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Abstract: Fuel consumption optimization is a critical field of research within the automotive industry
to meet consumer expectations and regulatory requirements. A reduction in fuel consumption can
be achieved by reducing the energy consumed by the vehicle. Several subsystems contribute to the
overall energy consumption of the vehicle, including the air conditioning (A/C) system. The loads
within the A/C system are mainly contributed by the compressor, condenser fan, and underhood
aerodynamic drag, which are the components targeted for overall vehicle energy use reduction in
this paper. This paper explores a new avenue for A/C system control by considering the power
consumption due to vehicle drag (regulated by the condenser fan and active grille shutters (AGS)) to
reduce the energy consumption of the A/C system and improve the overall vehicle fuel economy.
The control approach used in this paper is model predictive control (MPC). The controller is designed
in Simulink, where the compressor clutch signal, condenser fan speed, and AGS open-fraction are
inputs. The controller is connected to a high-fidelity vehicle model in Gamma Technologies (GT)-Suite
(which is treated as the real physical vehicle) to form a software-in-the-loop simulation environment,
where the controller sends actuator inputs to GT-Suite and the vehicle response is sent back to the
controller in Simulink. Quadratic programming is used to solve the MPC optimization problem and
determine the optimal input trajectory at each time step. The results indicate that using MPC to
control the compressor clutch, condenser fan, and AGS can provide a 37.6% reduction in the overall
A/C system energy consumption and a 32.7% reduction in the error for the air temperature reference
tracking compared to the conventional baseline proportional integral derivative control present in
the GT-Suite model.

Keywords: model predictive control; vehicle air conditioning; fuel efficiency; fuel consumption
optimization; vehicle energy efficiency; software-in-the-loop simulation

1. Introduction

The most effective method for A/C system control has been continuously evolving
throughout the years as the state of the art for control design has also continued to evolve.
Early implementations of controllers on A/C systems include on/off, proportional integral
derivative (PID), and sliding-mode controllers. Høgh and Nielsen [1] presented a new
and innovative control strategy that used a compressor and an electronic expansion valve
for better control of the superheat level. The system efficiency was also analyzed to find
the optimal superheat setpoint, which could reduce energy consumption. The refrigerant
system was modeled to allow for model-based feedback and feedforward, which improved
control of the superheat level. Koo et al. [2] discussed the use of a proportional–integral
(PI)-controlled cascade structure to control the relative filling and evaporation pressure of a
target system. They also introduced the super-twisting-algorithm-based 2-sliding mode
controller (SMC) design for the target system. The 2-SMC design was found to be more
effective than the classical first-order sliding mode controller (1-SMC) in handling plant
parameter uncertainty. Liu et al. have worked on a survey [3] where they provided a
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comprehensive overview of different automatic control techniques that had been applied
in A/C systems. The authors described the characteristics of A/C systems and discussed
the variables that should be controlled. They used classification of the control approaches
to explain the main features of these strategies used in A/C systems. Their paper clearly
showed that, with the improvement in people’s living standards and the emergence of
global environmental and energy problems, there were increasing requirements for more
advanced A/C control strategies. The authors summarized studies of control methods
presented in the paper, and analyzed the development and new trends of A/C control ap-
proaches. Additionally, the paper discussed studies of PID control applied in A/C systems,
including more advanced PID control methods to improve control system performance and
to make full use of PID control advantages in the multi-input–multi-output (MIMO) A/C
system control, and simplify the design and operation procedure of the control strategies.
The above-mentioned controller designs are typically applied to the compressor to maintain
the cabin at a specific temperature. These controllers are simple to design but most do not
attempt to reduce the energy consumption of the system. Cvok et al. [4] proposed a method
to optimize and control an electric vehicle heating, ventilation, and air conditioning (HVAC)
system for better efficiency and thermal comfort. The authors used dynamic programming
to find optimal control actions based on a simplified cabin model and static HVAC maps.
They also designed a hierarchical control system that used an instantaneous optimization-
based allocation algorithm and a superimposed cabin temperature controller. They verified
their method by simulation for a cool-down scenario and compared it with the dynamic
programming benchmark. They showed that their method could approach the benchmark
by tuning the controller bandwidth and the allocation cost function. Kim et al. [5] presented
the development of a mathematical dynamic model and observer-based set point control of
a vapor compression cycle (VCC) system. The mean void fraction and moving boundary
control volumes in a heat exchanger (HEX) were used for a lumped parameter model
of an air conditioning system. A MIMO dynamic model of the VCC was presented in a
nonlinear state space representation (SSR) and was reformulated into a linearized regular
form for control design. A modified observer-based controller with SMC was introduced
to attenuate the effects of observing approximation errors and external disturbances. The
proposed control methodology ensured uniformly ultimately bounded tracking results
of the desired low pressure and suction superheat. A simulation of controlling the VCC
illustrated the effectiveness and performance in the presence of disturbances. Xie et al. [6]
proposed an intelligent air conditioning system control strategy that can learn passengers’
thermal comfort preferences. The proposed control algorithm directly and automatically
decreased the cabin temperature to the passengers’ preferred temperature without any
manual adjustment.

More recent developments in sliding-mode controller applications show potential
for energy savings related to the operation of the compressor and fans. However, these
control methods still lack any consideration of vehicle drag and AGS control. For example,
Huang et al. [7] presented an energy-saving controller for automotive air-conditioning/
refrigeration (A/C-R) systems. The proposed controller consisted of two different time-
scale layers. The outer or the slow time-scale layer, called a setpoint optimizer, is used to
find the set points related to energy efficiency by using the steady-state model, whereas the
inner or the fast time-scale layer is used to track the obtained set points. In the inner loop,
thanks to its robustness, an SMC was utilized to track the set point of the cargo temperature.

In recent years, model predictive control applications for A/C systems have seen more
research interest in academia. MPC lends itself well to A/C system control because it can di-
rectly consider constraints on inputs, states, and outputs in the control problem formulation.
Liberati et al. [8] address the emerging challenge of managing smart microgrids for electric
vehicle charging and various user loads while incorporating renewable energy sources and
storage. Their work emphasizes the importance of advanced power systems and building
automation control for real-world applications. The article introduces an economic model
predictive control method that optimizes electric and heating resources in smart buildings,
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achieving nearly zero energy consumption and seamless participation in demand response
programs. Simulation results, based on an Italian case study, showcase the approach’s
effectiveness in managing electric and thermal flexibility within a building. In a review
by Borreggine et al. [9] on the state-of-the-art issues and solutions for MPC in power
electronics, the authors reviewed the MPC techniques for power electronics and electrical
drives, with a focus on finite control set MPC and explicit MPC. The paper discussed the
advantages and drawbacks of both methods, such as flexibility, performance, computation
effort, and steady-state error. The paper also presented several applications of MPC for
different types of converters, loads, and powertrain configurations. The paper highlighted
the potential of MPC for powertrain control, especially for hybrid and electric vehicles.

More recently, MPC applications have been applied to automotive A/C systems. Most
of the current literature on automotive A/C system control focuses on minimizing the com-
pressor power consumption and the tracking error of the discharge air (cooling requirement)
in electric vehicles (EVs), as discussed in a review by Huang et al. [10]. Wang et al. [11]
proposed a nonlinear MPC control for EVs to minimize evaporator blower power con-
sumption but did not consider the AGS in the analysis. Pereira et al. [12] proposed an
energy management system (EMS) for a fuel cell (FC) hybrid electric vehicle based on
nonlinear model predictive control (NMPC) and a recurrent neural network (RNN). The
NMPC allowed the formulation of control objectives not allowed by a linear MPC, such as
maximum efficiency point tracking of the FC, while the RNN accurately predicted the FC
nonlinear dynamics. The EMS was implemented on a low-cost development board and
tested in real time on a hardware-in-the-loop test bench equipped with a real 3-kW FC
stack. The experimental results demonstrated that the NMPC EMS was able to meet the
vehicle’s energy demand and operate the FC in its most efficient region. A comparative
study was performed between the proposed NMPC, a linear MPC, and hysteresis band
control. The results of this comparative study demonstrated that the NMPC provided better
fuel economy and could reduce FC degradation. Xie et al. [13] presented an Intelligent
Model Predictive Control (IMPC) strategy for the A/C–cabin coupled system that includes
the influences of vehicle speed and external environment on the heat exchange with the
cabin. The IMPC strategy integrates the vehicle speed previewer and the self-adaptor for
passengers’ thermal comfort. The IMPC has a more dynamic response of compressor speed
to the car speed change and can automatically adjust cabin temperature, making it satisfy
the thermal preference of the passenger with little control error of cabin temperature. The
IMPC strategy saves more energy than other control strategies researched in their paper.
Glos et al. [14] presented an application of NMPC algorithms for energy-efficient control of
cabin temperature and air quality in fully electric vehicles (FEVs). The authors developed
simplified dynamic models of the FEV cabin and HVAC system and formulated an optimal
control problem that minimized power consumption while satisfying the user’s comfort
and safety requirements. The NMPC algorithms were implemented on a microcontroller
and tested in a Processor in the Loop simulation. The paper showed that the NMPC ap-
proach could reduce the heat losses through ventilation and improve the range of the FEV.
The paper also discussed the challenges and limitations of the NMPC implementation, such
as computational complexity, state estimation, and actuator constraints. Kibalama et al. [15]
presented an energy management strategy for the air conditioning system of an electrified
vehicle, based on MPC. The authors used a nonlinear model of the vapor compression
refrigeration system and formulated a constrained optimal control problem to minimize
the energy consumption while tracking a desired evaporator pressure. They proposed a
novel implementation method that reduced the computation time by approximating the
value function from a global optimal solution obtained by dynamic programming (DP).
They showed that their MPC approach achieved near-optimal performance on different
drive cycles and thermal load requirements, and validated it on real-time hardware. The
paper did not address the robustness of the controller to uncertainties or disturbances, or
the extension to other thermal management systems.
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A recent study by Göltz and Sawodny [16] investigated tracking performance and
energy consumption of the A/C system using various control schemes, including MPC.
However, this work mainly focuses on battery thermal management for battery electric
vehicles (BEVs). Additionally, opening the AGS increases the cooling effort supported by
the front-end airflow, allowing other components, such as the compressor, to reduce their
working load and still satisfy the cooling requirements of the vehicle, as shown in a study
by El-Sharkawy et al. [17]. This AGS airflow cooling comes at a cost. Shigarkanthi et al. [18]
demonstrated that, as the AGS is opened, the drag force of the underhood vehicle airflow
increases due to an increase in drag coefficient, concluding that the AGS has an impact on
the fuel economy and power consumption of the vehicle. By controlling the condenser fan
and AGS along with the compressor, it is expected that the energy used by the system can
be further reduced but the cost of increased underhood drag must be considered.

Chen et al. [19] discuss the significance of real-time optimal control in improving the
energy efficiency of cabin climate control systems in EVs. They introduced a novel linear-
time-varying (LTV) MPC approach, which simplifies the optimization process and conducts
a comprehensive parametric study to identify robust weighting factors. Comparative
analysis reveals that the LTV-MPC outperforms rule-based and nonlinear economic MPC
(NEMPC) controllers, achieving faster temperature regulation with significantly lower
energy consumption while maintaining comparable computational efficiency.

Coppola et al. [20] focused on improving energy performance in platoons of au-
tonomous connected vehicles. Their study presents an innovative Eco-Driving Control
Architecture that utilizes NMPC for optimizing energy consumption while maintaining
precise leader tracking. Analytical proofs of exponential stability and robust stability
conditions are provided, demonstrating the effectiveness of the approach in various oper-
ational scenarios and parameter uncertainties within a Mixed Traffic Simulator (MiTraS)
co-simulation platform. The results validate the architecture’s ability to ensure eco-driving
behavior for the entire vehicle platoon.

He et al. [21] introduced a stochastic model predictive controller (SMPC) for enhancing
the energy efficiency of EV air conditioning systems. It employs a Markov-chain-based
velocity predictor to anticipate future disturbances, and systematically quantifies the sen-
sitivity of the electrified AC system to solar radiation, ambient temperature, and relative
air flow speed. Comparative analysis with a rule-based controller and dynamic program-
ming benchmark reveals that SMPC improves AC energy economy by 12%, reduces cabin
temperature variation by over 50.4%, and enhances overall cabin comfort.

Huang et al. [22] presented a robust model predictive controller for enhancing tem-
perature performance and reducing energy consumption in automotive air-conditioning/
refrigeration (A/C-R) systems with three-speed and continuously-varying compressors.
It includes a discrete MPC with a carefully chosen terminal weight for robustness under
various conditions. The study also presents hybrid controllers that combine on/off control
and discrete MPC, as well as a continuous MPC for systems with variable components,
demonstrating energy savings of up to 23% compared to conventional on/off controllers in
both experimental and simulation results.

