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Abstract: A device that transforms chemical energy into electrical energy is an electrochemical cell.
The reaction type inside the cell determines whether it is exothermic or endothermic. This paper
discusses the mathematical modelling of exothermic explosions in a slab. This model is based on a
nonlinear equation containing a nonlinear term related to Arrhenius, bimolecular, and sensitised laws
of reaction kinetics. The absolute temperature can be derived by solving the nonlinear equation using
the Akbari–Ganji technique. The mathematical model also numerically solved and simulated in the
MATLAB® v2016b software. The new simple theoretical result is validated with previously identified
analytical and numerical findings. The influence of the parameters of Frank-Kamenetskii number,
activation energy and the numerical exponent on temperature is discussed. The Frank-Kamenetskii
number is observed to drop as the temperature is found to decrease, while the activation energy
parameter is shown to increase. The numerical exponent has little or no effect on the temperature.
An extension of this model to cylinder and sphere geometry is also provided.

Keywords: electrochemical heat sources; exothermic explosions; mathematical modelling; nonlinear
equation; Akbari–Ganji method

1. Introduction

Numerous industries, such as heavy oil recovery, the storage of cellulosic compounds,
coal gasification, waste burning, biomass and coal combustion, and lithium-ion batteries,
have researched the thermal breakdown of reactive materials due to exothermic chemi-
cal reactions. Thus, it is highly desirable to model the situation mathematically. Many
researchers have provided models to explain abusive behaviour and thermal runaway.
Hatchard et al. [1] took the initial steps to explain the exothermic reaction kinetics in
prismatic and cylindrical lithium-ion cells. Furthermore, they accurately predicted the
variation in cell temperature during and after nail penetration using a numerical simula-
tion. A modified reaction–diffusion theory was provided in the works of Kim et al. [2] and
Peng et al. [3,4]. An electrochemical model of lithium-ion battery nail penetration, which
involved a dramatic temperature change, was also discussed in [5]. A catastrophe theory
approach based on a simplified ordinary differential equation has also been reported [6].
This model was extended in [7,8].

Ziebert et al. [9] discussed electrochemical–thermal characterization and thermal
modelling for batteries. Guo et al. [10] developed the three-dimensional thermal finite
element modelling of lithium-ion batteries in thermal abuse applications. In 1930, Semonov,
Zeldovith, and Frank-Kamenetskii described this behaviour first, and their pioneering
contributions were presented in [11]. Frank-Kamenetskii also proposed the steady-state
theory of thermal explosions. This idea has been applied to various combustible material
geometries in the literature. For an infinite slab, Boddington et al. [12–14] and Wake
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et al. [15] reviewed a case of two-step parallel exothermic processes, and they extended
the investigations to two other geometries of an infinite circular cylinder and a sphere.
Balakrishnan et al. [16] obtained critical values for some geometries, such as infinite squares,
rods, and cubes, using the finite difference method.

Makinde et al. [17] obtained analytical solutions for the governing nonlinear bound-
ary value problem using the perturbation technique and Hermite–Pade approximants.
Also, they discussed the essential properties of a temperature field, including bifurcations
and thermal criticality. Ananthasamy et al. [18] used the homotopy analysis method to
solve a nonlinear equation to obtain an analytical expression of the temperature in an
exothermic explosion in a slab. This is time-consuming since it contains an infinite number
of convergence control parameters. Er-Riani and Chetehouna [19] applied the homotopy
perturbation method to solve the steady-state nonlinear equation in an exothermic chemical
reaction. This perturbation method has a convergence problem, however, and requires a
small parameter. In this paper, we obtain a simple analytical expression for the temperature
field for a range of kinetic mechanisms, such as sensitised, Arrhenius, and bimolecular
reactions, by solving the nonlinear Frank-Kamenetskii equation using the very useful
Akbari–Ganji method.

2. Mathematical Formulation and Analysis of the Problems

Considering the steady state of an exothermic chemical reaction in a combustible slab
with the potential of heat loss to the environment, Frank-Kamenetskii [11] first proposed the
classical formulation of this problem. The heat balance equation for steady-state conditions
is given as follows [19]:

k
d2T(Y)

d Y2 + Q C0 A
(

K T(Y)
v h

)m
e
−E

R T(Y) = 0 (1)

The boundary conditions are

d T
d Y

= 0 at Y = 0, (2)

