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Abstract: The present study evaluated the applicability of 1H NMR and UV-Vis spectroscopies as
analytical techniques for the characterization and determination of biodiesel conversion and for
monitoring the oxidative stability of biodiesel samples with antioxidants. For this study, safflower
and babassu biodiesels were obtained through transesterification, and physicochemical properties
confirmed the success of both reactions. A bench-top accelerated oxidation system was used as
an alternative to the Rancimat® method, with samples of 6.0 g heated at 110 ± 5 ◦C and collected
every 2 h for 12 h. The agreement for biodiesel conversions was good, with divergences between
2% and 0.4% for safflower biodiesel and 1.9% for babassu biodiesel. As for UV-Vis spectroscopy, the
technique showed the same trend as the Rancimat® method, showing efficiency in evaluating the
oxidative stability of safflower biodiesel and in the performance of antioxidants BHT and DMP-30.
The accuracy of NMR signals integration for mixtures of safflower oil and safflower biodiesel and the
use of UV-Vis spectroscopy associated with a bench-top accelerated oxidation system to investigate
the performance of phenolic and amine antioxidants in safflower and babassu biodiesel were explored
for the first time, showing results close to the standard methods. Therefore, 1H NMR and UV-Vis
spectroscopies could be applied as alternatives to the GC and Rancimat® methods to determine
conversion and monitor the oxidative stability of biodiesel rapidly and practically.

Keywords: safflower biodiesel; babassu biodiesel; NMR; UV-Vis; antioxidant; oxidative stability;
transesterification

1. Introduction

Biodiesel production is an industrial area rising due to the biofuel demand growth
and the political and economic issues related to the need to decarbonize the worldwide
energy matrix [1,2]. Also known as Fatty Acid Methyl Esters (FAME), it is composed
mainly of alkyl esters (saturated and unsaturated) and predominantly produced through
transesterification reaction [3–8]. In Brazil, the current mandatory biodiesel percentage in
diesel is 12% (B12), with projections of a 1% annual increase until 2025 [9]. However, despite
the importance of biodiesel for the Brazilian energy matrix, its application as biofuel in
diesel cycle engines is still connected to questions related to the physicochemical properties
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that can interfere with biodiesel performance, such as a low ester content and low oxidative
stability [3,10–14].

According to Resolution nº 920 (4.4.2023) of the Brazilian National Agency for Petroleum,
Natural Gas and Biofuels (ANP), the ester content is determined through gas chromatog-
raphy (GC) following the standard method EN 14103:2020, requiring a minimum value
of 96.5% (m/m). Technical problems have been reported by use of mixtures with high
vegetable oil content, such as lower thermal efficiency, higher emissions of carbon monox-
ide (CO) and particulate matter, fouling on the injectors, carbonaceous deposits near the
nozzles, and engine performance and durability reduction. Some researchers attribute
these problems to the combined effects of density, viscosity, free fatty acids, phospholipids,
sterols, water, odorants, and other impurities of vegetal oils [11].

Concerning oxidative stability, the resistance of biodiesel to the oxidative process
is measured using the Rancimat® method following the standard EN 14112:2020. The
minimum required time for this measurement is 13 h (Resolution nº 920 (4.4.2023)). In the
experimental procedure, the volatile products formed contribute to the water conductivity
increase in the measuring cell, and the time taken to determine them is called induction time
or oxidation stability [15,16]. As the low oxidative stability of biodiesel affects its quality,
this phenomenon has great importance in its production chain. Some problems attributed
to the oxidized biodiesel are: (1) incompatibility with automotive parts; (2) corrosion
caused by the presence of water and free fatty acids; (3) incompatibility with copper,
aluminum, zinc, brass, and bronze; (4) swelling of nitrile rubber; (5) plugging of fuel lines;
and (6) fouling on surfaces in contact with the biofuel [11,15–18].

