues. To this end, the training matrix can
be expressed as

Str =
[
u1, . . . , uτtr

]
. (15)

A simplified analytical form for the MMSE CSI estimate can be obtained by substituting
Equation (15) into Equation (14), which yields

Θ = ρtrUτtr Σ
2
τtr

(
ρtrΣτtr + Iτtr

)−1UH
τtr . (16)
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Here, Στtr ∈ Rτtr×τtr represents the eigenvalues of H, where the eigenvalues are
arranged as follows: σ1 ≥ σ2 ≥ · · · ≥ στtr . To constrain the downlink training sequence
overhead, the channel energy, associated with the eigenvectors uτtr+1, . . . , uN of H, is
omitted in the training sequence construction and consequently excluded from precoding.
Using the proposed training sequence design in Equation (16), one can obtain a simplified
formulation of the trace of the MMSE estimation as follows:

tr(Θ) =
τtr

∑
n=1

σ2
n

σn + 1/ρtr
. (17)

The expression in Equation (17) can be further simplified with the P-DoF model.
In what follows, the proposed power allocation optimization procedure will be described.

3.3. Power Allocation Optimization Process

This subsection presents the methodology of power allocation to maximize the DASR
of an FDD system. While several power allocation approaches have been investigated
in the literature, see, e.g., [64–70], the concentrate was based on the TDD transmission
mode. Here, we investigate the power allocation process to maximize the DASR in the
FDD transmission mode using a simple straightforward approach. As mentioned earlier,
the conventional method divides the power for channel training and data transmission
equally without considering any optimization criteria. Equitable power allocation with
respect to the training sequence phase and data phase is achieved through uniform power
allocation. The work of [18] tried to characterize the tradeoff between DASR maximization
and MSE minimization in FDD MMIMO systems. In [18], a uniform power allocation was
assumed, and the DASR was not optimized with respect to power allocation but rather was
optimized with respect to the training sequence length only. The authors in [18] clearly stated
that optimizing the training power and data power with respect to DASR maximization
could be investigated in the future. However, there is no characterization for the DASR in
FDD MMIMO systems with respect to optimum power allocation. Therefore, our paper
investigates the DASR performance with this desired scenario, and the results show that a
considerable improvement can be achieved using the proposed power allocation approach,
as we can see later in Section 5. To this end, a nonuniform power allocation strategy is
performed, which allows for the maximization of the DASR of MMIMO FDD systems
with LCT, which is the main objective function of this paper. In this case, the available
coherence time τc and the available total transmit power ρ are combined and divided
nonuniformly between the data and training phase, as well as smartly allocated in such a
way as to maximize the DASR per each transmission block. In this case, we are targeting the
energy allocated per each coherence block and managing the power allocated to each phase
(data transmission and channel estimation). This implies that allocating more power to the
channel estimation while preserving some time duration for data transmission could help
in improving the channel estimation quality while maximizing the DASR. This is because
the training sequence length is more valuable due to the prelog fraction that is dedicated to
transmitting useful data to the user.

3.4. Power Allocation Formulation

Let E represent the total amount of energy at the base station. This is found by
multiplying the available power at the base station ρ—here, it is SNR—by the overall
coherence time τc, as provided in Equation (18):

E = ρ τc. (18)

To perform downlink channel estimation in the training phase, the base station sends a
τtr training sequence length to the user per each transmission block. The remaining duration
is dedicated to data transmission, which can be used to send useful data. Furthermore,
the amount of the total transmit energy at the base station can be freely distributed with
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respect to the data phase and channel estimation phase. Therefore, the energy allocated to
the training sequence Etr can be expressed as

Etr = ϵE , (19)

where ϵ ∈ (0, 1] represents the fraction of energy used for the channel estimation phase.
As a result, the amount of energy that is still available for the data phase Ed can be written as

Ed = (1 − ϵ)E , (20)

where ρtr = Etr/τtr, and ρd = Ed/τd. In this case, by using the fraction of energy dedicated
to the training ϵ, we are controlling the amount of energy dedicated to the channel estimation
and data transmission. Hence, for example, we can allocate more energy to the channel
estimation to improve the quality of estimation while perceiving some time duration to send
useful data to the user. The connection between optimizing the energy allocation for the data
transmission and channel estimation phase and maximizing the DASR in MMIMO systems
with the FDD mode and LCT is illustrated clearly. In particular, improving training sequence
energy becomes imperative to enhance CSI estimation accuracy in the downlink. This signi-
fies that allocating an increased power to the training sequence during the training phase
leads to an enhancement in CSI estimation accuracy. The obtained training sequence matrix
must always satisfy tr