Based on the reviewed literature, the existing work on the application of MPC in
A/C for commercial vehicles does not consider the impact of the AGS actuator nor the
power consumption due to underhood aerodynamic drag [16]. Additionally, some studies
have not considered all possible control inputs in the overall design, such as missing
AGS [11]. Furthermore, most studies, especially in recent years, focus on EVs as energy
consumption and management has a much greater role in such vehicles [12–15]. This has left
fossil-fueled energy management and A/C energy efficiency on the back burner in recent
years. Additionally, the applications of nonlinear controllers, although more advanced and
capable, require more computation and consideration compared to simpler alternatives.

Contribution: To the best of the authors’ knowledge [23,24], the consideration of
AGS control to reduce the overall vehicle power consumption and regulate the underhood
airflow for cabin cooling has not been considered in the literature. Therefore, the work
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in this paper addresses a gap for non-electric vehicles, and additional control inputs and
modeling enhancements not currently addressed in the literature. The starting point for this
study is the modeling and control work by Zhang [25], where various control approaches
were attempted for an internal-combustion-powered vehicle, with both the condenser
fan and compressor clutch as actuators. Zhang [25] found that none of the approaches
attempted was satisfactory and recommended MPC be attempted. In this paper, we apply
MPC for the same vehicle, introduce the AGS as a new actuator into the control problem,
and consider the additional underhood drag power consumption for the A/C system.

Several linear approximation MPCs have been formulated in the past, with the most
popular being adaptive, as showcased by Dhar and Bhasin [26], and gain-scheduled model
predictive controllers, as showcased by Hu et al. [27] for a commercial vehicle air brake
system. These controller types will be discussed in more detail in Section 2.1. However,
adaptive MPC is more promising for the application in this study due to its effectiveness
for control designs where the structure of the optimization problem (number of states and
constraints) remains the same across different operating points. Further discussions and
rationales for the choice of adaptive MPC in this study are provided in Section 2.1. To
address the identified gap in the literature and extend the work by Zhang [25] based on the
system modeling improvements for the A/C system by the authors in [28], this paper has
two main objectives:

Objective 1. In addition to controlling the compressor clutch only, determine the improve-
ment in A/C system energy use and air-to-cabin reference temperature tracking that can be
achieved by switching from PID (benchmark) to MPC.
Objective 2. Identify what further improvement, if any, can be achieved by including the
condenser fan rotational speed and AGS position in the MPC formulation.

The remainder of this paper is organized as follows. Section 2 details background
materials for the reader to understand the subsequent sections of the paper as well as the
implemented methodology in this study. Section 3 includes a description of the problem
formulation. Section 4 discusses the findings and implications of the results, as well as a
discussion of the analysis. Finally, the conclusions of this study are offered in Section 5,
followed by recommendations for future studies.

2. Materials and Methods

This section provides preliminary background on the theories used in this paper
to help the reader follow the content more easily and to make the paper self-contained.
Additionally, it provides the implemented methodology for the controller design and
formulation based on the materials to help the reader follow the content with ease.

2.1. MPC Design

Model predictive control is an optimal control technique that leverages a precise
mathematical model of a real system to proactively predict its future behavior. This predic-
tive capability empowers MPC to anticipate potential system deviations and effectively
optimize control inputs to achieve predefined performance objectives. By employing so-
phisticated optimization algorithms, MPC with the help of its more advanced derivatives
can handle complex, nonlinear engineering systems with a high degree of accuracy and
robustness, making it a valuable tool for a wide range of engineering applications. MPC’s
ability to incorporate constraints on both system states and control inputs ensures safe and
reliable operation, even in the presence of uncertainties and disturbances. Its adaptability
to various real-world scenarios, such as process control, robotics, and energy management
systems, underscores its versatility and practical relevance. The combination of predictive
modeling, optimization, and constraint handling renders MPC an essential asset in the
pursuit of efficient and stable control solutions for complex engineering systems. A simple
block diagram of an MPC is shown in Figure 1, where the dashed box includes the MPC
components and their interactions, namely the Optimizer block and the Model block. The
model block, also known as the prediction model, contains a simplified mathematical
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model of the real system (plant). The prediction model computes the predicted output, ŷ.
The optimizer block contains an optimization algorithm used to determine the optimal
control input u based on the error predicted by the prediction model. The details of the
optimizer block in this work are outlined in Section 3.3. When the optimizer computes a
control signal, it sends it to the prediction model and the behavior of the real system is
predicted again. This process repeats several times over an optimization window, called
the prediction horizon, to forecast the future behavior of the real system. When the entire
control sequence is completed, only the immediate next control action, u∗, is sent to the
real system with the states x and output y, designated as the plant block in Figure 1.
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The plant can be a real physical system, such as a physical vehicle, or a virtual
representation of the system, such as a high-fidelity model of a physical vehicle. In this
paper, the plant is a high-fidelity model, introduced in Section 2.3. The connection to
the real system in this work is detailed in Section 3.1 based on the previous work by the
authors [28].

2.1.1. Type Selection

Selecting the appropriate MPC technique based on the system’s characteristics is an
important task in the overall MPC design process. A linear time-invariant MPC method
is suitable for a linear system with linear constraints and a quadratic cost function. This
scenario results in a convex optimization problem with a unique global optimum. Nu-
merous numerical methods and software can be employed to solve this well-studied
problem. When moving to a nonlinear system, two methods are discussed: adaptive and
gain-scheduled MPC controllers. These methods rely on linearization to approximate the
nonlinear system around an operating point. While effective near this point, linearization’s
limitations outside this range are acknowledged.

Adaptive MPC involves computing a linear model on the fly as conditions change,
updating the internal plant model for the MPC controller. This approach maintains the opti-
mization problem structure across various operating points. Alternatively, gain-scheduled
MPC involves offline linearization at multiple operating points, designing separate MPC
controllers for each. While offering controller independence, this method requires manag-
ing controller switching and may demand more memory.

It is beneficial to use adaptive MPC when the optimization problem structure remains
consistent across various conditions. When the structure changes, gain-scheduled MPC
is preferable. However, a nonlinear system that resists accurate linearization requires
nonlinear MPC. This advanced method employs a nonlinear plant model for precise
predictions but solving the associated nonconvex optimization problem in real time can
be challenging.

Therefore, adaptive and gain-scheduled MPC can be used for systems that can be
approximated by linear models, and nonlinear MPC can be employed for highly nonlinear
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systems. The implementation efficiency of nonlinear MPC must be considered as it relies
on specialized nonlinear solvers.

The A/C system used in this study was developed and published by the authors of
this study in [28]. This model is an extension to a previously developed model by the
industrial partner’s collaborators where effects of underhood aerodynamics and modeling
of system parameters using polynomial approximations are added for a more extensive and
semi-analytical model of the system under study. The model in [28] requires an adaptive
MPC for the control strategy development because it meets the following requirements for
a choice of the adaptive MPC over a traditional MPC:

1. Time-varying dynamics: The system’s dynamics in [28] change over time due to
various factors such as varying operating conditions or system wear and tear.

2. Uncertain models: Some of the model parameters [28] are not precisely known as
they are embedded in the model developed by the industrial partner where the exact
values of the parameters are unknown and approximate values were used to build
the semi-analytical model, and there is uncertainty about the model’s accuracy.

3. Nonlinear systems: The system in [28] is highly nonlinear and for controlling systems
with nonlinear behavior, where a linear model may not be sufficient, and an adaptive
model helps to approximate the nonlinear dynamics better.

4. Disturbance rejection: As mentioned in item 2, some of the system parameters are not
entirely known throughout the simulation as they are provided by the software-in-the-
loop and depend on the driving cycle that the tests are being run over. When dealing
with systems subject to disturbances that are not entirely predictable or change over
time, adaptive MPC is the plausible choice.

5. Parameter variations: Some of the system parameters in [28] change over time, and
their values are embedded in the software-in-the-loop provided by the industrial part-
ner. In cases where there are abrupt changes or slow variations in system parameters,
adaptive MPC can be useful.

Therefore, a variation of adaptive MPC, Successive Linearization Based Model Pre-
dictive Control (SLMPC) [29] (see Appendix A for detailed derivation), is chosen for the
problem introduced in this paper due to its ability to reduce the linearization error caused
by the system operating far from the trim state. In the adaptive MPC, a linear model of the
system is computed on the fly as the operating conditions change and the internal predic-
tion model is updated with each new linearized model. As the operating conditions change,
only the model of the system is updated and the MPC formulation remains the same. As
discussed in Section 2.3, the plant model for the A/C system used in this study has varying
system parameters that are controlled by other subsystems in the vehicle, therefore making
this system time-varying. The use of adaptive MPC ensures that, despite variations in
system parameters, at every operating point, the linearization guarantees close agreement
between the linearized model and the nonlinear plant model for the A/C system.

In addition to the type of MPC controller, there are parameters to be discussed in the
design process for any MPC controller. These parameters are discussed next.

2.1.2. Design Parameters

For MPC design, there are essential parameters that require careful consideration
to enhance both controller performance and computational efficiency. These parameters
encompass the controller sample time, prediction horizon, control horizon, constraint han-
dling, and weight assignment. Each parameter plays a pivotal role in optimizing the MPC
algorithm’s real-time performance while ensuring effective control of dynamic systems.

• Sample time: The choice of the sample time determines the controller’s operational
frequency, impacting its ability to respond to disturbances and setpoint changes. Bal-
ancing between rapid disturbance rejection and computational load, it is advisable to
accommodate 10 to 20 samples within the open-loop system’s rise time [30]. This en-
sures a responsive controller without overwhelming computational demands. Further
details about this parameter in this study are provided in Section 3.4.2.
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• Prediction horizon: The prediction horizon influences the extent to which the con-
troller anticipates future plant behavior. A cautious prediction horizon encompasses a
timeframe that captures significant system dynamics, preventing untimely responses to
disturbances. To account for open-loop transient responses, selecting 10 to 20 samples is
recommended [30]. Further details about this parameter in this study are provided in
Section 3.4.2.

• Control horizon: Conversely, the control horizon determines the number of future
control inputs that shape the predicted plant output. A smaller control horizon
minimizes computational efforts but may compromise maneuverability. An optimal
balance can be struck by setting the control horizon to 10–20% of the prediction horizon,
ensuring a minimum of 2–3 steps to account for effective control [30]. Further details
about this parameter in this study are provided in Section 3.4.2.

• Constraints: Constraints on inputs, input rate changes, and outputs can be imposed
within the MPC framework. These constraints may be either hard or soft. The
distinction lies in the feasibility of violation: hard constraints remain inviolable, while
soft constraints can be breached within limits. Balancing the conflicting interests of
inputs and outputs, it is advised to adopt soft constraints for outputs, eschewing
simultaneous hard constraints on inputs and their rate of change. This minimizes the
risk of infeasibility and ensures more adaptable control [30]. Further details about this
parameter in this study are provided in Sections 3.3 and 3.4.3.

• Weights: Weight assignment is a critical aspect of optimizing control performance.
Weights gauge the significance of objectives in MPC. These objectives involve tracking
setpoints and achieving smooth control maneuvers. Achieving a harmonious perfor-
mance balance necessitates cautiously weighing input rates and outputs relative to
each other. Additionally, adjusting weights within these categories fine-tunes perfor-
mance to the specific control objectives [30]. Further details about this parameter in
this study are provided in Sections 3.3 and 3.4.4.

One can see the role of distinct MPC design parameters in shaping controller efficacy
and computational efficiency. By strategically tuning these parameters, control engineers
can harness MPC’s potential to efficiently regulate dynamic systems while navigating the
intricacies of real-time optimization.

2.2. Discrete State-Space General Form

MPC strategies commonly use discrete state-space formulations for the mathematical
modeling of the system of interest. A continuous-time linear state-space model form must
be discretized to form a discrete-time linear state-space model. Typically, MPC algorithms
are designed in discrete time. A great amount of MPC designs have been developed using
discrete-time approaches and a much smaller amount of continuous-time MPCs are present
in the literature. In this work, a discrete-time MPC has been chosen due to the nature of the
communication between the MPC and the real system, as discussed in Section 3.1.

The standard form of a continuous state-space system can be written as [31]:

.
x = Ax + Bu
y = Cx + Du

(1)

where A, B, C, and D are matrices describing the system dynamics. x is the state vector,
u is the controlled input vector, and y is the output vector.

The continuous system in (1) can be written in a discrete state-space system as [32]:

xk+1 = Adxk + Bduk
yk = Cdxk + Dduk

(2)

where Ad, Bd, Cd, and Dd are matrices describing the linearized system dynamics. k denotes
the current timestep, xk is the state vector, uk is the controlled input vector, and yk is the
output vector. One can use forward Euler’s method to convert (1) to (2).