Concerning the impact of biodiesel oxidation on engine performance and emissions,
in advanced stages, it can lead to the formation of acidic compounds, insoluble gums,
and sediments that can clog fuel filters, causing further damage to the engine. The acid
formation may cause fuel system corrosion, and hydroperoxides, produced in the autooxi-
dation process, are very unstable and tend to attack elastomers [17]. In previous research,
Monyem and Van Gerpen [17] found that the heating value of oxidized biodiesel was ca.
2.2% less than that of unoxidized biodiesel, and Thompson et al. [19] found that the heat
of combustion decreased as the peroxide value increased and the calorific value reduced
with the time of storage. Regarding emissions, Venkatesan et al. [18] detected that nitrogen
oxide (NOx) emissions are higher in biodiesel blends than in diesel fuel in all loads, due
to the higher combustion temperature and the presence of oxygen. Thus, aiming for the
growth of the biodiesel chain is crucial to determine the ester content (conversion) and
monitor its oxidative stability.

The standard analytical methodologies to evaluate the conversion and oxidative
stability of the biodiesel are based on gas chromatography (GC) and the Rancimat® method,
respectively. However, despite gas chromatography (GC) being a core component of
analytical chemistry, expensive consumables and repairs, baseline drift, overlapping signals,
and the need for standards can make it difficult to use [20,21]. Regarding the Rancimat
method, issues like analysis and cleaning can be laborious, and additionally, expensive
consumables can also reduce the frequency of use. Thus, to optimize resources and maintain
accuracy, it is crucial to consider developing and implementing low-cost-effective and
adaptable analytical techniques as alternatives to standard methods [21–24].

Nuclear Magnetic Resonance (NMR) spectroscopy has been used to quantify and
investigate molecular compositions of biodiesel samples [25–28]. Doudin [25] characterized
and assigned the molecular structure of sunflower oil biodiesel and quantified the moieties
of the molecules, particularly the unsaturated long-chain alkyl esters, using NMR. For this
procedure, the methyl group (-CH2-) adjacent to the carbonyl group, which has a chemical
shift at ~2.27 ppm, was used as an internal reference. Also, the conversion of trans-esterified
molecules (98.7%), unreacted glycerides, free fatty acids, and the quantity of the residual
alcohol was determined. Based on the results, the author recommends using NMR as an
alternative to the official method to characterize biodiesel samples. This method has an
advantage over others since it does not require standard or derivatization of the molecules.
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Ng and Yung [28] applied NMR spectroscopy for the rapid and accurate characterization
of palm oil biodiesel (POB). The composition of POB in any blend with petroleum diesel
was determined through analyzing the signals of the methoxyl and olefinic hydrogens. As
NMR operates through integrating hydrogen signals, it is not affected by the concentration
of samples in CDCl3, and there is no requirement for standard calibrations each time a
sample is run. The presence of vegetable oil components in biodiesel due to incomplete
transesterification can be detected using 1H and 13C NMR spectra, which can be more
effective than some standard methods that cannot differentiate between methyl ester and
vegetable oil components.

However, despite its accuracy and reproducibility for compound quantification and
quality control [29], NMR remains underutilized in analytical investigations. In our work,
1H NMR was employed to determine the conversion of the safflower and babassu biodiesel
samples using the integrated areas of specific signals (methyl esters (-CH3) and α-carbonyl
methylene (-COOCH2-)) [30–32].

As an alternative to the Rancimat® method, a bench-top accelerated oxidation sys-
tem associated with UV-Vis spectroscopy to monitor maxima absorbance at 270 nm was
used [33,34]. In previous works, researchers have proposed alternative methods to de-
termine the oxidative stability (OS) of biodiesel by changing how accelerated oxidation
is induced or determined. A new approach to determine the oxidative stability (OS) of
biodiesel samples produced from sunflower, grapeseed, corn, and soybean oils was pub-
lished by Orozco et al. [33]. This approach involves a photodegradative reaction and a
flow UV-Vis kinetics spectrophotometric method. The kinetic curves were constructed
using the kinetic mode of the UV-Vis spectrometer and plotting the absorbance measured
at the pre-fixed wavelengths such as 270 nm. The variation for the biodiesel samples
was evaluated for about 6 min of irradiation to monitor the OS in a reasonable time of
analysis and determine, in the shortest possible time, a result statistically comparable
to the induction time measured using the Rancimat® method. According to the results,
the correlation coefficient obtained at 4.0 min of irradiation was R2 = 0.9913, describing
the best statistical proportionality between the new method and the induction time. The
method suggested is a valuable alternative to measure the oxidative stability of biodiesel.
It has several advantages over the official Rancimat® method, such as being faster, easier,
and requiring a smaller sample quantity. In another publication by Orozco et al. [34], the
accelerated oxidation of biodiesel samples was induced using an ultrasonic probe. The
complete oxidation of samples occurred in less than 16 min due to the cavitation process
and fast temperature increase. The absorbance at 270 nm versus time was used to estimate
the induction time, with results comparable to those obtained using the Rancimat® method.