(
SH

tr Str
)
= ρtr τtr to ensure constant power as transmitted by the base

station. Therefore, the total energy allocated to the channel estimation is given as Etr = ρtr τtr,
which is equivalent to the energy expended during the downlink training period. The data
transmission would use the remaining energy as explained clearly above. Note that in the
realistic LCT scenarios, which are considered in this paper, increasing the training sequence
length τtr would reduce the DASR, since it will affect the remaining time for sending useful
data to users. The main contribution in this present paper is derived from the maximization of
the DASR using an optimized power allocation procedure. Specifically, by thoroughly going
over every conceivable value for ϵ, the optimal power allocation that maximizes the DASR
with each N is obtained. In the FDD transmission mode, the DASR is maximized for each
value of N in relation to a suitable weighted energy value. Increasing the power allocation
with respect to the training sequence phase can lead to an improvement in the DASR, as we
will see later in the results section in Section 5. Note that machine learning (ML) algorithms
can be integrated into the modeling framework of power allocation [64,71–73]. However,
a recognizable challenge could be the potential lack of interpretability in the decision-making
process, thus making it challenging to understand and validate the underlying reasoning be-
hind power allocation choices. Therefore, this paper provides a feasible and tractable solution
for optimizing the power allocation in the FDD system with straightforward implications.
A block diagram of the MMIMO systems that demonstrates the power allocation for the
training phase and the data phase is shown in Figure 2.

Figure 2. A diagram that illustrates the power allocation for the training phase and the data phase.
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3.5. Formulation of the DASR Maximization Problem

This subsection presents a formula for the DASR maximization for the problem con-
sidered in this paper. To this end, the DASR maximization of the MMIMO system in the
FDD transition mode can be written as follows:

maximize
τtr

(
τc − τtr

τc

)
K log2

(
1 + SINR

)
subject to 1 ≤ τtr ≤ minimum

(
τc, N

) (21)

As was previously indicated, to fulfill the requiters for a high data rate, we need
to maximize the possible DASR [74]. Hence, the main goal of this paper is to maximize
the DASR. The expression in Equation (21) demonstrates that the length of the training
sequence and the LCT, as well as the power allocation in the SINR, are the main factors that
determine how much the DASR can be maximized. While the training sequence length
and the LCT have a linear effect on the DASR, the power allocation, which is involved in
the SINR, has a logarithmic effect on the DASR.

To sum up, unlike the conventional method where the performance of the DASR is
investigated with equal power allocation, in this paper, we focus on optimizing the DASR
with optimum power allocation. To the best of our knowledge, the power optimization
to maximize the DASR performance of MMIMO systems in the FDD mode with LCT has
not been investigated. The analyses developed above are valid for any channel model and
precoding type. The formulation of the DASR problem in Equation (21) is computationally
complex. This is due to the fact that in order to obtain the expectations in Equation (9),
extensive Monte Carlo simulations over various channel realizations, different values of
N, different correlation coefficients, different training sequence lengths, different SNR
values, and different coherence times must be performed. This makes power allocation
optimization very difficult without finding a feasible solution. Therefore, in this paper, we
develop a computationally viable solution that is found by employing the theory of the
random matrix method to address this problem. Specifically, an analytical expression of
Equation (9) and the DASR are obtained in this study as N → ∞ using the theory of the
random matrix method. Consequently, a low-complexity, simplified numerical evaluation
of Equation (21) is obtained, which allows for power allocation optimization over a range
of scenarios. The following section provides an analytical expression of the RZFP using the
theory of the random matrix method.