T = T0 at Y = a, (3)

where T denotes the absolute temperature, k represents the material’s thermal conductivity,
Q is the heat of the reaction, C0 is the initial concentration of the reactant species, A is
the rate constant, h indicates Planck’s number, v denotes the vibration frequency, K is
Boltzmann’s constant, E represents the activation energy, R is the universal gas constant, a
is the slab half width, Y is the distance measured in the normal direction in the plate, and
T0 is the wall temperature. The parameter m is the numerical constant, so that m = 2, 0, 1/2
indicates the numerical exponent for sensitised, Arrhenius, and bimolecular kinetics. To
reduce the complexity, we make the nonlinear Equation (1) into a dimensionless form by
defining the following dimensionless parameters:

θ =
E (T − T0)

R T2
0

, ε =
RT0

E
, y =

Y
a

, λ =
Q E A a2C0 KmTm−2

0 e
E

RT0

vm hmR k
(4)

where θ is the dimensionless temperature field, λ denotes the Frank-Kamenetskii parameter,
ε represents the activation energy parameter, and y is the dimensionless distance. If the
Frank-Kamenetskii parameter λ is greater than a critical value, an explosion occurs and the
differential equation does not have a solution. Using Equation (4), Equation (1) reduces
this to the following dimensionless form:

d2θ(y)
d y2 + λ(1 + ε θ(y))me(

θ(y)
1+ε θ(y) ) = 0 (5)
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The dimensionless boundary conditions are

d θ

d y
= 0 at y = 0, (6)

θ = 0 at y = 1, (7)

3. New Analytical Expression of the Temperature Distribution Using the
Akbari–Ganji Method

The Taylor series [20,21], Adomian decomposition [22], variational iteration [23],
and Akbari–Ganji methods [24] are only a few of the asymptotic techniques that have
been applied to solve nonlinear differential equations. Among these techniques, the AGM
(discussed in Appendix A) might be regarded as a useful algebraic (semi-analytic) approach
to resolving such issues. According to the AGM, a solution function with unidentified
constant coefficients is supposed to satisfy the differential equation and the initial conditions.
We can assume that the trial solution of Equation (5) is

θ(y) = ∑2
i=0 θi yi =θ

0
+ θ1y + θ2y2 (8)

where θ0, θ1, and θ2 are constants. Using the boundary conditions (6) and (7), we obtain

θ1 = 0, θ0 = −θ2 (9)

Now, we can define the function G by

G(y) =
d2θ

d y2 + λ(1 + ε θ)me(
θ

1+ε θ ) = 0 (10)

Using Equation (8), Equation (10) at y = 0 becomes

G(y = 0) = 2 θ2 + λ(1− ε θ2)
me(

−θ2
1−ε θ2

)
= 0 (11)

Using Equation (9), Equation (8) can be rewritten as follows:

θ(y) = θ2

(
y2 − 1

)
(12)

The parameter θ2 is obtained by solving the nonlinear Equation (13).

2 θ2 + λ(1− ε θ2)
me(

−θ2
1−ε θ2

)
= 0 (13)

The unknown parameter θ2 can be obtained by solving Equation (13) using Matlab
R2019b or Wolfram Alpha.com (free online software, accessed on 4 September 2023).

4. Previous Analytical Results

The homotopy analysis method and the perturbation methodology may both be
utilised to solve the nonlinear Equation (5) efficiently, as suggested by Anathaswamy’s
work [18] and Makinde et al.’s study [17]. The lengthy expressions obtained in the aforemen-
tioned publications may cause some convergence issues for inexperienced users. Therefore,
we tackle the problem directly in our paper using the AGM method which has been found
effective for analysing transport and kinetics in bounded regions [24,25]. This methodology
provided approximate closed form expressions for the temperature distribution in the
region, which is in good agreement with numerical simulations.

Alpha.com
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5. Discussion

Equation (12) represents the simplest analytical expression of the temperature profile.
The thermal decomposition of the reacting combustible material depends on the parameters
λ, ε and m, which are of great importance to applications in industrial safety and the
handling techniques of explosives.

Numerical Simulation

This section validates the above theoretical results using a numerical simulation
for physically realistic values of various embedded parameters. The function bvp4c in
Matlab/Scilab software (Version 9.11), which solves nonlinear boundary value problems for
ordinary differential equations, is used to solve these equations numerically. The present
(AGM) and previous (HAM, PM) analytical results are compared to this numerical solution
in Tables 1–4. The maximum average relative error between our result and the simulation
result is 1.44%. But the maximum error between numerical results and HAM and PM
is 1.86% and 4.92%, respectively. In the computations, we solve the Frank-Kamenetskii
equation for the kinetic cases where m = −2 and m = 0 corresponding to sensitised and
Arrhenius kinetics.