The novelty of the work was the characterization of the safflower and babassu oils
and their biodiesel samples, the quantification of their conversions employing 1H NMR,
and the monitoring of the oxidative stability of the biodiesel samples through associated
system bench-top accelerated oxidation/UV-Vis spectroscopy. In addition, the antioxidant
performance of the 2,4,6-Tris(dimethylaminomethyl)phenol (DMP-30) and butylated hy-
droxytoluene (BHT) were investigated. The formulations safflower biodiesel/DMP-30 and
babassu biodiesel/DMP-30 were studied for the first time. The accuracy of NMR signals
integration was also explored with mixtures of safflower oil and safflower biodiesel, using
different proportions (50:50 and 20:80).

2. Materials and Methods
2.1. Materials

Safflower oil was purchased in the central market in Apodi-Rio Grande do Norte-Brazil
(geographical coordinates—latitude: 05◦38′58′′ S and longitude: 37◦47′45′′ W) and babassu
coconut oil in Teresina-Piauí-Brazil (geographical coordinates—latitude: 05◦05′20′′ S and
longitude: 42◦48′07′′ W). The acidity value (Cd 3d-63) and saponification index (Cd 3–25)
were determined according to the official methods and recommended practices of the
American Oil Chemists’ Society (AOCS) [29]. All chemicals used were of analytical



Fuels 2024, 5 110

grade and used as received without any further purification. Synthetic antioxidants
2,4,6-Tris(dimethylaminomethyl)phenol (DMP-30, 95%) and butylated hydroxytoluene
(BHT, ≥99%) were purchased in Sigma-Aldrich (Barueri, Brazil). Their structures are
shown in Figure 1.
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Figure 1. Chemical structures of 2,4,6-Tris(dimethylaminomethyl)phenol (DMP-30, 95%) and buty-
lated hydroxytoluene (BHT, ≥99%).

2.2. Biodiesel Production

Both biodiesel samples were obtained following five steps, as shown in Figure 2.
The first reaction was carried out with methanol (CH3OH, ≥99.8%) at the molar ratio
of 1:6 (oil/alcohol) and 1.5% of potassium hydroxide (KOH, 85%) based on the mass of
the used oil (safflower or babassu). The methanol and KOH masses were calculated
using Equations (1) and (2). The experimental apparatus consisted of a jacketed glass
reactor connected to a thermostatic circulation water bath and a reflux condenser. The
reactions were heated at 60 ± 5 ◦C for 120 min for safflower biodiesel and 60 min for
babassu biodiesel. After reaction times, the biodiesels and glycerol were separated in
funnels at room temperature (Figure 2: second step). After separation, the upper phases
(mixtures of esters) were submitted to new transesterification processes using a new catalyst
solution prepared with 15% methanol and 0.5% KOH relative to the initial oil mass. The
two reactions were conducted at 60 ± 5 ◦C for 60 min. Subsequently, biodiesels were
washed, and rotary evaporation processes were used to remove methanol and water
residuals (Figure 2: fifth step).

m alcohol (g) =
2×moil ×MMalcohol × (SI−AV)

MMKOH × 1000
(1)

m KOH (g) =
(0.015)×moil

purityKOH
(2)

where:

malcohol = mass of alcohol (g),
moil = mass of oil (g),
MMalcohol = Molar Mass of alcohol (g/mol),
SI = Saponification Index of oil (mg KOH/g oil),
AV = Acidity Value of oil (mg KOH/g oil),
MMKOH = Molar Mass of KOH (g/mol),
mKOH = mass of KOH (g), and
purityKOH = purity of KOH (%).
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2.3. Physicochemical Properties

The density (kg/m3) at 20 ◦C and kinematic viscosity (mm2/s) at 40 ◦C were deter-
mined following the ASTM test methods D 4052 (2022) and D 445 (2023), respectively. The
experiments were conducted in a digital densimeter (Anton Paar DMA 4500, Ashland, VA,
USA) and a glass capillary kinematic viscometer.