Modelling 2024, 5 125

Forward Euler’s method is a simple discretization method for continuous-time sys-
tems. It is based on the approximation of the first derivative at t = kT where T is the time
step for the discretization. Having [31]

.
x(t) =

dx(t)
dt

≈ 1
T
(x((k + 1)T)− x(kT)) (3)

Applying the approximate formula in (3) to the SSR system equation, we have [31]

1
T (x((k + 1)T)− x(kT)) ≈ Ax(kT) + Bu(kT)
x((k + 1)T) ≈ (I + TA)x(kT) + TBu(T)

(4)

or [31]
x[k + 1] ≈ (I + TA)x[k] + TBu[k]
x[k + 1] ≈ Adx[k] + Bdu[k]

(5)

where Ad = I + TA and Bd = TB are the discrete system matrices for the discrete SSR
of the system with sampling time T. The same approach can be followed to obtain Cd
and Dd that similar to Bd would only have a multiplication by T. The sampling time for
the discretization in this study was chosen as T = 1 s as detailed in Section 2.1.2. In this
paper, the system equations of the dynamics of an automotive A/C system, as detailed in
Section 2.3, are considered. These equations are nonlinear and, therefore, are linearized
to conform to the standard continuous-time form in (1). These continuous-time equations
are then discretized to conform to the discrete-time form in (2) using the forward Euler
method. The details of the full process are described in Section 3.

2.3. Introduction of A/C System

A simple diagram of the automotive A/C system used in this study is depicted in
Figure 2. The A/C system comprises four main components, the compressor, condenser,
evaporator, and expansion valve. The controllable actuators of interest in this work are
the compressor clutch, which switches the compressor (used to move the refrigerant
throughout the cooling circuit) on and off, and the fan and AGS used to regulate the
front-end airflow passing through the condenser. Compressor clutch πc is not a continuous
variable in practice and is a discrete binary variable as either engaged (with the value of
1) or disengaged (with the value of 0). In this study, πc is initially treated as a continuous
variable to be computed via optimization. When the MPC computes the continuous
compressor clutch signal πc, it rounds it to a value of either 0 or 1 prior to sending it to the
GT-Suite model to ensure it is in the discrete form that GT-Suite expects (see Appendix B
for a discussion on MPC relaxation and justification for applicability of this approach in
this context).

The model used by the MPC is a semi-analytical nonlinear model of the A/C system by
Parent et al. [28] (the authors of this study) as a prerequisite to run this study for controller
design development. The dynamics of this model can be described by the heat exchanger
pressures pc for condenser and pe for evaporator. The first system output of interest is the
temperature of the evaporator air stream. The underlying continuous-time mathematical
equations for the heat exchanger pressures and temperatures are [28]:

.
pc =

[Qcρacp,air(Tair,in−Tair,out)+πc
.

mre f (hin−hout)]

V
[
(1−γ)

∂(ρl hl)
∂p +γ

∂(ρg hg)
∂p +(ρghg−ρl hl) ∂γ

∂p −1+ mH cH
V

(
∂Twall

∂p

)]
.
pe =

[Qeρacp,air(Tair,in−Tair,out)+πc
.

mre f (hin−hout)]

V
[
(1−γ)

∂(ρl hl)
∂p +γ

∂(ρg hg)
∂p +(ρghg−ρl hl) ∂γ

∂p −1+ mH cH
V

(
∂Twall

∂p

)]
Tair,out,c = Tre f ,c +

(
Tair,in,c − Tre f ,c

)(−NTUc)(Kca)

Tair,out,e = Tre f ,e +
(

Tair,in,e − Tre f ,e

)(−NTUe)(Kea)

NTU =
αAs[1−Ff in(1−ηFA)]

.
macp,air

(6)
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where Qc is the volume flow rate of the air through the condenser [m3/s
]
, ρa is the air

density [kg/m3], hin and hout are the inlet and outlet refrigerant enthalpies [joules], ρl , ρg
are the densities [kg/m3] and hl , hg are the enthalpies [joules] for the refrigerant calculated
at saturated liquid and vapor states, respectively. cH is the specific heat of the HEX material
[j/K·kg], cp,air is the specific heat of air at constant pressure [j/K·kg], γ ∈ [0, 1] is the mean
void fraction of the refrigerant, V is the volume of the HEX [m3], mH is the material mass
of the HEX [kg], Twall is the wall temperature of the HEX [K], pc and pe are the refrigerant
pressures in the condenser and evaporator [kPa], πc is the compressor clutch engagement
[on/off],

.
mre f is the refrigerant mass flow rate [kg/s], Qe is the volume flow rate of the air

from the blower fan [m3/s], Tair,in and Tair,out are the inlet air temperatures to the condenser
and evaporator [K], Tre f is the HEX refrigerant temperature [K], NTU is the number of
transfer units of the air, and Kca and Kea act as multipliers on the Nusselt number. α is the
convective heat transfer coefficient of the air [W/m2·K], As is the external surface area of
the HEX [m2], Ff in ∈ [0, 1] is the fraction of air-to-structure surface area on the fins, ηFA is
the air-side fin efficiency, and

.
ma is the mass flow rate of the air [kg/s].
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Figure 2. Simple A/C system diagram.

From the developments in [28], the definitions for Qc and Tre f ,c in continuous time are
as follows:

Qc = 0.07722N̂ + 0.01057v + 4.913 × 10−5v2 + 0.2039XN̂ + 0.002671Xv
Tre f ,c = 8.4·10−9 p3

c − 4.9·10−5 p2
c + 0.12pc − 34.9

(7)

where N̂ is the normalized rotational speed of the condenser fan between zero and one,
X is the open-fraction of the AGS between zero and one, and v is the vehicle speed [m/s].
The full list of fitted curves is available in Appendix A of [28] in Equations (17)–(20) and
not further provided here for brevity.

Note that, in the system model in (6), there are terms that are updated from outside of
the A/C system model and controller by other vehicle subsystems. These parameters are
updated as the vehicle is operating and not controlled by the controller designed in this
study for the A/C system. Hence, they are treated as system parameters in (6) that vary
with time. The varying system parameters controlled by other subsystems in the vehicle
dynamics are defined as follows:
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θ =



.
mre f
Qe

Tair,in,c
Tair,in,e

hin,c
v

hin,comp


=



θ1
θ2
θ3
θ4
θ5
θ6
θ7


(8)

where
.

mre f is the mass flow rate of the refrigerant set by the compressor in GT-Suite [kg/s],
Qe is the volumetric flow rate of the air set by the evaporator blower model in GT-Suite
[m3/s], Tair,in,c and Tair,in,e are the air temperatures entering the condenser and evaporator
[K], hin,c is the inlet enthalpy for the condenser [joules], v is the vehicle speed [m/s], and
hin,comp is the inlet enthalpy for the compressor [joules]. All these parameters are measured
and sent from the vehicle energy management (VEM) model to the MPC. It is important
to note that this makes the system under study a nonlinear time-varying system, which
would require an adaptive MPC type to handle the nonlinearities by linearizing the model
at each operating point, as discussed in Section 2.1.1.

Since system energy consumption is of interest, the model includes the power con-
sumption definitions in continuous time as [28]:

.
Wcomp =

.
mre f (hout−hin)

ηcomp.
W f an = Qc∆pt

η f an

∆
.

Wdrag = 1
2 ρa A f rv3∆Cd

g2 =
.

Wtotal =
.

Wcomp +
.

W f an + ∆
.

Wdrag

(9)

where
.

Wcomp is the compressor’s power consumption [j/s],
.

W f an is the fan’s power con-

sumption [j/s], and ∆
.

Wdrag is power consumption associated with additional drag on the
vehicle due to underhood airflow, which is set by the vehicle speed, fan rotational speed,
and AGS open-fraction [j/s].

.
Wtotal is the total power consumption from A/C comprising

of the previous three components [j/s].
.

mre f is the mass flow rate of the refrigerant [m3/s],
hin and hout are the enthalpies of the refrigerant at the inlet and outlet of the compressor,
respectively [j/kg], ηcomp is the ratio of isentropic efficiency to volumetric efficiency of
the compressor, ∆pt is the pressure rise required of the fan [Pa], η f an is the fan’s adiabatic
efficiency, A f r is the frontal area of the vehicle [m2], ∆Cd is the increase in drag coefficient
due to additional flow through the underhood at a given vehicle speed due to the AGS
being open and/or the fan being on, and v is the vehicle speed [m/s].

With all the required background information discussed above, next, the problem
definition is discussed in more detail.

3. Problem Definition

This section provides a step-by-step formulation of the problem studied in this paper.

3.1. Introduction

To conduct simulations to determine the desired MPC design parameters, the in-
dustrial partner supplied a high-fidelity model of the physical vehicle in GT-Suite v2020
(Build 3.0002), a multi-physics simulation software created by Gamma Technologies. This
high-fidelity model is treated as a substitute for the real physical vehicle in this work (plant).
GT-Suite v2020 (Build 3.0002) and MathWorks’ Simulink 2021b have built-in cross-platform
communication capabilities that allow signals to be sent to and from the two software
packages. Therefore, MATLAB and Simulink are used for the MPC implementation. In
the GT-Suite model, there are numerous independent cases set up for simulation, each
representing a different standard drive cycle with time-series data loaded for each of the
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driving conditions, some of which are the system parameters in (8) required by the MPC
from GT-Suite, such as the vehicle speed. The remaining elements of (8) are computed
by the GT-Suite model and sent to the MPC, such as

.
mre f and Qe. In this work, the MPC

simulations are conducted for the SC03 drive cycle [33], which is a standard drive cycle
used by the Environmental Protection Agency (EPA) to evaluate the vehicle fuel economy
where the A/C system is active. The total duration of this drive cycle is 575 s.

3.2. System Equations

In this paper, an adaptive MPC, known as successive linearization-based MPC (SLMPC),
is applied to the automotive A/C system illustrated in Figure 2, i.e., the A/C system is the
plant. To define the elements of A, B, C, and D used in the prediction model described in (2),
the system of nonlinear equations described in (6)–(9) must be linearized. These equations are
linearized on the fly using the adaptive MPC approach described in Section 2.1, allowing the
trim state to always be the current working state of the plant. The Jacobian matrices that map
the system nonlinear equations in (6) to the linearized state-space representation A, B, C, D
are calculated at every time step using the MATLAB jacobian function, where jacobian( f , v)
computes the Jacobian matrix of symbolic function f with respect to v. The (i, j) element of
the result of ∂ f (i)/∂v(j) is as follows:

A = jacobian([ f1, f2], [x1, x2])
B = jacobian([ f1, f2], [u1, u2, u3])
C = jacobian([g1, g2], [x1, x2])
D = jacobian([g1, g2], [u1, u2, u3])

(10)

where f1 is the definition of
.
pc, f2 is the definition of

.
pe, g1 is the definition of Tair,out,e in (6),

and g2 is the definition of
.

Wtotal in (9). x is defined in (27); u is defined in (28). Additionally,
the collective terms g1 and g2 capture the system outputs y as defined in (29). Note that,
due to the form of the definitions for f1, f2, g1, and g2, the full form of the Jacobians in (10)
is not provided here as it would be infeasible to fit all the terms in a presentable format.

The numerical values of the state-space matrices are computed using a successive
linearization approach [29], SLMPC, as a common approach adopted for MPC designs [34].
The concept of this approach is simple. At the beginning of each control iteration, the
Jacobian matrices are evaluated at the current operating conditions of the complex system
model, that being the current system states, controlled inputs, and system parameters. This
will update the numerical values of the state-space matrix entries. By re-evaluating the state-
space model at the current operating conditions, one ensures that the trim state is close to
the current operating point. The intention of this is to reduce the linearization error caused
by deviations from the trim state. Thus, the working condition of the complex system model
will be treated as the trim state. Full theoretical development and proof of applicability for
SLMPC can be found in [29]. This allows the controller to be initialized at the current system
state at each time step, allowing accuracy to be maintained throughout the simulation since
the controller will always work in the vicinity of the calculated trim state.

3.3. Quadratic Programming Formulation

Quadratic programming is an optimization process used to solve mathematical prob-
lems containing quadratic functions. The optimal solution to a quadratic programming
problem is found by minimizing the following objective function, J [32]:

J = min
[

1
2

XT
qpHXqp + f TXqp

]
(11)

where Xqp is a vector containing the control objectives shown in (12), H is a symmetric
matrix containing relative weightings for each control objective in the quadratic term of the
cost function, and f is a vector containing relative weightings for each control objective in
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the linear term of the cost function. In (11), the elements of the vector Xqp are minimized to
achieve the smallest possible value for the objective function.

For the MPC controllers, the controller is typically designed to track reference values
for the states and outputs of the system while also considering the magnitude and rate of
change of the controlled input values. In this case, the elements of Xqp are as follows [32]:

Xqp =



∆u0
x′1
...