4. Analytical Expression for the DASR of RZFP in FDD Systems

The SINR in the downlink is provided analytically here and is based on the theory
of the random matrix method [11,75,76]. Let us assume that the users have a common
correlation at the BS so that the covariance matrix is Rk = R ∀k = 1, . . . , K, and, hence,
SINRk = SINR ∀k = 1, . . . , K, as considered in [20–22,24]. Specifically, SINR, an analytical
expression of the SINR is calculated as SINR − SINR −−−→

N→∞
0. A straightforward system

evaluation is obtained by replacing the SINR SINR term in Equation (9) with the approx-
imation provided in this section thanks to the theory of the random matrix. Therefore,
the results can be easily reproducible. The expression for SINR of the RZFP in the MMIMO
system with the FDD mode is written as

SINR =
KN ϖ̄ δ2

(1+δ)2

ρd
+ K2ϖ̄Ψ̄

, (22)

where the fixed-point technique is used to find the parameter δ, and the variable ϖ̄ is the
analytical counterpart of the RZFP with

δ(t) =
1
N

tr

(
Θ

(
K Θ

N
(
1 + δ(t−1)

) + ϱIN

)−1)
, (23)
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where the integer t = 1, 2, . . . , has the starting value δ(0) = 1/ϱ, and δ is determined after
the fixed-point technique in Equation (24) is converged. Thus, we have the following:

δ = lim
t→∞

δ(t). (24)

Once we obtain the value of δ in Equations (23) and (24), it is substituted into

T =

(
KΘ

N(1 + δ)
+ ϱIN

)−1

, (25)

with

T̄ = T

(
IN +

Θ δ̄K
(1 + δ)2N

)
T, (26)

with δ̄ being obtained as

δ̄ =
1
N

(
1 −

tr
(
ΘTΘT

)(
N(1 + δ)

)2

)−1

tr
(
TΘT

)
. (27)

The RZFP normalization ϖ̄ is obtained as

ϖ̄ =
(
tr(T)− ϱtr(T̄)

)−1, (28)

with Ψ̄ being obtained in Equations (29)–(31):

Ψ̄ = tr
(
HT′) 1

N
−

2
(
tr
(
ΘT
)
tr
(
ΘT′))(1 + δ

)
− tr

(
ΘT
)2

δ′(
(1 + δ)N

)2 , (29)

T′ = T

(
Θ +

ΘKδ′

(1 + δ)2N

)
T, (30)

δ′ =
1
N

(
1 −

tr
(
ΘTΘT

)
N2
(
(1 + δ)

)2

)−1

tr
(
TΘTΘ

)
. (31)

The SINR equation given in Equation (22) represents the analytical expression of the
SINR, which applies to all models of channel correlation.

Simplified Analytical Expression for the DASR of RZFP

We use the P-DoF model to further simplify the analysis of the SINR and, consequently,
the DASR. The correlations in the channel depend on how many degrees of freedom there
are in this channel. Nevertheless, in MMIMO, the channel’s degrees of freedom may be
substantially less than N. The P-DoF model as defined in [11,77–79] is presented in this
subsection. Thus, using the P-DoF model, H may be represented as

H =

√
1
c

YBH, (32)

where matrix Y in Equation (32) is given as Y ∈ CK×P, which can be demonstrated as
CN

(
0, 1). Matrix B in Equation (32) is denoted by B ∈ CN×P, which can be obtained from

P ≤ N of an N × N matrix to satisfy BHB = IP with P/N = c ∈ (0, 1], which represents
the correlation degree [11,77–79], and H = E[hkhH

k ] =
1
c BBH.
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Using the P-DoF model and EVD, the expression of MMSE CSI estimation in
Equation (16) can be formulated as

Θ =
ρtr

(ρtr + c)c
UmUH

m , (33)

where m = τtr if τtr ≤ P and is P if otherwise. The unitary matrix eigenvectors are given
by Um ∈ CN×m. Now, recall the trace of the MMSE estimation in Equation (17), and, using
the P-DoF model, the MMSE covariance matrix (Φ) can be simplified as

tr(Φ) =
ρtr τtr(N/P)2

ρtrN /P + 1
. (34)

The expression above can become a further simplified version of the MMSE estimation,
which is defined as

tr(Φ) =
ρtr τtr

(ρtr + P/N) P/N
. (35)

Now, we have obtained a simplified version of the MMSE estimation, and the transmit
covariance matrix can also be simplified using the P-DoF model; hence, we can apply these
simplifications to further simplify the SINR with the RZFP. The main findings of the RZFP
in MMIMO systems with the FDD mode and the P-DoF model are summed up in the
following:

SINR =
N ξ̃ δ̃2

(1+δ̃)2

ρd
+ Kξ̃ Ψ̃

, τtr ≤ P, (36)

where δ̃ denotes a simplified expression of the fixed-point expressions in Equations (23)
and (24) and yields

δ̃ =
τtr − K − Ũ +

√(
K − τtr

)2
+ 2
(
K + τtr

)
Ũ + Ũ2

2Ũ
, (37)

where the parameter Ũ in Equation(37) is given as Ũ = Pζ
(
1 + 1/ρtr

)
, and ξ̃ and Ψ̃

denote a simplified expression of Equations(28) and (29), which can be determined from
Equations (38) and (39):

ξ̃ =
D̃ ζ

((
2D̃K − K2 − Kτtr

)(
1 + δ̃

)2 Ũ2
)

τtr Ũ
(

D̃ − τtr
)(

1 + δ̃
) , (38)

where D̃ is given as D̃ = K + Ũ + δ̃Ũ, which is used to simplify the above equation:

Ψ̃ =
(1 + δ̃)2N τtr

((
1 + δ̃

)2Ũ3 − 2KPζτtr − K(K − 2D̃)Ũ + Pζτtr
(
τtr − 2

(
1 + δ̃

)
Ũ
))

D̃2 Pζ
((

1 + δ̃
)2 Ũ2 + K

(
2D̃ − K − τtr

)) . (39)

The SINR of the RZFP expression developed in this subsection allows the DASR of
the FDD mode MMIMO system to be easily obtained without Monte Carlo simulations,
and, hence, optimization with respect to power allocation becomes applicable. In the
following section, we will use the closed-form analytical formula developed here for the
SINR of the RZFP to investigate the DASR maximization over a wide range of scenarios.

5. Results of the Proposed Power Allocation Scheme

This section presents numerical findings that illustrate the DASR performance of the
RZFP with different power allocations with respect to the training sequence phase and data
phase. Hence, we compare the proposed method with optimized power allocation with
the conventional method that uses uniform power allocation. Our objective is to maximize
the DASR in MMIMO systems with the FDD operation. The lines represent an analytical
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expression for the SINR of the RZFP that has been developed in this paper and obtained
based on the expression provided in Equation (36). The markers denote the simulation of
the SINR that has been determined based on the expression in Equation (9).Both the lines
and markers are combined in the figures for notation convenience.

Figure 3 depicts the DASR with the correlation coefficient, thereby comparing the
proposed power optimization method with the conventional method, with τc = 50,
K = 10 users, SNR = 10 dB, and a correlation coefficient of 0.1, which implies a strong
correlation, while 0.9 implies an uncorrelated channel. The red and black lines with markers
depict the BS antennas of N = 200, while the magenta color and blue lines with markers
illustrate the BS antennas of N = 500. The results demonstrate that with short coherence
time and relatively strong correlation, the DASR was significantly increased and higher
than that obtained when N = 500. The results also demonstrate that an improvement
of around 9 bit/s/Hz in the DASR was achieved. In addition, the results presented here
show that a marked improvement in the DASR was achieved with the proposed power
optimization method. For example, when N = 200, around 3 bit/s/Hz was achieved with
the proposed method across all the correlation coefficient ranges considered. In addition,
when N was increased to N = 500, around 4 bit/s/Hz of improvement in the DASR was
achieved at relatively high correlated scenarios. Furthermore, the results demonstrate
that in order to achieve 30 bit/s/Hz, the proposed optimization method achieved a gain
in power of around 3 dB, which signifies the applicability of the proposed method in a
realistic scenario.

In order to observe the DASR performance with different total transmit power values,
Figure 4 investigates the DASR performance of the proposed power allocation method in
comparison with the conventional method using different SNR values. The configurations
were chosen as K = 10 users, τc = 50, N = 200, and N = 500, and the correlation coefficient
was 0.1. The results show that when the transmit power was reduced, i.e., SNR = −5 dB,
there was a slight improvement in the DASR for both of the scenarios considered. However,
upon increasing the power, i.e., SNR = 5 dB, SNR = 10 dB, and SNR = 15 dB, a significant
improvement in the DASR was achieved using the proposed power allocation method.
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Figure 3. DASR with correlation coefficient comparing different power allocation schemes with
different numbers of BS antennas: N = 200 and N = 500.