Table 1. Comparison of dimensionless temperature field θ(y) with simulation results and previous
analytical results for λ = 0.1, ε = 0.1, m = −2 and θ2 = −0.05175.

y

θ(y)

Num.
AGM

Equation (12)
This Work

HAM
[18]

PM
[17]

Error %
AGM Equation (12)

This Work

Error %
HAM [18]

Error %
PM [17]

0 0.0517 0.0517 0.0517 0.0516 0.0000 0.0000 0.1934

0.2 0.0496 0.0496 0.0496 0.0495 0.0000 0.0000 0.2016

0.4 0.0432 0.0436 0.0434 0.0433 0.9259 0.0230 0.4629

0.6 0.0327 0.0324 0.0330 0.0329 0.9174 0.0303 0.6116

0.8 0.0179 0.0180 0.0185 0.0185 0.5586 3.3519 3.3519

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Average error (%) 0.3493 0.5675 0.8036

Table 2. Comparison of dimensionless temperature field θ(y) with simulation results and previous
analytical results for λ = 0.5, ε = 0.1, m = −2, and θ2 = −0.320092.

y

θ(y)

Num.
AGM

Equation (12)
This Work

HAM
[18]

PM
[17]

Error %
AGM Equation (12)

This Work

Error %
HAM [18]

Error %
PM [17]

0 0.3045 0.3201 0.2951 0.2823 4.8133 3.0870 7.2906

0.2 0.2916 0.3001 0.2829 0.2707 2.8000 2.9835 7.1673

0.4 0.2532 0.2548 0.2466 0.2363 0.6319 2.5671 6.6745

0.6 0.1899 0.1893 0.1869 0.1792 0.3159 1.5798 5.6334

0.8 0.1031 0.1030 0.1041 0.1002 0.0970 0.9699 2.8128

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Average error (%) 1.4430 1.8645 4.9298
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Table 3. Comparison of dimensionless temperature field θ(y) with simulation results and previous
analytical results for λ = 0.1 when ε = 0.1, m = 0, θ2 = −0.0523.

y

θ(y)

Num.
AGM

Equation (12)
This Work

HAM
[18]

PM
[17]

Error %
AGM Equation (12)

This Work

Error %
HAM [18]

Error %
PM [17]

0 0.0522 0.0523 0.0521 0.0522 0.1916 0.1916 0.0000

0.2 0.0501 0.0501 0.0500 0.0501 0.0000 0.1996 0.0000

0.4 0.0436 0.0437 0.0437 0.0438 0.2294 0.2294 0.4587

0.6 0.0329 0.0331 0.0332 0.0333 0.6079 0.9118 1.2158

0.8 0.0180 0.0181 0.0188 0.0187 0.5555 4.4444 3.8889

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Average error (%) 0.2641 0.9961 0.9272

Table 4. Comparison of dimensionless temperature field θ(y) with simulation results and previous
analytical results for λ = 0.4, ε = 0.1, m = 0, θ2 = −0.32181.

y

θ(y)

Num.
AGM

Equation (12)
This Work

HAM
[18]

PM
[17]

Error %
AGM Equation (12)

Error %
HAM [18]

Error %
PM [17]

0 0.3255 0.3208 0.3192 0.3172 1.4439 1.9355 2.5499

0.2 0.3116 0.3077 0.3059 0.3040 1.2516 1.8292 2.4390

0.4 0.2701 0.2684 0.2662 0.2646 0.6294 1.4439 2.0363

0.6 0.2021 0.2030 0.2011 0.1994 0.4433 0.4948 1.3360

0.8 0.1093 0.1113 0.1117 0.1110 1.8230 2.1958 1.5553

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Average error (%) 0.9319 1.3163 1.6527

6. Limiting Case

We now examine the general expression presented in Equation (5) and look at the
case when the activation energy parameter is small so εθ << 1. Under such circumstances,
Equation (5) becomes

d2θ

d y2 + λeθ = 0 (14)

In this case, the temperature profile becomes

θ(y) = log

[
n− nTanh2(0.5y

√
n
)

2λ

]
(15)

where n is obtained from the equation

n− nTanh2(0.5
√

n
)
= 2λ (16)

In Table 5, we compare the approximate analytical result obtained using the AGM
presented in Equation (12), with the analytical solution outlined in Equation (15) for the
limiting case when εθ << 1. We can notice that the average error percentage between the
AGM and an exact limiting case result (Equation (15)) did not exceed 1.8% for the slab
geometry. This is an indication of the usefulness of the AGM.
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Table 5. Comparison of our approximate analytical result (12) with the exact result (19) for the
limiting case.

y

λ=0.1 λ=0.3 λ=0.5

Exact
Solution

Equation (15)