∆uh−1
x′h
y′1
...

y′h


h(nx+nu+ny)

(12)

where the definitions of these terms are provided further below. This description of Xqp
is for a discrete-time case since the approach used for the controller design in this study
is also discrete-time due to the nature of the controller type. The dimension of the vector
depends on the prediction horizon length h, the number of states nx, number of inputs nu,
and the number of outputs ny. The elements of the H matrix can be used to change the
relative importance of each of the control objectives corresponding to the terms in the Xqp
vector as outlined in (12).

The typical state-space equations can be modified to include the output and state
reference tracking deviations. This will make forming the QP constraints much easier. The
goal of the following modifications to the state-space model form is to explicitly show
the output setpoint deviations, state setpoint deviations, and the rate of change of the
controlled inputs since these are included in the Xqp vector of the objective function. In QP
problem formulations, linear equality constraints containing the Xqp vector can be applied
to the problem. These constraints can be used to mathematically define the elements of Xqp.
This can be done by treating the discrete state-space model in (2) as an equality constraint
and reorganizing the formulation to contain the elements of Xqp explicitly. The state-space
formulation described in (2) is reorganized to explicitly include the elements of (12) using
the approach outlined in [32]. As a special case of the general form of the objective function
for QP in (11) when H is symmetric positive-definite, the objective function reduces to
J = min

[
1
2

∥∥Xqp − Xqp,s
∥∥

H′
2
]

where H = H′TH′ follows from the Cholesky decomposition

of H and f = −H′TXqp,s. Hence, given the system in (2), the special case of the objective
function in QP can be expanded as [32]:J =

h
∑

i=1

(∥∥yk+i − yk+i,s
∥∥2

Qy
+
∥∥xk+i − xk+i,s

∥∥2
Qx

+ ∥uk+i−1∥2
Ru

+ ∥∆uk+i−1∥2
R∆u

)
S.t. : Dynamic Model and Constraints

(13)

where the subscript s denotes a setpoint, i is the current step in the time horizon window,
and I is the identity matrix. Note that subscript i is from 0 to the time horizon h as
the dimensions of these vectors change with the size of the time horizon. To make the
formulation easier, the system equations are written in

xk+1 = Adxk + Bd∆uk + Bduk−1
uk = uk−1 + ∆uk

yk+1 = Cdxk+1 + Dd∆uk + Dduk−1

(14)
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where ∆uk ≜ uk − uk−1. Rewriting the model in this form incorporates the rate of change
of the controller inputs into the state-space model. The next step is to rewrite the state-space
model in terms of setpoint deviations. So, the general form of the model equation becomes:

xk+1 − xk+1,s = Ad(xk − xk,s) + Adxk,s + Bd∆uk + Bduk−1 − xk+1,s
uk = uk−1 + ∆uk

yk+1 − yk+1,s = Cd(xk+1 − xk+1,s) + Cdxk+1,s + Dd∆uk + Dduk−1 − yk+1,s

(15)

Or in a compact form as

[
xk+1 − xk+1,s
uk

]
=

[
Ad Bd
0nu×nx Inu×nu

][
xk − xk,s
uk−1

]
+

[
Bd
Inu×nu

]
∆uk −

[
xk,s
0nu×1

]
+

[
Ad Bd
0nu×nx Inu×nu

][
xk,s
0nu×1

]
yk+1 − yk+1,s =

[
Cd 0ny×nu

][ xk+1 − xk+1,s
uk

]
+
[

0nu×nx Dd
]
∆uk +

[
0nu×nx Dd

][ xk − xk,s
uk−1

]
−yk+1,s +

[
Cd 0ny×nu

][ xk+1,s
0nu×1

]
(16)

If we define

x′k =
[

xk − xk,s
uk−1

]
, A′ =

[
Ad Bd

0nu×nx Inu×nu

]
, B′ =

[
Bd

Inu×nu

]
, x′k,s =

[
xk,s

0nu×1

]
y′k = yk − yk,s, C′ =

[
Cd 0ny×nu

]
,

D′ =
[
0nu×nx Dd

]
, Q′

x =

[
Qx 0nx×nu

0nu×nx Ru

] (17)

The form in (16) can be rearranged for time step 0 in the prediction horizon, where we
initiate the dynamics with x0, y0, and u−1, and given an equality constraint can be written
in the form of AeqXqp = Beq
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the dimensions of these vectors change with the size of the time horizon. To make the 

formulation easier, the system equations are written in 

{

𝑥𝑘+1 = 𝐴𝑑𝑥𝑘 + 𝐵𝑑∆𝑢𝑘 + 𝐵𝑑𝑢𝑘−1
𝑢𝑘 = 𝑢𝑘−1 + ∆𝑢𝑘                       

𝑦𝑘+1 = 𝐶𝑑𝑥𝑘+1 + 𝐷𝑑∆𝑢𝑘 + 𝐷𝑑𝑢𝑘−1

 (14) 

where ∆𝑢𝑘 ≜ 𝑢𝑘 − 𝑢𝑘−1. Rewriting the model in this form incorporates the rate of change 

of the controller inputs into the state-space model. The next step is to rewrite the state-

space model in terms of setpoint deviations. So, the general form of the model equation 

becomes: 

{

𝑥𝑘+1 − 𝑥𝑘+1,𝑠 = 𝐴𝑑(𝑥𝑘 − 𝑥𝑘,𝑠) + 𝐴𝑑𝑥𝑘,𝑠 + 𝐵𝑑∆𝑢𝑘 + 𝐵𝑑𝑢𝑘−1 − 𝑥𝑘+1,𝑠
𝑢𝑘 = 𝑢𝑘−1 + ∆𝑢𝑘

𝑦𝑘+1 − 𝑦𝑘+1,𝑠 = 𝐶𝑑(𝑥𝑘+1 − 𝑥𝑘+1,𝑠) + 𝐶𝑑𝑥𝑘+1,𝑠 + 𝐷𝑑∆𝑢𝑘 + 𝐷𝑑𝑢𝑘−1 − 𝑦𝑘+1,𝑠

 (15) 

Or in a compact form as 

{
 
 
 
 

 
 
 
 [
𝑥𝑘+1 − 𝑥𝑘+1,𝑠

𝑢𝑘
] = [

𝐴𝑑 𝐵𝑑
0𝑛𝑢×𝑛𝑥 𝐼𝑛𝑢×𝑛𝑢

] [
𝑥𝑘 − 𝑥𝑘,𝑠
𝑢𝑘−1

]

+ [
𝐵𝑑
𝐼𝑛𝑢×𝑛𝑢

] ∆𝑢𝑘 − [
𝑥𝑘,𝑠
0𝑛𝑢×1

] + [
𝐴𝑑 𝐵𝑑

0𝑛𝑢×𝑛𝑥 𝐼𝑛𝑢×𝑛𝑢
] [
𝑥𝑘,𝑠
0𝑛𝑢×1

]

𝑦𝑘+1 − 𝑦𝑘+1,𝑠 = [𝐶𝑑 0𝑛𝑦×𝑛𝑢] [
𝑥𝑘+1 − 𝑥𝑘+1,𝑠

𝑢𝑘
]

+[0𝑛𝑢×𝑛𝑥 𝐷𝑑]∆𝑢𝑘 + [0𝑛𝑢×𝑛𝑥 𝐷𝑑] [
𝑥𝑘 − 𝑥𝑘,𝑠
𝑢𝑘−1

]

−𝑦𝑘+1,𝑠 + [𝐶𝑑 0𝑛𝑦×𝑛𝑢] [
𝑥𝑘+1,𝑠
0𝑛𝑢×1

]

 (16) 

If we define 

𝑥𝑘
′ = [

𝑥𝑘 − 𝑥𝑘,𝑠
𝑢𝑘−1

], 𝐴′ = [
𝐴𝑑 𝐵𝑑

0𝑛𝑢×𝑛𝑥 𝐼𝑛𝑢×𝑛𝑢
], 𝐵′ = [

𝐵𝑑
𝐼𝑛𝑢×𝑛𝑢

], 𝑥𝑘,𝑠
′ = [

𝑥𝑘,𝑠
0𝑛𝑢×1

] 

𝑦𝑘
′ = 𝑦𝑘 − 𝑦𝑘,𝑠, 𝐶

′ = [𝐶𝑑 0𝑛𝑦×𝑛𝑢], 

𝐷’ = [0𝑛𝑢×𝑛𝑥 𝐷𝑑], 𝑄𝑥
′ = [

𝑄𝑥 0𝑛𝑥×𝑛𝑢
0𝑛𝑢×𝑛𝑥 𝑅𝑢

] 

(17) 

The form in (16) can be rearranged for time step 0 in the prediction horizon, where 

we initiate the dynamics with 𝑥0, 𝑦0, and 𝑢−1, and given an equality constraint can be 

written in the form of 𝐴𝑒𝑞𝑋𝑞𝑝 = 𝐵𝑒𝑞  

{
𝑥1
′ = 𝐴′𝑥0

′ + 𝐵′∆𝑢0 − 𝑥1,𝑠
′ + 𝐴′𝑥0,𝑠

′

𝑦1
′ = 𝐶′𝑥1

′ + 𝐷′∆𝑢0 + 𝐷
′𝑥0
′ − 𝑦1,𝑠 + 𝐶

′𝑥1,𝑠
′

𝐴𝑒𝑞𝑋𝑞𝑝=𝐵𝑒𝑞 𝐹𝑜𝑟𝑚
⇒             {

𝑥1
′ − 𝐵′∆𝑢0 = 𝐴

′ [
𝑥0
𝑢−1
] − 𝑥1,𝑠

′

𝑦1
′ − 𝐶′𝑥1

′ − 𝐷′Δ𝑢0 = −𝑦1,𝑠 + 𝐶
′𝑥1,𝑠
′ + 𝐷′ [

𝑥0
𝑢−1
]   

 

(18) 

And for any other time step between 𝑖 = 1 up to ℎ − 1  it can be written as follows: 

(18)

And for any other time step between i = 1 up to h − 1 it can be written as follows:
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{
𝑥𝑘+1
′ = 𝐴′𝑥𝑘

′ + 𝐵′∆𝑢𝑘 − 𝑥𝑘+1,𝑠
′ + 𝐴′𝑥𝑘,𝑠

′

𝑦𝑘+1
′ = 𝐶′𝑥𝑘+1

′ + 𝐷′∆𝑢𝑘 + 𝐷
′𝑥𝑘
′ − 𝑦𝑘+1,𝑠 + 𝐶

′𝑥𝑘+1,𝑠
′

𝐴𝑒𝑞𝑋𝑞𝑝=𝐵𝑒𝑞 𝐹𝑜𝑟𝑚
⇒             {

𝑥𝑘+1
′ − 𝐴′𝑥𝑘

′ − 𝐵′∆𝑢𝑘 = 𝐴
′𝑥𝑘,𝑠
′ − 𝑥𝑘+1,𝑠

′

𝑦𝑘+1
′ − 𝐶′𝑥𝑘+1

′ − 𝐷′∆𝑢𝑘 = −𝑦𝑘+1,𝑠 + 𝐶
′𝑥𝑘+1,𝑠
′ + 𝐷′𝑥𝑘

′    
 

(19) 

Hence, the objective function in (13) becomes: 

{
𝐽 =∑(‖𝑦𝑘+𝑖

′ ‖𝑄𝑦
2 + ‖𝑥𝑘+𝑖

′ ‖
𝑄𝑥
′
2 + ‖∆𝑢𝑘+𝑖−1‖𝑅∆𝑢

2 )

ℎ

𝑖=1

𝑆. 𝑡. ∶ 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑀𝑜𝑑𝑒𝑙 𝑎𝑛𝑑 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

 
(

20) 

which can be written in compact form as: 

{
𝐽 =∑𝑋𝑞𝑝

𝑇 𝐻𝑋𝑞𝑝

ℎ

𝑖=1

                                         

𝑆. 𝑡. ∶ 𝐴𝑒𝑞𝑋𝑞𝑝 = 𝐵𝑒𝑞  𝑎𝑛𝑑 𝑙𝑏𝑋 ≤ 𝑋𝑞𝑝 ≤ 𝑢𝑏𝑋

 (21) 

where 

𝐴𝑒𝑞 =

[
 
 
 
 
 
 
 
−𝐵′ 𝐼𝑛𝑥; 0 0 ⋯ ⋯ ⋯ ⋯ 0

0 −𝐴′ −𝐵′ 𝐼𝑛𝑥; ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 −𝐴′ −𝐵′ 𝐼𝑛𝑥; 0 ⋯ 0

−𝐷′ −𝐶′ ⋯ ⋯ ⋯ 0 𝐼𝑛𝑦 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ 0
−𝐷′ ⋯ ⋯ ⋯ ⋯ −𝐶′ ⋯ 0 𝐼𝑛𝑦]