Figure 5 investigates the DASR performance with varying amounts of N antennas
comparing the proposed power optimization method with the conventional method when
a different number of users K was considered. The configurations were τc = 50, the average
transmit power was considered so that SNR = 10 dB, and the correlation coefficient was
0.1. The results show that a considerable enhancement in the DASR was achieved when
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the power was optimized, especially when N was increased to N > 200. For example,
with N = 300, 350, 300, 450, and 500, approximately 8 bit/s/Hz of improvement in the
DASR was achieved.
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Figure 4. DASR with SNR in dB comparing different power allocation methods with different
numbers of BS antennas: N = 200 and N = 500.

Figure 5. DASR with different numbers of N antennas comparing different power allocation methods
with different numbers of users antennas; K = 10 and K = 20.

Figures 6 and 7 investigate the DASR performance with coherence block time compar-
ing the proposed power optimization method with the conventional method, with N = 200
and N = 500, respectively. The configurations were τc = 50, an average transmit power
was considered, i.e., SNR = 10 dB, and the correlation coefficient was 0.1. The results
indicate that when the coherence time was increased, the DASR rose rapidly, thereby
achieving an ∼53 rate at N = 200 and an ∼67 rate at N = 500. In addition, the results
demonstrate that the proposed power optimization scheme enhanced the DASR perfor-
mance markedly over all the coherence time values considered. Note that the degradation
in the DASR performance with a large number of BS antennas (N > 200) was due to the
residual interference caused by imperfect channel estimation. With increasing BS antennas,
the RZF precoder’s interference cancellation capability diminishes, thus leading to height-
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ened residual interference. Additionally, in a scenario with limited coherence time, where
the prelog fraction designates the time allocated to channel estimation, a considerable
impact on the DASR arises, since the number of N far exceeds the considered coherence
time, thereby leaving insufficient time for transmitting useful data after CSI estimation.
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Figure 6. DASR with coherence time comparing different power allocation methods, with N = 200.

50 100 150 200 250

Coherence time

25

30

35

40

45

50

55

60

65

70

A
ch

ie
va

b
le

 S
u

m
 R

at
e 

[b
it

/c
h

an
n

el
 u

se
] Proposed approach, N=500

Conventional approach, N=500

Figure 7. DASR with coherence time comparing different power allocation methods, with N = 500.

Figure 8 investigates the DASR performance with N numbers of antennas compar-
ing the proposed power optimization method with the conventional method when the
coherence time was increased τc = 100 but with various N and different SNR values.
The correlation coefficient was 0.1 and K = 10. The results indicate that increasing the SNR
would significantly enhance the DASR. A peak DASR was achieved at N = 300, and an
enhancement of 23 bits in the DASR was achieved when SNR = 10 dB in comparison with
SNR = 0 dB. The results show that for both of the SNR values considered, the proposed
power allocation optimization method improved the DASR performance outcomes, espe-
cially as N > 200. The results presented in the section clearly show the effectiveness of the
proposed power optimization approach in improving the DASR performance.
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Figure 8. DASR with different numbers of N comparing different power allocation methods with
different SNR values, i.e., SNR = 0 dB and SNR = 10 dB.

6. Conclusions

This research addressed the problem of maximizing the DASR in the MMIMO with
FDD systems considering URLLC scenarios, i.e., with LCT. To this end, a low-complexity
power allocation optimization method was proposed for DASR maximization. In addition,
this paper developed an analytical expression for the SINR and the DASR of the RZFP
in FDD systems using the random matrix method. Different scenarios were examined
to determine the effect of power optimization on the DASR of MMIMO with the FDD
mode and LCT. The results demonstrated a precise alignment between the theoretical
analysis (lines) and the simulated (markers) results, thereby substantiating the primary
contributions of this paper. The results also indicated that a considerable enhancement
in the DASR was obtained using the proposed power allocation method in comparison
with the conventional uniform power allocation method. These findings allow for the
implementation of FDD systems with high frequencies, especially in the scenarios of LCT.
Future wireless communication systems, e.g., 6G, might adopt cell-free networks. Therefore,
it is worthwhile to investigate a viable CSI estimation mechanism for the FDD systems with
cell-free networks in the future. In addition, investigating the power allocation strategy for
the aforementioned scenario may also be worth considering in the future.
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