AGM
Equation

(12)
Error %

Exact
Solution

Equation (15)

AGM
Equation

(12)
Error %

Exact
Solution

Equation (15)

AGM
Equation

(12)
Error %

0 0.0522 0.0527 0.9578 0.1733 0.1795 3.5776 0.3290 0.3474 5.5927

0.2 0.0501 0.0505 0.7984 0.1661 0.1689 1.6857 0.3148 0.3246 3.1131

0.4 0.0436 0.0439 0.6881 0.1443 0.1440 0.2079 0.2728 0.2768 1.4663

0.6 0.0329 0.0330 0.3039 0.1085 0.1087 0.1843 0.2040 0.2060 0.9804

0.8 0.0180 0.0180 0.0000 0.0590 0.0590 0.0000 0.1102 0.1102 0.0000

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Average error (%) 0.4580 Average error (%) 0.9426 Average error (%) 1.8587

7. Influence of the Parameters on Temperature
7.1. Influence of the Frank-Kamenetskii Parameter λ on Temperature

Figure 1 illustrates the effects of the Frank-Kamenetskii parameter on a temperature
profile for the various reaction mechanisms. From the figure, it is observed that the rate of
an exothermic reaction increased with the increase in the Frank-Kamenetskii parameter.
The slab internal heat generation caused by the exothermic reaction increased as the Frank-
Kamenetskii parameter increased. The slab temperature invariably rises as a result of this.
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Figure 1. Comparison of analytical expression of temperature field θ(y) with simulation results for
different values of Frank-Kamenetskii parameter (λ) using Equation (12). The sub-figures indicate
the temperature profiles computed for (a) sensitised (m = −2), and (b) Arrhenius (m = 0) kinetics for
two specified values of normalised inverse activation energy ε.

7.2. Influence of the Numerical Exponent (m) on Temperature

The effects of the numerical exponent m, defining the type of reaction kinetics, on
the temperature profiles are shown in Figure 2a. The figure shows that the temperature
increased as the numerical exponent number m increased. Moreover, the tables and figures
show that in the bimolecular (m = 0.5) type of exothermic reaction, a thermal explosion
occurred faster than in the Arrhenius (m = 0) and sensitised (m = −2) reactions.



Electrochem 2023, 4 430

Figure 2. Comparison of temperature field θ(y) with simulation results (a) for various values of m
(kinetics) and (b) for various values of ε (activation energy parameter). The numerical simulations
are illustrated using blue and the analytical approximation via the AGM is illustrated usinga number
other colours.

7.3. Influence of the Activation Energy Parameter (ε) on Temperature

A similar effect of temperature was observed with increasing values of the activation
energy parameter (ε). The influence of the activation energy parameter on the temperature
profile is shown in Figure 2b. With rising values of the activation energy parameter ε, a
similar effect of temperature enhancement was observed. Increasing values of ε imply that
the reacting slab’s activation energy was insufficient, and thus the reacting slab’s volatility
characteristic was significantly reduced.

The overall activation energy of the process reduced as the temperature rose (Figure 2b).
Faster Li ion diffusion is directly correlated with lower activation energy, which leads to
higher power outputs from the electrode. Thus, our analytical result will help to de-
velop higher-power batteries and electrode materials with faster ionic diffusion in lithium-
ion cells.

7.4. Extension of the Theoretical Model for Cylindrical and Spherical Geometries

This section briefly indicates some extensions to the theoretical model outlined in this
paper. The nonlinear reaction–diffusion equation for cylindrical and spherical geometries
can be written as follows [19]:

d2θ

d y2 +
j
y

dθ

d y
+ λ(1 + ε θ)me(

θ
1+ε θ ) = 0 (17)

where j = 0, 1, and 2 represent the geometry factors for the slab, cylinder, and sphere. The
dimensionless boundary conditions are

θ′(0) = 0 (18)

θ(1) = 0 (19)

We can assume that the equation’s solution has the following form:

θ(y) = ∑2
i=0 θi yi =θ

0
+ θ1y + θ2y2 (20)

where θ0, θ1, and θ2 are constants. Using the boundary conditions (18) and (19), we obtain

θ1 = 0, θ0 = −θ2 (21)
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Now, Equation (20) becomes

θ(y) = θ2y2 − θ2 (22)

The function G will now be defined by

G(y) =
d2θ

d y2 +
j
y

dθ

d y
+ λ(1 + ε θ)me(

θ
1+ε θ ) = 0 (23)

Using Equation (22), Equation (23) at y = 0.5 becomes

G(y = 0.5) = 2 θ2(1 + j) + λ(1− 0.75θ2 ε )me(
−0.75 θ2

1−0.75 θ2 ε
)
= 0 (24)

Hence, the solution of Equation (17) is

θ(y, λ, ε, m, j) = θ2

(
y2 − 1

)
(25)

Here, θ2 is obtained by solving the nonlinear Equation (26).