 
 
 
 
 
 
 

ℎ(𝑛𝑥+𝑛𝑢+𝑛𝑦)×ℎ(𝑛𝑥+2𝑛𝑢+𝑛𝑦)

 (22) 

𝐵𝑒𝑞 =

[
 
 
 
 
 
 
 
 𝐴′ [

𝑥0
𝑢−1
] − 𝑥1,𝑠

′

𝐴′𝑥1,𝑠
′ − 𝑥2,𝑠

′

⋮
𝐴′𝑥ℎ−1,𝑠

′ − 𝑥ℎ,𝑠
′

−𝑦1,𝑠 + 𝐶
′𝑥1,𝑠
′ + 𝐷′ [

𝑥0
𝑢−1
]

⋮
−𝑦ℎ,𝑠 + 𝐶

′𝑥ℎ,𝑠
′ + 𝐷′𝑥ℎ

′ ]
 
 
 
 
 
 
 
 

ℎ(𝑛𝑥+𝑛𝑢+𝑛𝑦)×1

 (23) 

with the lower and upper bounds for the entire length of the prediction horizon as 

𝑙𝑏 =

[
 
 
 
 
 
 
 
 
 
 
𝑙𝑏𝑢 − 𝑢𝑏𝑢

[
𝑙𝑏𝑥 − 𝑥1,𝑠
𝑙𝑏𝑢

]

⋮
𝑙𝑏𝑢 − 𝑢𝑏𝑢

[
𝑙𝑏𝑥 − 𝑥ℎ,𝑠
𝑙𝑏𝑢

]

𝑙𝑏𝑦 − 𝑦1,𝑠
⋮

𝑙𝑏𝑦 − 𝑦ℎ,𝑠 ]
 
 
 
 
 
 
 
 
 
 

ℎ(𝑛𝑥+𝑛𝑢+𝑛𝑦)×1

 (24) 

(19)

Hence, the objective function in (13) becomes:J =
h
∑

i=1

(∥∥y′k+i

∥∥2
Qy

+
∥∥x′k+i

∥∥2
Q′

x
+ ∥∆uk+i−1∥2

R∆u

)
S.t. : Dynamic Model and Constraints

(20)
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which can be written in compact form as: J =
h
∑

i=1
XT

qpHXqp

S.t. : AeqXqp = Beq and lbX ≤ Xqp ≤ ubX

(21)

where

Aeq =



−B′ Inx; 0 0 · · · · · · · · · · · · 0

0 −A′ −B′ Inx;
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . . . .
...

0 · · · 0 −A′ −B′ Inx; 0 · · · 0
−D′ −C′ · · · · · · · · · 0 Iny · · · 0

...
. . . . . . . . . . . . . . . . . . . . . 0

−D′ · · · · · · · · · · · · −C′ · · · 0 Iny


h(nx+nu+ny)×h(nx+2nu+ny)

(22)

Beq =



A′
[

x0
u−1

]
− x′1,s

A′x′1,s − x′2,s
...

A′x′h−1,s − x′h,s

−y1,s + C′x′1,s + D′
[

x0
u−1

]
...

−yh,s + C′x′h,s + D′x′h


h(nx+nu+ny)×1

(23)

with the lower and upper bounds for the entire length of the prediction horizon as

lb =



lbu − ubu[
lbx − x1,s

lbu

]
...

lbu − ubu[
lbx − xh,s

lbu

]
lby − y1,s

...
lby − yh,s


h(nx+nu+ny)×1

(24)

ub =



ubu − lbu[
ubx − x1,s

ubu

]
...

ubu − lbu[
ubx − xh,s

ubu

]
uby − y1,s

...
uby − yh,s


h(nx+nu+ny)×1

(25)
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where lbu and ubu are the lower and upper bounds on the inputs, and lbx, ubx, lby, and uby
are the lower and upper bounds for the states and outputs, respectively. Each element of
the Xqp vector can be weighted individually, providing more significance to prioritizing
certain control objectives over others. The weighting matrix H for the control objectives
within the objective function (output reference tracking, state reference tracking, input
value magnitude, and rate of change of the input commands) is [32]

H =



[
R∆u 0

0 Q′
x

]
0 · · · · · · · · · 0

0
. . . . . . . . . . . .

...
...

. . .
[

R∆u 0
0 Q′

x

]
0 · · · 0

0 · · · 0 Qy · · · 0
...

. . . . . . . . . . . .
...

0 · · · · · · · · · 0 Qy


h(nx+2nu+ny)×h(nx+2nu+ny)

Q′
x =

[
Qx 0nx×nu

0nu×nx Ru

]
(nx+nu)×(nx+nu)

(26)

where R∆u is the weighting of the rate of change of the inputs, Qx is the weighting of the
state reference tracking deviations, Ru is the weighting of the input magnitudes, and Qy is
the weighting of the output reference tracking deviations. R∆u, Qx, Ru, and Qy are diagonal
matrices with the respective weights along the diagonal.

3.4. Implementation

The cabin cooling effort of the A/C system is controlled using three actuators: the
compressor clutch, πc, condenser fan, N̂, and the AGS, X. The compressor clutch connects
the compressor to the engine, enabling the compressor to operate and increase the pressure
of the refrigerant leaving through the discharge port. As mentioned in Section 2.3, the
compressor clutch πc is not a continuous variable in practice and is a discrete binary
variable. In this study, πc is initially treated as a continuous variable to be computed via
QP optimization. When the MPC computes the continuous compressor clutch signal πc, it
rounds it to a value of either 0 or 1 prior to sending it to the GT-Suite model to ensure it is in
the discrete form that GT-Suite expects. Alternative methods exist that are better suited for
dealing with mixed-variable systems like the one described. For instance, techniques such
as hybrid predictive control models that incorporate both integer and continuous variables
have been explored in the literature [35–38] and can be further investigated in future studies.
These methods provide a more holistic approach to dealing with mixed-variable systems,
allowing for more accurate and efficient control strategies in scenarios where variables
exhibit both continuous and discrete behaviors.

The condenser fan and AGS regulate the flow of the ambient air stream entering
the vehicle’s front end, which passes through the condenser to exchange heat with the
refrigerant. The fan’s rotational speed is continuously controllable, and the AGS area
open-fraction can continuously vary between fully closed and fully open. Note that some
underhood airflow can still occur when fully closed due to the vehicle’s motion and/or
fan operation.

Based on the approach detailed in Section 2.2, using a time step of one second leaves
only the A matrix changed due to the addition of the identity matrix, as shown in (3)–(5).
By convention, the time step for MPC–plant interaction is the same as the one used within
the MPC for future time predictions using the model up to the prediction horizon [32].
The time step of one second was selected after assessing the open-loop response of the air
temperature output subjected to a unit step from each of the three controlled inputs for the
continuous-time linear model. All other parameters, such as the external inputs, were held
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constant at the trim state selected based on an operating point observed for the GT-Suite
(real system) model.

3.4.1. States, Inputs, and Outputs

For the simulations in this study, from the A/C system equations in (6)–(9) the state
vector x is defined as:

x =

[
pc
pe

]
=

[
x1
x2

]
(27)

where pc and pe are the condenser and evaporator refrigerant pressures. The input vector
u is defined as:

u =

πc
N̂
X

 =

u1
u2
u3

 (28)

where πc is a continuous compressor clutch signal, N̂ is the normalized rotational speed of
the condenser fan between zero and one, and X is the open fraction of the AGS between
zero and one.

The output vector, y, is defined as:

y =

[
Tair,out,e.
Wtotal

]
=

[
y1
y2

]
(29)

where Tair,out,e is the temperature of the air leaving the evaporator (entering the cabin)
[K], and

.
Wtotal is the total power consumption of the compressor [Watt] or [j/s] that is

comprised of
.

Wcomp,
.

W f an, and ∆
.

Wdrag, as discussed in (9). The evaporator outlet air
temperature is chosen as one of the outputs for the model because the controller’s goal is to
control the actuators to maintain this air temperature close to a reference or set value, thus
regulating the cabin cooling performance. The other output,

.
Wtotal , is chosen because the

second goal of this controller is to minimize the power consumption of the A/C system
while satisfying the cooling objective.

It is important to note that, in the proposed formulation, feedback is taken into account
by using the direct system outputs as the inputs for the controller. This means that no
estimator or observer was used to obtain the state variables or the output variables of the
system. In this study, it is assumed that the system outputs are measurable and noise-
free, and that the system model is accurate. Therefore, a possible model mismatch is
not considered.

However, in reality, these assumptions may not hold true. There may be measurement
errors, nonlinearities, uncertainties, or disturbances that affect the system’s performance
and stability. In such cases, using an observer or an estimator could help to improve the
feedback quality and robustness of the controller. This limitation can be further explored in
future studies with the implementation of an observer or an estimator to handle potential
system mismatches.

3.4.2. Sampling Time, Prediction Horizon, and Control Horizon

As per the recommendations and discussion provided in Section 2.1.2, the time unit of
measurement for the governing equations used to derive the linearized model is in seconds.
Thus, the units of the discretization time step are in seconds to maintain consistency. The
rise time of the A/C system in this study is roughly 12.7 s, meaning a time step between
0.64 s to 1.3 s would fit 10 to 20 samples within the open-loop rise time, meaning a sampling
or discretization time step of T = 1 s is satisfactory based on this best practice.

As per the recommendation for the choice of prediction horizon, in this study, a
prediction horizon of 10 s or 10 time steps is chosen. This reduces the computational
burden for the optimization process required during the prediction horizon by choosing
the lower bound of the recommended range. However, in future studies, one can further
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optimize the prediction horizon. Additionally, a control horizon of two steps is chosen
for the implementation of the adaptive MPC as it provides a sufficient balance between
computation, efficiency, and performance for the MPC design.

It should be noted that the choices above were based on trial and error in the study to
obtain satisfactory results for the industrial partner in this first phase of investigations for
the implementation of an MPC controller for an A/C system in a vehicle. In future studies,
additional investigations shall be pursued to further improve and optimize these choices
for the controller design.

3.4.3. Constraints

As discussed in Section 3.3, constraints can be set on the optimization. The values of
these three controlled inputs have physical limitations based on their range of operation.
These are hard constraints that cannot be exceeded by any means. The mathematical num-
ber sets and limitations of these three controlled variables are provided by the industrial
partner as:

πc ∈ N s.t. πc = [0, 1] :=
[
lbu1

, ubu1

]
N̂ ∈ Q s.t. 0 ≤ N̂ ≤ 1 :=

[
lbu2

, ubu2

]
X ∈ Q s.t. 0 ≤ X ≤ 1 :=

[
lbu3

, ubu3

] (30)

The states also have constraints but they are not due to physical limitations. The
constraints on the states are imposed to prevent problems arising in the HEXs due to
excessive or lack of pressure. The state constraints are as follows and are defined by the
industrial partner:

100 kPa ≤ pe ≤ 1300 kPa :=
[
lbx1

, ubx1

]
700 kPa ≤ pc ≤ 3000 kPa :=

[
lbx2

, ubx2

] (31)

For the QP algorithm to run successfully, constraints must also be present for the
outputs as well but, since the outputs do not have bounds for the application in this study,
they are set to infinity as

−∞ K ≤ Tair,out,e ≤ +∞ K :=
[
lby1

, uby1

]
−∞ Watt ≤

.
Wtotal ≤ +∞ Watt :=

[
lby2

, uby2

] (32)

Feasibility and infeasibility issues in MPC controllers with QP optimization can affect
the stability and performance of the closed-loop system. If the QP problem has hard
constraints, such as input or output limits, it may be impossible to satisfy them at some
time steps, leading to infeasibility. If the QP solver detects infeasibility, it terminates
immediately and returns an error in MATLAB. To avoid this situation, some methods
have been proposed, such as using soft constraints, additional constraint checking horizon,
terminal condition and cost, or disturbance preview [38].

In this study, the infeasibility problem shall not occur as the only hard constraints in
the QP optimization in this study are on the inputs outlined in (30) and these constraints
shall be met as, in any A/C system of a vehicle, there must be a combination of these
inputs that provides some sort of long-term asymptotic stability and tracking for the cabin
temperature even without the use of an MPC controller. This was primarily achieved by
the baseline PID controlled in previous works and can be the bare minimum solution to
this optimization problem that would exist at all times. Therefore, since there is no time
limit on the settling time for the temperature tracking of the cabin, the control inputs and
hard constraints in (30) and (31), as shown in simulation results for the ranges of pc and pe,
shall not prevent the optimization problem from converging to a solution at any given time
step and, hence, the infeasibility issue shall not arise.
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3.4.4. Weights

Additionally, from Section 3.3, the elements of the Xqp vector defined in (12) can be
weighted based on importance and contribution to the objective function through the
weighting matrix H described in (26). As defined in (27)–(29), for this work, there are two
states (nx = 2), three controlled inputs (ni = 3), and two outputs (ny = 2). The specific
weighting matrices inside (26) are defined as follows:

Qx =

[
Kpc 0
0 Kpe

]
Qy =

[
KTair 0

0 K .
WT

]

Ru =

Kπc 0 0
0 KN̂ 0
0 0 KX


R∆u =

K∆πc 0 0
0 K∆N̂ 0
0 0 K∆X


(33)

where Kpc and Kpe are the weightings for the state deviations, KTair is the weighting for the
air temperature tracking deviation, K .