2.4. 1H NMR–Biodiesel Conversion and UV-Vis–Oxidative Stability

The Nuclear Magnetic Resonance (NMR) and Ultraviolet-Visible (UV-Vis) spectro-
scopies were used to determine biodiesel conversion and oxidative stability. The NMR
spectra were recorded on a Bruker Avance DRX-500 spectrometer in deuterated chloroform
(CDCl3). The data were processed using Bruker Top Spin software and used for the calculus
of biodiesel conversion via Equation (3) [30,31]. The integral areas at 3.7 ppm from the
methyl esters (-CH3) and 2.2–2.3 ppm from the α-carbonyl methylene in the fatty ester
derivatives (-COOCH2-) were used for calculation.

Conversion (%) = 100×
(

2A(−CH3)

3A(−COOCH2−)

)
(3)

The ester content was also determined using gas chromatography (Varian, GC 450
model, Palo Alto, CA, USA), according to the standard method EN 14103:2020, to compare
the results of both techniques (GC and NMR).

Using the proposed method, the oxidative stability was accomplished using a bench-
top accelerated oxidation system (see Figure 3) associated with a UV-Vis spectrophotometer
to monitor the increase in the absorbance maxima at 270 nm.

The UV-Vis spectra were collected in a wavelength range of 185–1200 nm in a double-
beam spectrophotometer (SPECORD 250 PLUS, Analytik Jena, Sao Paulo, Brazil), with
a bandpass varying between 0.2, 0.5, 1, 2, and 4 nm. The safflower biodiesel/hexane
and babassu biodiesel/hexane solutions were prepared at a dilution ratio of 250 µL
biodiesel/250 mL hexane (v/v) to obtain appropriate absorbance signals and to avoid the
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saturation of the spectrophotometer detector. Samples of 6.0 g were heated at 110 ± 5 ◦C
(identical to the temperature of the Rancimat® method) and collected every 2 h (2, 4, 6, 8,
10, and 12 h). The oxidative stability was also determined using the Rancimat® method
(Metrohm, model 873, Herisau, Switzerland) according to EN 14112:2020, to compare the
results of both techniques (Rancimat® and UV-Vis).
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Figure 3. Bench-top accelerated oxidation system used in the proposed method to assess the oxidative
stability of the safflower and babassu biodiesels.

3. Results
3.1. Physicochemical Properties of the Biodiesel Samples

The feedstocks used for biodiesel production were safflower and babassu oils. The
physicochemical properties of the biodiesel samples are shown in Table 1.

Table 1. Physicochemical properties of the safflower biodiesel (SB) and babassu biodiesel (BB).

Properties Results
Limits *, Methods

SB BB

Density (20 ◦C), kg/m3 881 877 850–900, ASTM D 4052
Kinematic viscosity (40 ◦C),

mm2/s 4.2 3.6 3.0–5.0, ASTM D 445

Acidity value, mg KOH/g 0.4 0.3 Max 0.5, AOCS Cd 3d-63
* ANP Resolution nº 920 (4.4.2023) and AOCS Official Method Cd 3d-63.

3.2. Characterization and Evaluation of the Biodiesel Samples using 1H NMR

Nuclear Magnetic Resonance spectroscopy (1H NMR) was employed for signals
characterization of the safflower and babassu oils and their methyl ester mixtures entitled
biodiesel, and to quantify the conversion (see Figures 4–6 and Tables 2–4).



Fuels 2024, 5 113Fuels 2024, 5, FOR PEER REVIEW 7 
 

 

 

Figure 4. 1H NMR spectrum of safflower oil. 

 

Figure 5. 1H NMR spectrum of safflower biodiesel (SB). 

Table 2. 1H NMR chemical shifts of the safflower oil and safflower biodiesel. 