WT
is the weighting for the total power consumption,

Kπc , KN̂ , and KX are the weightings for the magnitude of the controlled inputs, and K∆πc ,
K∆N̂ , and K∆X are the weightings for the rate of change of the controlled inputs. It is
worth noting that the goal of the MPC is to reduce energy consumption, but the power
consumption is modeled and weighted because energy is the time integral of power. Thus,
reducing power consumption will also reduce energy consumption.

3.4.5. Scenarios

Two control input cases are considered: first, only controlling the compressor clutch
and, second, adding the condenser fan speed and AGS position as additional controlled
inputs. Thus, the uk and ∆uk elements of the Xqp vector for the first case with clutch-only
control are:

uk =
[
πc
]
∆uk =

[
∆πc

]
(34)

and for the second case with full control of compressor clutch engagement, condenser fan
speed, and open-fraction AGS position are:

uk =

πc
N̂
X

; ∆uk =

∆πc
∆N̂
∆X

 (35)

It is important to note that, as the input vector changes in cases 1 and 2, the applied
constraints in the optimization problem are also adjusted to only include the applied
control inputs.

3.4.6. Summary

The overall system implementation is shown in Figure 3, where the structure of
implemented SLMC is shown with notations that are the same as in Figure 1. Additionally,
the environment under which each component is developed/operated is noted in red color.

To summarize this section and formalize the control problem investigated in this study,
we have the continuous SSR system form in (1) that can be written in the discrete SSR
system form in (2) with x defined in (27), u defined in (28), and y defined in (29). The
matrices A, B, C, and D in (1) are the Jacobians calculated from (6)–(9) using (10). These
matrices can be converted to their discrete form using Euler’s method described in (3)–(5)
to obtain Ad, Bd, Cd, and Dd in (2) with the sampling step of T = 1 s.
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The goal of the optimization problem in SLMPC is to minimize the objective function
in (11) in the general case and for this study in a simplified form in (13) and with constraints
formed as (21), where the elements of Xqp and H are defined in general in (12)–(26) with
specific definitions for this study in (33) subject to constraints in (24) and (25) in general
form and for this study in (30)–(32).

Finally, the investigations are conducted for two scenarios, 1. clutch only as input for
the MPC design as outlined in (34), and 2. full control input including compressor clutch
engagement, condenser fan speed, and open-fraction AGS position as outlined in (35). The
time or prediction horizon for the MPC design was set to 10 time steps, and since the time
step for this study was chosen as T = 1 s it would equal a 10 s look ahead in time for
the controller.

The results and analysis of the simulations with the VEM model, which was provided
by the industrial partner in the GT-suite environment and is used as the plant for the
simulations, are presented in Section 4, including some discussions on the observations
made from the outcomes.

4. Results and Discussion

To evaluate the performance of the air temperature tracking, the root mean squared
error (RMSE) between the actual air temperature from the GT-Suite model and the target
reference temperature was calculated as:

RMSE =

√√√√√∑
npoints
i=1

(
xactual,i − xre f erence,i

)2

npoints
(36)

where xactual,i is the actual value from the GT-Suite model, xre f erence,i is the target reference
value, and npoints is the total number of data points. The choice for the performance
evaluation in (36) is to ensure that the tracking of the reference value is monitored and
considered throughout the entire simulation, not just for a portion of it. That is why the
summation in (36) is from 1 to the total number of data points or simulation outputs.

The performance of the GT-Suite model with the baseline PID control scheme is shown
in Table 1, where n∆πc is the clutch actuation frequency in the number of actuations per
minute. These metrics will be referenced to the MPC results to compare the improvement
of the new control scheme.

Table 1. Baseline VEM model performance metrics.

Model TeaoRMSE [C] WT [kJ] n∆πc

Baseline GT-Suite 6.27 1.26 × 103 0
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4.1. MPC Tuning Process

The weighting parameters of the MPC controller are set for the individual elements
of the objective function as Xqp, defined in (12). The most crucial elements of (12) to be
minimized are (i) the air temperature setpoint deviation corresponding to KTair in (33),
(ii) the instantaneous power consumption corresponding to K .

WT
in (33), and (iii) the rate

of change of the clutch command corresponding to K∆πc in (33). The rate of change of
the clutch command is critical to consider since the durability of the compressor can be
a concern if a chattering phenomenon occurs, where the compressor clutch is constantly
cycled between engaging and disengaging. Wear and tear on the compressor clutch can lead
to reliability issues within vehicles and can increase expenses if the compressor requires
maintenance more frequently. To quantify the actuation frequency of the clutch, the total
number of clutch actuations throughout the cycle is recorded and divided by the 9.583 min
(575 s) duration of the test cycle used in this study. With these three as the crucial weightings
of interest for the MPC tuning, all other weightings in (33) are set to a value of one, while
these three (KTair , K .

WT
, and K∆πc ) are varied to ensure a reasonable contribution of various

terms in the objective function.
There are optimal methods for tuning MPCs, as reported by Vazques et al. [39] using

an artificial intelligence approach for real-time tuning of MPC for power converters and by
Yamashita et al. [40] using a multi-objective tuning technique for MPC tuning in grinding
circuits. However, in this study, a variation in the preliminary optimization method known
as grid search with a systematic distribution of the grid points in the desired search space
was considered as the focus of this study was more on the feasibility of implementing an
MPC controller for the vehicle’s A/C system rather than optimizing it. More advanced and
optimal tuning techniques can be considered in future studies. A preliminary sensitivity
assessment was conducted to determine the search space ranges for these three weighting
values, K∆πc , KTair , and K .

WT
, to ensure the entire relevant search space is being explored.

K∆πc , KTair , and K .
WT

were systematically increased while all other weighting factors were
held constant. For example, K∆πc was increased until no further significant change was
observed in the system’s clutch actuation frequency.

To form the optimization search space, the valid weighting ranges for K∆πc was
identified as 1–1000 since values greater than 1000 presented no change to the clutch
actuation frequency. The valid weighting range for KTair was chosen between 1–50, as the
values above this range provided no significant change to the air temperature’s RMSE.
Finally, the valid weighting range for K .

WT
was chosen to be between 1 and 50 since integer

values greater than 50 caused the compressor to shut off completely for the entire cycle,
meaning the A/C system was inactive, and the air temperature’s RMSE reached extreme
and unrealistic values. Therefore, the optimization process for the MPC tuning could be
described as

maximize(or minimize) fGS

(
K∆πc , KTair , and K .

WT

)
subject to 1 ≤ K∆πc ≤ 1000

1 ≤ KTair ≤ 50
1 ≤ K .

WT
≤ 50

(37)

where fGS(·) is the function whose value needs to be maximized or minimized during
the optimization process. A Latin Hypercube Sampling (LHS) approach outlined by
Huntington and Lyrintzis [41] was used to determine the grid points (candidate solutions
distribution) in the search space for the three MPC weightings within the defined search
spaces in (37). A sample space of 300 unique combinations of weighting values was
randomly generated in MATLAB using LHS to adequately fill the search space defined
in (37). The MPC was simulated with the GT-Suite model in two different scenarios
discussed in Section 3.4.5 for the SC03 cycle. The plant was operated with the MPC for
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each set of 300 weighting combinations to assess the system’s behavior with the new
control scheme.

As stated earlier, the three main metrics of interest are (i) the RMSE for the air tem-
perature setpoint deviation, (ii) the total energy consumption throughout the cycle, and
(iii) the clutch actuation frequency, each of which could be considered as the definition of
fGS(·) in (37). In a traditional approach to grid search optimization, one would minimize
or maximize the value of fGS(·) in (37) as one of the metrics outlined above. However,
in this study, to provide a more insightful illustration of how the samples in the search
space in (37) compare to one another against any of the above metrics, the results of the
evaluation for all samples in the search space in (37) against all metrics above are shown
in Figure 4. To further discuss the optimum points for this optimization approach, the
points of interest (POIs) are introduced next to provide trade-offs and decision-making
recommendations once the outcomes of all evaluations are obtained and visualized.
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4.2. Points of Interest

First, we examine the three metrics of interest for both MPC configurations, as shown
in Figure 4a. Four observations can be made here.

1. First, the upper bound of energy consumption is 1000 kJ, 21% lower than that for
the baseline control scheme for the plant. Hence, all assessed MPC configurations
significantly reduce A/C system energy consumption.
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2. Second, in a similar way, the largest air temperature error is 4.6 ◦C, 27% less than that
for the baseline controls. This suggests that the model being re-linearized at every
operating point is key to good control performance, as the baseline controls do not
include this.

3. Third, clutch actuation frequency ranges from 0 (same as baseline) to ~16 actuations
per minute over the SC03 cycle, with higher clutch actuations, in general, being traded
for lower energy consumption. This suggests there is no single optimal value of the
QP weights but rather a trading relationship the control designer must choose within.

4. Finally, the difference between the total energy consumption using clutch-only MPC
and full MPC is apparent, with clutch-only MPC yielding higher energy consumption.
The impact of the inclusion of two extra actuators into the MPC framework is easier
to establish by examining the same data in each of the three two-dimensional views
in Figure 4b–d.

In Figure 4b, the data is projected onto the energy–temperature error plane. It is clear
that including all actuators in the MPC framework lowers energy consumption for a given
temperature error at a comparable or lower clutch actuation frequency. Giving the MPC
the control ability over all actuators also enables higher-energy solutions with few to no
clutch actuations, which is impossible with clutch-only control.

In Figure 4c, the data is projected onto the clutch actuation frequency–energy plane.
The three-actuator MPC is shown to lower energy consumption by 50–100 kJ over the
drive cycle at comparable numbers of clutch actuation frequency and again the higher-
energy solutions with little to no clutch activation are apparent. In Figure 4d, the data is
projected onto the clutch actuation frequency–temperature error plane. Here, it can be
readily seen that the three-actuator MPC enables similar temperature errors and clutch
actuation frequency but at reduced energy.

Some POIs are gathered in Table 2. When the clutch does not actuate in POI 1 for full
control, the energy consumption is at its highest. However, the air temperature’s RMSE is at
its lowest. This scenario is most similar to the baseline control since the built-in compressor
displacement control is the main driving force for the refrigerant control. As the compressor
is active during the entire cycle, the energy consumption is high since the compressor is the
primary energy consumption for the A/C system. Comparing this POI with the baseline
performance, the energy consumption is reduced by 20.9% and the air temperature’s RMSE
is reduced by 34.6%. This demonstrates that, by just using MPC control of the compressor,
fan, and AGS, there is a significant improvement to the reference temperature tracking and
energy consumption.

Table 2. MPC performance comparison to baseline control’s performance.

Model
Full Control Clutch-Only Control

TeaoRMSE [C] WT [kJ] n∆πc TeaoRMSE [C] WT [kJ] n∆πc

Baseline
GT-Suite 6.27 1262.8 0 6.27 1262.8 0

POI 1 4.10 998.6 0 – – –
POI 2 4.10 872.1 0.20 4.38 894.7 0.20
POI 3 4.35 827.6 1.01 4.40 891.7 1.01
POI 4 4.46 797.3 2.03 4.41 882.9 2.03
POI 5 4.22 797.0 10.7 4.25 864.9 10.7
POI 6 4.44 788.2 16.2 4.46 850.4 16.2

For the clutch-only control results, the smallest clutch actuation frequency was found
to be 0.2, meaning the clutch has at least one on/off actuation over the 575 s drive cycle.
This can possibly be attributed to the fact that the baseline fan and AGS control inside the
GT-Suite model are poor, typically running the fan when it is not needed for additional
cooling and maintaining the AGS fully open regardless of the cooling requirement, causing
the clutch to be more inclined to be the primary source of cooling regulation.
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An interesting impact can be observed by increasing the compressor clutch actuation
frequency by a small margin, from POI 1 to POI 2 and 3, which is performed by decreasing
the weighting value of K∆πc or increasing the weighting values of KTair and K .

WT
. For full

control, by increasing the actuation frequency from zero to 0.2, the energy consumption
is decreased by 30.9% compared to the baseline. Similarly, from an actuation frequency
of zero to 1.01, the energy consumption is reduced by 34.5% compared to the baseline.
However, the RMSE for the air temperature is increased from 4.10 ◦C to 4.35 ◦C. POIs 5 and
6 demonstrate that, when the compressor clutch actuation frequency is above 2.03 for full
control, no significant improvement to the energy consumption is achieved. However, in
this region, the best air temperature’s RMSE is found between a clutch actuation frequency
of roughly 9.6–11.2. Comparing the POI results between the full control and clutch-only
control clearly shows that, at the same clutch actuation frequency, the control of the fan and
AGS provides an additional benefit to power consumption and air temperature tracking.
The largest difference between the full and clutch-only control can be seen by comparing
both cases at POI 3, where the full-control MPC uses 9.7% less energy compared to the
clutch-only control for the same clutch actuation frequency. The weights associated with
the POIs gathered in Table 2 are shown in Table 3.

Table 3. Weighting parameters for MPC simulations.

Model
Full Control Clutch-Only Control

KTair K .
WT

K∆πc KTair K .
WT

K∆πc

POI 1 1.0 35.3 956.4 – – –
POI 2 3.8 28.7 371.5 0.5 18.1 53.4
POI 3 7.2 35.6 837.1 0.8 20.0 223.5
POI 4 5.8 4.7 624.4 6.6 36.4 929.3
POI 5 22.4 3.1 551.4 16.4 35.4 563.3
POI 6 32.0 15.6 37.7 49.5 12.4 51.8

The system behavior for POIs 2 and 4 are shown in Figures 5 and 6, respectively, where
they are both compared to the baseline system behavior. By investigating the behavior
of the clutch-only MPC results shown in Figures 5 and 6, it can be immediately observed
that the condenser fan rotational speed and AGS open fraction are controlled in the same
manner as the baseline.

The impact of the full MPC on energy consumption can be recognized by comparing
the condenser fan and AGS control to the baseline. For example, in POI 2, the full MPC is
able to completely shut off the condenser fan for the majority of the cycle. In order to cause
a sharp increase in air temperature, the clutch is disengaged, allowing the system to heat
up quickly. However, when doing so, the full MPC controller drives the rotational speed of
the condenser fan to its maximum value so as to not cause a significant overshoot in air
temperature. This can be seen more often in POI 4, where the clutch actuation frequency is
higher. In doing so, more energy is saved by disengaging the clutch and allowing the other
two actuators to work toward satisfying the air temperature reference tracking objective. In
POIs 5 and 6, the clutch actuation frequency is significantly higher than in POI 4, as seen in
Table 2.
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The key takeaway is that there are multiple combinations of the weighting parameters
which yield good performance, trading mainly between energy consumption and clutch
actuation frequency. Choosing one is the designer’s job, depending on the balance desired
between energy use and clutch/compressor life longevity. For the vehicle of interest in this
work, the fuel economy is 9.8 L/100 km when the A/C system is not active. In terms of
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fuel economy, the A/C system can typically use roughly 1.0 L/100 km, increasing the fuel
consumption to 10.8 L/100 km [42]. In this work, the greatest observed energy savings by
the full MPC is 37.6%, which would reduce the fuel economy number to 10.4 L/100 km,
roughly yielding a 3.5% savings in fuel economy.

5. Conclusions and Future Work

In this paper, two MPC schemes were applied to the A/C system of a vehicle, that is,
one controlling only the compressor clutch and one additionally controlling the condenser
fan and AGS. The analysis showed that, by switching to MPC control, an improvement
of 32.7% to the air temperature reference tracking and 37.6% to the energy consumption
can be achieved. By disengaging the compressor when it is not needed, up to 37.6% in
energy savings was recorded using the full-control MPC. However, achieving a steady-state
solution at the air temperature setpoint of 4 ◦C was not achievable by controlling the fan and
AGS alone, leading to a cycling behavior of the discrete compressor clutch. By increasing
the actuation frequency of the compressor clutch from zero to 2.03, the energy benefit using
the full-control MPC was improved from 20.9% to 36.9%. However, increasing the clutch
actuation frequency further resulted in no further energy benefit. Nevertheless, the air
temperature RMSE was improved by 5.4% by increasing the clutch actuation frequency
from 2.03 to 10.7, at the expense of more wear and tear on the clutch itself.

From the analysis done in this work, it can be concluded that switching to an MPC
scheme is worthwhile for A/C system control, even if there is no change in the components
being actuated. This can be seen by the energy saving and air temperature tracking benefit
of 32.6% and 32.2% provided by the clutch-only MPC. Further benefit can be obtained,
especially in terms of clutch durability, by including all three actuators in the MPC scheme.
The full-control MPC is able to provide a 34.5% energy benefit with a clutch actuation
frequency of 1.01, whereas the clutch-only control provides a 32.7% energy benefit with a
clutch actuation frequency of 16.2. The discrete number of points investigated in the Latin
Hypercube Sampling did not permit formal identification of a Pareto front. However, the
trades seen between the outputs strongly suggest such a front could be identified for any
given vehicle; thus, optimal weightings could be chosen based on the designer’s choice
between clutch actuation frequency, energy consumption, and temperature error.
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Appendix A. Successive Linearization Based MPC

Traditional MPC relies on discrete-time linear models, but most dynamic systems
are nonlinear and continuous. To address this, one approach is to employ successive
linearization. This involves linearizing the continuous nonlinear system at each sampling
time around the current state, discretizing it, and using the resulting model to predict
future values. A QP problem is then formulated to find a control sequence that minimizes
a cost function. See Figure 3 for an illustration of this MPC approach based on successive
linearization. The contents of this appendix are adapted from [29] for completeness of the
presented work in this study.
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Appendix A.1. Continuous Nonlinear System Linearization

Consider nx, nu, and no, as states, inputs, and outputs of a system, respectively
resulting in state x ∈ Rnx , input u ∈ Rnu , and output y ∈ Rno vectors. The outputs yi and
states xi would be expressed as yi = zi(x, u), i = 1, .., no and

.
xi = fi(x, u), i = 1, .., nx. The

system dynamics in SSR form would be

.
x = F(x, u), y = Z(x, u) (A1)

Generally, the states and inputs in (A1) can be constrained as xl ≤ x ≤ xu with the
lower and upper bounds as xl, xu, and ul ≤ u ≤ uu with lower and upper bounds as ul, uu,
respectively. One can linearize (A1) by finding Jacobians at a set point as

Ac =


∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xnx

...
...

. . .
...

∂ fnx
∂x1

∂ fnx
∂x2

· · · ∂ fnx
∂xnx

 (A2)

which can be written in compact form as Ac(i, j) = ∂ fi
∂xj

. Following the same convention, the

remaining SSR matrices can be formed as Bc(i, j) = ∂ fi
∂uj

, Cc(i, j) = ∂zi
∂xj

, and Dc(i, j) = ∂zi
∂uj

.

Let us denote the desired set point by xop, with time derivative
.
xop, and the control input

uop. The partial derivatives in Ac, Bc, Cc, and Dc must be evaluated at x = xop,
.
x =

.
xop, and

u = uop. If we denote the linearized system state by xL, control by uL, and output by yL,
the system evolution can be formulated as

.
xL =

.
xop + Ac

(
xL − xop

)
+ Bc

(
uL − uop

)
. (A3)

Gathering the constant terms of (A3) in a new term K =
.
xop − Acxop − Bcuo ∈ Rnx ,

the SSR of the linearized system becomes

xL = AcxL + BcuL +K, yL = CcxL + DcuL. (A4)

Appendix A.2. Continuous Linearized System Discretization

The next step in this process is to discretize the continuous linearized system. To do
so, let us multiply both sides of (A4) by e−Act

e−ActxL(t) = e−Act AcxL(t) + e−Act(BcuL(t) +K) (A5)

and reorganize (A5) as

d
dt

(
e−ActxL(t)

)
= e−Act(BcuL(t) +K) (A6)

The analytical solution for (A6) can be obtained as

xL(t) = eActxL(0) +
∫ t

0
eAc(t−τ)(BcuL(τ) +K)dτ (A7)

If we denote the discrete-time indices as xL[k] = xL(kTs), with the sampling time Ts,
and considering t = kTs in (A7), we obtain

xL[k + 1] = eAcTs xL[k]+∫ kTs+Ts
kTs

eAc(kTs+Ts−τ)(BcuL(τ) +K)dτ
(A8)
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With the assumption that uL = uL[k] does not change throughout a time step and Ac
is invertible, (A8) becomes

xL[k + 1] = eAcTs xL[k] + A−1
c

(
eAcTs − I

)
(BcuL[k] +K) (A9)

which gives (A9) as the exact solution of discretized (A4) with the system output as

yL[k] = CcxL[k] + DcuL[k]. (A10)

The discrete-time SSR matrices can be defined as Ad = eAcTs , Bd = A−1
c
(
eAcTs − I

)
Bc,

K = A−1
c
(
eAcTs − I

)
K, Cd = Cc, and Dd = Dc to write (A9) and (A10) in a compact form.

Since we are in the discrete-time domain from here on, we can denote xL[k] as xk
D and uL[k]

as uk
D. Hence, the discrete-time linearized SSR yields

xk+1
D = Adxk

D + Bduk
D +K, yk

D = Cdxk
D + Dduk

D. (A11)

Appendix A.3. Quadratic Programming Problem Derivation

In MPC formulation, we compute the system’s future evolution within a finite horizon
known as the prediction horizon. Predictions for a given set of control inputs are based
on a discrete-time linear system model. The goal is to minimize a cost function to track
a reference trajectory while adhering to constraints. At the current time step, k, the cost
function typically involves the tracking error, represented by the difference between the
output yk

D and the desired reference trajectory rk as ek = yk
D − rk, as well as control inputs

uk
D. The error’s evolution over the prediction horizon commencing from time step k can be

defined as
ek = Cdxk

D + Dduk
D − rk

ek+1 = Cdxk+1
D + Dduk+1

D − rk+1 = Cd Adxk
D + CdBduk

D + CdK+ Dduk+1
D − rk+1

ek+2 = Cdxk+2
D + Dduk+2

D − rk+2 = Cd A2
dxk

D + Cd AdBduk
D + CdBduk+1

D + Cd AdK+ CdK+ Dduk+2
D − rk+2

...

(A12)

The error and control signals over the horizon, spanning np time steps, can be denoted
as

→
e ∈ Rnp ·no and

→
u ∈ Rnp ·nu , respectively. Hence, once can write the system’s behavior

over the horizon as 
ek

ek+1

ek+2

...
ek+np−1


︸ ︷︷ ︸

→
ek

=



Cd
Cd Ad
Cd A2

d
...
Cd A

np−1
d


︸ ︷︷ ︸

P∈Rnpno×nx

xk
D+



Dd 0 0 · · ·
CdBd Dd 0 · · ·
Cd AdBd CdBd Dd · · ·
...

...
...

. . .

Cd A
np−2
d Bd Cd A

np−3
d Bd Cd A

np−4
d Bd · · ·

·
︸ ︷︷ ︸

H∈Rnpno×npnu

uk
D

uk+1
D

uk+2
D

...
uk+np−1

D


︸ ︷︷ ︸

→
uk

+



0
Cd
Cd(I + Ad)
...

Cd

(
I +

np−2

∑
i=1

Ai
d

)


︸ ︷︷ ︸

E∈Rnpno×nx

K−


rk

rk+1

rk+2

...
rnp−1


︸ ︷︷ ︸

→
rk

(A13)
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where P, H, and E denote the output prediction matrices, while K represents the constant
term from (A11). The vectors

→
ek,

→
uk, and

→
rk encompass the combined error, control input,

and reference vectors for the horizon commencing at time k. The concise expression for
(A13) would then be as follows

→
ek = Pxk

D + H
→
uk + K (A14)

where K = EK− →
rk ∈ Rnp ·no collects all constant terms.

The cost function, which quantifies the controller’s performance, is defined as

J =
1
2

(
→
e

T
k Q

→
ek +

→
uk

T
R

→
uk

)
(A15)

where Q ∈ Rnpno×npno and R ∈ Rnpnu×npnu are weight matrices for error and input, respec-
tively. Substituting (A14) into (A15) yields

J =
1
2

((
Pxk

D + H
→
uk + K

)T
Q
(

Pxk
D + H

→
uk + K

)
+

→
ukT

→
uk

)
After eliminating terms unrelated to the control input

→
uk, and combining the quadratic

and linear components, we arrive at

J =
1
2
→
u

T
k

(
HTQH + R

)
︸ ︷︷ ︸

G

→
uk +

(
xkT

D PT + KT
)

︸ ︷︷ ︸
WT

QH
→
uk (A16)

Utilizing matrices G and W, the objective function J becomes

J =
1
2
→
u

T
k G

→
uk + WT →

uk (A17)

Nevertheless, when control inputs carry a non-zero weight in the cost function, a
steady-state output error may arise. In such cases, it might be more cost-effective to allow
this error in J instead of raising the control inputs. A solution is to define the cost function
in terms of control input increments rather than their absolute values. This approach
minimizes the impact of control input values on J. This requires transforming the control

vector elements as uk
D = uk−1

D + δu1, uk+1
D = uk

D + δu2 = uk−1
D + δu1 + δu2, . . . , u

k+np−1
D =

u
k+np−2
D + δunp = uk−1

D + δu1 + · · ·+ δunp or, concisely, as
uk

D
uk+1

D
...

uk+np−1
D


︸ ︷︷ ︸

→
uk

=


uk−1

D
uk−1

D
...

uk−1
D


︸ ︷︷ ︸

→
u k−1

+


I 0 · · ·
I I · · ·
...