Molecule 
Safflower Oil 

δ (ppm) 

Safflower Biodiesel 

δ (ppm) 

-CH=CH- 

Olefinic protons 
~5.3–5.4 ~5.3–5.4 

-CH2OCOR * 

Methylene group of glycerol 
~4.1–4.3 - 

-CH3 

Methyl ester 
- ~3.7  

=CH-CH2-CH= 

α-methylene group to two double bond 
~2.7–2.8  ~2.7–2.8 

-COOCH2- 

α-methylene group to ester 
~2.3 ~2.2–2.3 

Figure 4. 1H NMR spectrum of safflower oil.

Fuels 2024, 5, FOR PEER REVIEW 7 
 

 

 

Figure 4. 1H NMR spectrum of safflower oil. 

 

Figure 5. 1H NMR spectrum of safflower biodiesel (SB). 

Table 2. 1H NMR chemical shifts of the safflower oil and safflower biodiesel. 

Molecule 
Safflower Oil 

δ (ppm) 

Safflower Biodiesel 

δ (ppm) 

-CH=CH- 

Olefinic protons 
~5.3–5.4 ~5.3–5.4 

-CH2OCOR * 

Methylene group of glycerol 
~4.1–4.3 - 

-CH3 

Methyl ester 
- ~3.7  

=CH-CH2-CH= 

α-methylene group to two double bond 
~2.7–2.8  ~2.7–2.8 

-COOCH2- 

α-methylene group to ester 
~2.3 ~2.2–2.3 

Figure 5. 1H NMR spectrum of safflower biodiesel (SB).

Table 2. 1H NMR chemical shifts of the safflower oil and safflower biodiesel.

Molecule Safflower Oil
δ (ppm)

Safflower Biodiesel
δ (ppm)

-CH=CH-
Olefinic protons ~5.3–5.4 ~5.3–5.4

-CH2OCOR *
Methylene group of glycerol ~4.1–4.3 -

-CH3
Methyl ester - ~3.7

=CH-CH2-CH=
α-methylene group to two double bond ~2.7–2.8 ~2.7–2.8

-COOCH2-
α-methylene group to ester ~2.3 ~2.2–2.3
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Table 2. Cont.

Molecule Safflower Oil
δ (ppm)

Safflower Biodiesel
δ (ppm)

=CH-CH2-
Methylene group adjacent to double bond ~2.0–2.1 ~ 2.0

-COOCH2CH2-
β-methylene proton ~1.6 ~ 1.6

–(CH2)n-
Aliphatic chain ~1.2–1.3 ~1.2–1.3

-CH3
Terminal methyl group ~0.9 ~0.8–0.9

* R1 or R3. References: [34,35].
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Table 3. Calculated conversions of safflower biodiesel (SB) and its mixture with safflower oil (SO)
using 1H NMR peak areas.

Sample Signal δ (ppm) Peak Area Conversion

Safflower biodiesel (SB)
(Sample 1)

-COOCH2-
~2.2–2.3 2.08

95.5% ‡

-CH3
~3.7 2.98

Safflower biodiesel (SB)
(Sample 2)

~2.3–2.4 1.67
88.6% ‡‡

~3.6 2.22

Mixture 50% (SO):50% (SB)
~2.3 11.68

43%
~3.7 7.54

Mixture 20% (SO):80% (SB)
~2.3 80.37

80.4%
~3.6–3.7 97.30

‡ By standard method EN 14103:2020 = 97.5%. ‡‡ By standard method EN 14103:2020 = 88.2%.

Table 4. Calculated conversions of babassu biodiesel (BB) using 1H NMR peak areas.

Sample Signal δ (ppm) Peak Area Conversion

Babassu biodiesel (BB)
-COOCH2-

~2.2–2.3 6.81
96.3% ‡

-CH3
~3.7 9.84

‡ By standard method EN 14103:2020 = 98.2%.