...
. . .

I I · · ·


︸ ︷︷ ︸
∆∈Rnpnu×npnu


δu1
δu2

...
δunp


︸ ︷︷ ︸

→
δuk

where ∆ is a lower diagonal matrix with identity I ∈ Rnu×nu or a zero 0 ∈ Rnu×nu matrix of
the same size as its elements. Hence, (A14) can be rewritten as

→
ek = Pxk

D + H
(
→
uk−1 + ∆

→
δuk

)
+ K. (A18)

Since
→
u k−1 is constant throughout the horizon, it can be included in K. The objective

function J∆ in δu is formulated as

J∆ =
1
2

→
δuk

T

TG∆
→

δuk + WT
∆

→
δuk (A19)
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where G∆ = ∆TG and WT
∆ =

→
u

T
k−1G∆ + WT∆.

A key aspect of MPC is its ability to handle prescribed constraints on both state
variables and control inputs. To enforce constraints on the states, it is essential to establish
the state vector’s trajectory over the prediction horizon.

xk
D

xk+1
D

xk+2
D

...

xk+np
D


︸ ︷︷ ︸
→
xk∈R(np+1)nx

=


I
Ad
A2

d
...
A

np
d


︸ ︷︷ ︸

Px∈R(np+1)nx×nx

xk
D+


0 0 0 · · ·
Bd 0 0 · · ·
AdBd Bd 0 · · ·
...

...
...

. . .

A
np−1
d Bd A

np−2
d Bd A

np−3
d Bd · · ·


︸ ︷︷ ︸

Hx∈R(np+1)nx×npnu

.


uk

D
uk+1

D
uk+2

D
...

uk+np−1
D

+



0
I
I + Ad
...

I +
np−1

∑
i=1

Ai
d


︸ ︷︷ ︸

Ex∈R(np+1)nx×nx

K

(A20)

where
→
xk holds np + 1 state vectors from the time horizon, and Px, Hx, and Ex are state

prediction matrices. Hence, (A20) becomes

→
xk = Pxxk

D + Hx
→
uk + ExK (A21)

The state constraint x1 ≤ V
→
xk ≤ xu can be written as x1 −VPxxk

D −VExK ≤ VHx
→
uk ≤

xu − VPxxk
D − VExKwhere V ∈ R(np+1)nc×(np+1)nx picks nc states with active constraints. If

all states are constrained, then V is an identity matrix. With
→

δuk and defining U = VHx,
the QP problem can be characterized as

argmin
→

δuk

J = 1
2

→
δuk

T
G∆

→
δuk + WT

∆

→
δuk

subject to Ul ≤ U
→

δuk ≤ Uu

ul ≤
→

δuk ≤ uu

(A22)

where Ul = xl − Uk and Uu = xu − Uk, Uk = VPxxk
D + VExK + VHx

→
u k−1, while

ul = ∆−1
(

ul −
→
u k−1

)
and uu = ∆−1

(
uu −

→
u k−1

)
. It is important to highlight that the

constraints and bounds in (A22) can be either constant or time-varying.
In a typical QP solver, matrices G and W, in conjunction with constraint and bound

information, are employed to determine an optimal solution. In closed-loop MPC, only the
first control vector within the horizon is implemented on the system, while the subsequent
control inputs are disregarded. Following the current time step, new system measurements
are acquired. This iterative process, involving linearization, discretization, prediction
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matrix generation, and the application of the first control input, is repeated at each time
step in a closed-loop manner.

Appendix B. Relaxation of MPC Formulation

The concept of using continuous variables to represent discrete ones is rooted in
optimization and relaxation methods. In this approach, discrete variables are temporarily
considered as continuous, simplifying the problem into a relaxation of the original. Solving
this relaxed problem is more manageable. However, rounding the solution to the nearest
integers does not always guarantee an optimal solution for the original problem because
the relaxation can overestimate feasible solutions. Consequently, additional techniques like
branch-and-bound algorithms are commonly employed to systematically explore and find
optimal integer solutions.

In mathematical optimization and related fields, relaxation serves as a modeling strat-
egy to approximate complex problems with more tractable ones. It allows for insights
into the original problem. For example, in integer programming, linear programming
relaxations enable rational solutions without integer constraints. In combinatorial optimiza-
tion, Lagrangian relaxations address complex constraints, simplifying problem solutions.
These relaxation techniques often complement branch-and-bound algorithms by helping to
establish bounds.

Axehill et al.’s work [43] addresses the control of hybrid systems in Mixed Logical
Dynamical (MLD) form, particularly those combining continuous and binary control signals.
While binary states are not explicitly considered, this problem shares similarities with the
finite alphabet control problem.

In standard linear MPC, the control problem is a QP task. In the hybrid context,
binary variables are introduced, making it a Mixed Integer Quadratic Programming (MIQP)
problem, often called Mixed Integer Predictive Control (MIPC). This shift from QP to MIQP
transforms it into a computationally challenging non-convex problem. The contents of this
appendix are adapted from [43] for completeness of the presented work in this study.

Appendix B.1. Notation

In this section, Sn represents symmetric matrices with n columns and Sn
++

(
Sn
+

)
in-

dicates symmetric positive (semi) definite matrices with n columns. The superscript ∗
denotes values of variables and functions at their optimum. The function diag(·) is defined
such that, when applied to a vector, it forms a diagonal matrix with the vector’s elements
along the diagonal. When applied to a matrix, it creates a vector consisting of the matrix’s
diagonal elements. We frequently use the sets T = {0, . . . , N − 1} and I = {1, . . . , Nm}.
Additional notation details can be found in [43].

Appendix B.2. Control Problem

For a system in the following form{
x(0) = x0

x(t + 1) = Ax(t) + Bu(t), ∀t ∈ T
(A23)

where A ∈ Rn×n, B ∈ Rn×m, x(t) ∈ Rn is the state, and x0 ∈ Rn is the initial state. We
consider an MIPC problem over a prediction horizon of length N. We use an all-binary
control input u(t) ∈ {0, 1}m to keep derivations as simple as possible. It is worth noting
that the results remain applicable even when combining real-valued and binary control
signals. The objective function to minimize is given by:

JMPC(x(·), u(·))

= 1
2

N−1
∑

t=0

(
∥ x(t) ∥2

Qx
+ ∥ u(t) ∥2

Qu

)
+ 1

2∥ x(N) ∥2
Qx

(A24)
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where ∥ v ∥2
Q = vTQv, Qx ∈ Sn

+ and where Qu ∈ Sm
++. At each time step, the system is

additionally subjected to c linear inequality constraints represented as:

Hxx(t) + Huu(t) + h ≤ 0, ∀t ∈ T
Hxx(N) + h ≤ 0

(A25)

where Hx ∈ Rc×n, Hu ∈ Rc×m, and h ∈ Rc. The MIPC problem can be expressed as
an MIQP problem in two equivalent forms. In the first form, the equality constraints
representing the system’s dynamics are preserved, resulting in an MIQP problem given as:

minimize
x,u

JMIQP1(x, u)

s.t. [AB]
[
xTuT]T

= b,
[HxHu]

[
xTuT]T

+ h ≤ 0
ui ∈ {0, 1}, ∀i ∈ I

(A26)

where JMIQP1(x, u) = 1
2 xTQxx + 1

2 uTQuu for a suitable choice of A, B, Hx, Hu, h, b, and
matrices Qx and Qu. The x ∈ R(N+1)n and u ∈ RNm denote system states and control
inputs, respectively. In the second form, the equality constraints in (A23) can be employed
to remove the states as x = Sxx0 + Suu. This results, with a suitable Sx and Su, in an MIQP
problem similar to (A26) in a new form as

minimize
u

JMIQP2(u)

s.t. (HxSu + Hu)u + h + HxSxx0 ≤ 0,
ui ∈ {0, 1}, ∀i ∈ I

(A27)

where JMIQP2(u) =
1
2 uT(ST

u QxSu + Qu
)
u+(Sxx0)

TQxSuu+ κ and κ = 1
2 (S×x0)

TQ×(S×x0)
is a constant. The optimal objective function values for the problems in (A26) and (A27) are
equal, i.e., J∗MPC = JMIQP 1 = J∗MIQP2

.

Appendix B.3. Relaxations

A simple method to relax the integer constraints substituting ui ∈ {0, 1} with the
relaxed constraint ui ∈ [0, 1]. This results in a QP problem, known as a QP relaxation.
Following this approach, the QP relaxation for the problem in (A26) becomes:

minimize
x,u

JQP1(x, u)

s.t. [AB]
[
xTuT]T

= b,
[HxHu]

[
xTuT]T

+ h ≤ 0
0 ≤ ui ≤ 1, ∀i ∈ I

(A28)

where JQP1(x, u) = JMIQP1(x, u). Hence, the QP relaxation of (A27) yields

minimize
u

JQP2(u)

s.t. (HxSu + Hu)u + h + HxSxx0 ≤ 0
0 ≤ ui ≤ 1, ∀i ∈ I

(A29)

where JQP2(u) = JMIQP2(u).
This relaxation is a semidefinite programming (SDP) problem and cannot generally

form a QP. The SDP relaxation of (A26) yields
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minimize
U,x,u

JSDP1(U, x, u)

s.t. [AB]
[
xTuT]T

= b,
[HxHu]

[
xTuT]T

+ h ≤ 0
Uii = ui, ∀i ∈ I
U ⪰ uuT

(A30)

where JSDP1(U, x, u) = 1
2 xTQxx+ 1

2 tr(QuU), U ∈ SNm and where Uii denotes matrix U’s di-
agonal element i. The relaxation employed in (A30) is referred to as the equality-constrained
SDP relaxation, which can equivalently be rewritten as

minimize
U(·),x(·),u(·)

JSDP1′
(U(·), x(·), u(·))

s.t. (A23) and (A25)
Uii(t) = ui(t), ∀t ∈ T , ∀i ∈ {1, . . . , m}
U(t) ⪰ u(t)u

(
t)T , ∀t ∈ T

(A31)

with
JSDP1′

(U(·), x(·), u(·))

= 1
2

N−1
∑

t=0

(
x
(
t)TQxx(t) + tr(QuU(t))

)
+ 1

2 x
(

N)TQxx(N)

(A32)

where U ∈ SNm in (A30) is substituted by N U(t) ∈ Sm. Therefore, the number of variables
(matrix elements) in (A31) increases linearly with the prediction horizon N, in contrast to
the quadratic growth in (A30).

Likewise, the SDP relaxation of (A27) yields

minimize
U,u

JSDP2(U, u)

s.t. (HxSu + Hu)u + h + HxSxx0 ≤ 0
Uii = ui, ∀i ∈ I
U ⪰ uuT

(A33)

where JSDP2(U, u) = 1
2 tr
((

ST
u QxSu + Qu

)
U
)
+ (Sxx0)

TQxSuu + κ, U ∈ SNm and κ is a
constant. It is important to note that the number of elements in U in (A32) increases
quadratically with N. Further proof of the feasibility and quality of the relaxed solution
can be found in [43].

Yang et al. [44] focused on developing real-time MPC for embedded systems, incor-
porating both continuous and discrete control inputs. They cast the online optimization
in MPC as a MIQP and employed a branch and bound algorithm that handles multiple
relaxed QPs. Due to embedded system constraints, they limited the number of relaxed
problems and introduced custom heuristics to generate early feasible solutions.

For problems involving continuous variables in the relaxed states, an additional step
is needed to revert the result to the feasible form of the original states, whether continuous
or discrete. This process, referred to as “Rounding Heuristics”, plays a crucial role. It
involves determining how to round the solution, with an improperly rounded solution
causing delays in the optimization process. The most naive rounding is to round obtained
solution x(t) to 1 x(t) ≥ 0.5 in the relaxed solution where the range for x(t) is x ∈ [0, 1] in
continuous space or x = 0 or 1 in discrete space. There is a need to reformulate the problem
with appropriate weights if there are multiple discrete variables in the system’s operation,
as further discussed in [44].
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