3.3. Oxidative Stability Monitoring of the Biodiesel Samples using UV-Vis

As an alternative to the official Rancimat® method, the authors proposed a bench-
top accelerated oxidation system (see Section 2, Figure 3) with monitoring using UV-Vis
spectroscopy of the absorbance maxima at 270 nm. The data are shown in Figures 7–10 and
Tables 5 and 6.
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Figure 7. UV–Vis spectra of safflower biodiesel (SB)/hexane solutions (250 µL (SB): 250 mL hexane)
using a SPECORD 250 PLUS Double-beam Spectrophotometer, analytikjena, Jena, Germany. The
samples were collected in the benchtop accelerated oxidation system every 2 h (2, 4, 6, 8, 10, and 12 h),
and the absorbance maxima at 270 nm was evaluated.
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Figure 9. UV–Vis spectra of safflower biodiesel (SB)/antioxidant (AO)/hexane solutions (250 µL
(SB)/1000 mg/kg (AO)/250 mL hexane) using a SPECORD 250 PLUS Double-beam Spectrophotome-
ter, analytikjena, Jena, Germany. The samples were collected in the bench-top accelerated oxidation
system after 12 h, and the absorbance maxima at 270 nm was evaluated.

Table 5. Induction period of safflower biodiesel with antioxidants BHT and DMP-30 using
Rancimat® method.

Sample Induction Period (h) Limit ‡, Methods

Safflower biodiesel (SB) 3.9
13 h, EN 14112SB + BHT 1000 mg/kg 6.4

SB + DMP-30 1000 mg/kg 26.4
‡ ANP Resolution nº 920, 4 April 2023.
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Table 6. Comparative analysis of the oxidative stability improvement of safflower biodiesel with antiox-
idants BHT and DMP-30 using Rancimat® method and UV-Vis spectroscopy (λmax = 270 nm) methods.

Sample Rancimat® UV-Vis (λmax = 270 nm)

* SB + BHT 1000 mg/kg 64% 38%

SB + DMP-30 1000 mg/kg 577% 54%
* Safflower biodiesel (SB).
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Figure 10. UV–Vis spectra of babassu biodiesel (BB)/antioxidant (AO)/hexane solutions (250 µL
(BB)/1000 mg/kg (AO)/250 mL hexane) using a SPECORD 250 PLUS Double-beam Spectrophotome-
ter, analytikjena, Jena, Germany. The samples were collected in the bench-top accelerated oxidation
system after 12 h, and the absorbance maxima at 270 nm was evaluated.

4. Discussion

The quality of the biodiesel physicochemical properties is essential for its application
as fuel in cycle diesel engines [11,36–38]. Notably, density and viscosity can impact com-
bustion efficiency because the flow resistance reduces the fluid motion and atomization
process occurring in injectors. An adequate viscosity benefits the formation of tiny aerosol
droplets supporting the complete combustion, causing minor particulate deposition, less
coke formation into the injector, minor ring sticking of the piston, and additionally im-
proves the cold starting on a diesel engine [6,39]. According to the results shown in Table 1,
the densities (20 ◦C) and kinematic viscosities (40 ◦C) of the safflower biodiesel (SB) and
babassu biodiesel (BB) are limits established by ANP Resolution nº 920 (4 April 2023).
Concerning acid value, defined as mg of NaOH or KOH required to neutralize the free
fatty acids in 1 g of biodiesel, it is a parameter that expresses the level of lubricity or rate
of degradation throughout storage, with implications for the stability and shelf life of the
biofuel [40]. The acid value must be limited to a maximum of 0.5 mg KOH/g to attend to
the standard performance of an engine, as indicated by ANP resolution nº. 920 because a
high acid value can cause severe deterioration in the fuel supply system.

1H NMR spectroscopy was used to characterize the safflower oil and to evaluate
conversions of the babassu and safflower biodiesels (Tables 2–4). Specific signals were
employed for monitoring the profile of the safflower oil, such as the methylene group of
glycerol (4.1–4.3 ppm) and the protons of olefinic (5.3–5.4 ppm), bis-allylic (2.7–2.8 ppm)
and allylic (2.0–2.1 ppm), which are directly related to the amount of unsaturated fatty acids,
showing that this technique can be used to determine the unsaturated molecules as well as
point out trends susceptible to suffer oxidation process [41]. For quantifying the biodiesel
conversion, the integral areas in the targeted groups such as methoxy, present in the methyl
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esters at 3.7 ppm, and α-carbonyl methylene in fatty ester derivatives at 2.2–2.3 ppm were
used to quantify the relative number of hydrogens; see Equation (3) [25,30]. Comparisons
between calculated and measured conversions (gas chromatography: EN 14103:2020) are
given in Tables 3 and 4. The results show good agreement, with deviations of up to 2% for
Sample 1 of the safflower biodiesel, 0.4% for Sample 2 of the safflower biodiesel, and 1.9%
for the babassu biodiesel sample. According to the literature [30], accurate measurements
require satisfactory separation of the signals at 2.0–2.1 ppm (methylene group adjacent
to double bond: allylic protons) and 2.2–2.3 ppm (α-carbonyl methylene group to ester
derivative), which is behavior that occurs in the spectra of this work. The accuracy of
NMR signals integration was also explored through mixtures of safflower oil and safflower
biodiesel evaluation, using the proportions 50:50 and 20:80 (see Table 3). The results showed
an agreement of 0.5% in the proportion of 20:80% (biodiesel) and 14% in the proportion of
50:50% (biodiesel). Thus, 1H NMR is more indicative for quantifying biodiesel conversion
at proportions higher than 80%, serving as an alternative tool to gas chromatography, once
that ANP resolution nº. 920 establishes a minimum ester content of 96.5% [6,16,42].

The monitoring of the oxidative stability of biodiesel samples was carried out in a
bench-top accelerated oxidation system (see Figure 3) associated with a UV-Vis spectropho-
tometer through the inspection of the increasing of the absorbance maxima at 270 nm,
which corresponds to the n→ π* transition, where an electron from a non-bonding orbital
localized near the oxygen atom is excited to an antibonding orbital around the chromophore
carbonyl (C=O), characteristic of secondary oxidation products such as α-diketones or un-
saturated ketones [43,44]. Figure 7 shows that the increasing absorbance at around 270 nm
corresponds to the formation of oxidation products resulting from the degradation of
safflower biodiesel [33,36]. Additionally, some trends of the accelerated oxidation pro-
cess can be observed, such as until 6 h, safflower biodiesel kept its average absorbance
around 0.55, representing a difference of 2.83% compared to the biodiesel fresh (0 h); see
Figure 8. As the oxidation process continued, many times higher than 8 h, absorbance
increases reached a maximum of 1.20 (124.87% compared to the biodiesel fresh) at about
12 h, corresponding to the composition changes in the biodiesel due to oxidation [44,45].
Conforming to Deriven and Aydin (2023) [36], safflower oil is composed mainly of un-
saturated fatty acids (more than 89%), especially by oleic acid (C18:1) and linoleic acid
(C18:2), and this characteristic has an outstanding effect on biodiesel properties as well
as its storage and oxidation [25]. Generally, biodiesel produced with a high percentage of
unsaturated compounds suffers oxidation more easily in conjunction with the decrease in
cetane number, the heat of combustion, and viscosity [46]. Thus, it is essential to investigate
the properties of biodiesel, focusing on the correlation between composition and results
using different methods, standards, and alternatives, like UV-Vis spectroscopy, which
proved to be an adequate technique to monitor the oxidative degradation of biodiesel
obtained from a feedstock that is predominantly unsaturated [46,47].

Regarding the strategy to improve the oxidative stability of safflower biodiesel (SB),
two synthetic antioxidants, BHT and DMP-30, were used at a concentration of 1000 mg/kg.
The induction period and oxidative stability improvement were evaluated through the
Rancimat® method and UV-Vis spectroscopy (λmax = 270 nm). The results for the samples
SB + BHT and SB + DMP-30 collected in the accelerated oxidation system after 12 h are
shown in Figure 9 and Tables 5 and 6. Analysis of the absorbance maxima at 270 nm pre-
sented values of 1.81 for SB, 1.12 for SB + BHT (reduction of 38%: 1.81→ 1.12), and 0.83 for
SB + DMP-30 (reduction of 54%: 1.81→ 0.83). Following the trend pointed out through
UV-Vis spectroscopy, the Rancimat® method (EN 14112) showed induction periods of 3.9 h
for SB, 6.4 for SB + BHT (improvement of 64%: 3.9 → 6.4), and 26.4 for SB + DMP-30
(improvement of 54%: 3.9→ 26.4), while the limit by ANP Resolution nº 920 is a minimum
of 13 h (Table 5). At both analytical techniques, 2,4,6 tris(dimethylaminomethyl)phenol
(DMP-30) presented the better antioxidant performance, effectively reducing products
formed during the termination stage, such as ketones, aldehydes, organic acids, among
others that possess the chromophore carbonyl (C=O) in their structures, consequently
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diminishing absorbance at 270 nm and increasing the induction period [20]. Amine organic
compounds have been efficient hydroxyl radical scavengers (·OH), protecting biodiesel
against the formation of compounds that possess the chromophore carbonyl [38]. Accord-
ing to the results shown in Table 6, the DMP-30, which possesses tertiary amine groups,
reduced the absorbance maxima (λmax = 270 nm) by 54%, shown to be a potent inhibitor
of secondary oxidation products [38]. Concerning butylated hydroxytoluene (BHT), its
reduction at absorbance maxima (λmax = 270 nm) was 38%. BHT is a primary antioxidant
that promotes the removal or inactivation of free radicals formed during the initiation or
propagation of biodiesel oxidation, consequently inhibiting the chain reaction [6,16,38].
The chain-breaking step by which this inhibitor reduces oxidation rates has generally been
considered to involve the hydrogen abstraction process. Its structure enables it to donate a
proton to a free radical, regenerating the fatty acid methyl ester (FAME) and stopping the
oxidation through a radicalar mechanism. Thus, BHT is converted into a free radical and
stabilized without promoting or propagating biodiesel oxidation [48]. In a comparative
analysis of the oxidative stability improvement for the samples SB + DMP-30 and SB + BHT,
the Rancimat® method showed the same trend observed in the monitoring of the maxima
absorbance, with percentages of 577% and 64%, respectively (see Table 6). Thus, UV-Vis
spectroscopy was efficient as an analytical technique to evaluate both parameters: (1) oxida-
tive stability of safflower biodiesel and (2) performance of different kinds of antioxidants
(phenol and amine).

In previous publications [6,16,38,47], we assessed the effectiveness of natural and
synthetic antioxidants in enhancing the oxidative stability of biodiesel samples derived
from soybean, babassu, sunflower, and residual frying oils. The results showed that amine
and phenol molecules were the most effective.

Another biodiesel composed mainly of saturated methyl esters was monitored to
validate the UV-Vis spectroscopy as an alternative to the Rancimat® method. Figure 10
shows the spectra of the babassu biodiesel (BB) and BB + BHT, collected in the bench-top
accelerated oxidation system after 12 h to evaluate the absorbance maxima at 270 nm. The
sample BB + BHT presented a reduction of 25% at maxima absorbance (0.386→ 0.288),
which suggests that UV-Vis is adequate for monitoring the oxidation progress of biodiesel
samples and investigating the performance of antioxidants of different classes [49–53].

In terms of the characterization and determination of biodiesel conversion, oxidative
stability, and the performance of different kinds of antioxidants in biodiesel, the proposed
method is a promising alternative to the GC and Rancimat® methods. In the future, it
would be valuable to investigate the scalability and practicality of the proposed method.
Additionally, determining the residual quantity of antioxidants after the oxidation process
and assessing the environmental impacts of amine and phenol antioxidants in biodiesel
production are also important areas for investigation.

5. Conclusions

The results demonstrated adequate performance of the 1H NMR spectroscopy for
the characterization and determination of the biodiesel conversion using specific signals
with good agreement, no greater than 2% between calculated and measured conversions,
as well as of the UV-Vis for the monitoring of the oxidative stability of biodiesel samples
using the increasing maxima absorbance at 270 nm showing the same observed in the
Rancimat® method. Thus, UV-Vis spectroscopy was efficient as an analytical technique
to evaluate the oxidative stability of biodiesels and the performance of different kinds of
antioxidants. Furthermore, the bench-top accelerated oxidation system was efficient in
assessing the oxidative stability of the safflower and babassu biodiesels. The accuracy of the
NMR signals integration was also explored using mixtures of safflower oil and safflower
biodiesel, with an agreement of 0.5% in the proportion of 80% (biodiesel), being more
indicative for quantifying biodiesel conversion at proportions higher than 80% and serving
as an alternative tool to gas chromatography once that ANP resolution nº 920 establishes a
minimum ester content of 96.5%.
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