2 θ2(1 + j) + λ(1− 0.75θ2 ε )me(
−0.75 θ2

1−0.75 θ2 ε
)
= 0 (26)

The above nonlinear equation can be solved using wolframalpha.com for the given
values of dimensionless parameters λ, j and ε.

Figure 3 compares the simulation results for the three geometries with the analytical
expression. Based on the figure, the temperature in spherical geometries is assumed to be
lower than in slabs.

Figure 3. Comparison of analytical expression of temperature θ(y) (Equation (25)) with simulation results
for flat j = 0, θ2 = −0.29756, cylinder j = 1, θ2 = −0.135459, and sphere j = 2, θ2 = −0.0878074.

8. Conclusions

We studied the exothermic explosion of a viscous combustible in slab, cylinder, and
spherical geometries under Arrhenius, bimolecular, and sensitised laws of reaction schemes.
The steady-state exothermic chemical reaction in a slab of combustible material was consid-
ered. We proved that this method provides an excellent approximation of the solution of this
nonlinear system with high accuracy. The effects of the parameters of Frank-Kamenetskii
number, the numerical exponent of temperature, and activation energy on temperature
profiles are discussed.
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Notations

a Slab half width m
A Rate constant None
C0 Initial concentration of the reactant species mol m−3

E Activation energy kJ mol−1

h Planck’s number Js
k Thermal conductivity of the material WmK−1

K Boltzmann’s constant JK−1

Q Heat of reaction kJ mol
R Universal gas constant JK−1mol−1

T Absolute temperature K
T0 Wall temperature K
v Vibration frequency Hz
y Dimensionless distance None
Y Distance measured in the normal direction in the plate m
θ Dimensionless temperature field None
λ Frank-Kamenetskii parameter None
ε Activation energy parameter None

The numerical exponent, such that
m m = −2, 0, 1/2 represent the numerical exponent for sensitised, None

Arrhenius, and bimolecular kinetics respectively.

Appendix A. Basic Concept of the Akbari–Ganji Method

Solving nonlinear differential equations is more challenging than solving linear differ-
ential equations. In this context, the Akbari–Ganji method (AGM) may be seen as a potent
algebraic approach to resolving such issues. In the AGM, it is initially assumed that a
solution function with unknown constant coefficients will satisfy both the initial conditions
and the differential equation. Then, the unknown coefficients are calculated using algebraic
equations established for IC and their derivatives. First, a polynomial is taken as the solu-
tion to the equation. The assumed constant coefficients of polynomials are then determined
from the system of algebraic equations by solving the system of equations, which is then
based on the boundary or initial conditions. The parameter y and its derivative are also a
function of the nonlinear differential equation P. The parameter y itself is also a function of
θ, and the order of the equation is m. The following are the steps of the AGM approach:

The given nonlinear equation can be expressed in the following way:

Pk : f
(

y, y′ , y′′ , . . . , y(m)
)
= 0, y = y(θ) (A1)
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where k = 1 to n. Boundary conditions from 0 to L are applied as follows:{
y(θ) = y0 , y′(θ) = y1 , . . . , y(m−1) (θ) = ym−1, at θ = 0,
y(θ) = yL0 , y′(θ) = yL1 , . . . , y(m−1) (θ) = yLm−1 , at θ = L .

(A2)

In order to solve the differential equation, it is assumed that the solution to the
differential equation is as follows:

y(θ) = ∑n
i=0 αiyi = α0 + α1y + α2y2 + . . . + αnyn. (A3)

The constant coefficients of the presumptive polynomial series are denoted by αj. There
are n + 1 unknown coefficients that need to be identified in order to solve the differential
Equation (A1) using a series of order n equations. The following are the initial conditions
(A2) that apply in Equation (A3). When θ = 0, this becomes

y(0) = y0 ,
y′(0) = y1 ,

y′′ (0) = α2 = y2 ,
. . .

(A4)

and when θ = L, this can be written as follows:
y(L) = α0 + α1L + α2L2 + . . . + αnLn = yL0 ,

y′(L) = α1 + 2α2L + 3α3L2 + . . . + nαnLn−1 = yL1 ,
y′′ (L) = 2α2 + 6α3L + 12α4L2 + . . . + n(n− 1)αnLn−2 = yLn−1 .

. . . . . . . . . . .
(A5)

The following Equation (A6) is generated by substituting Equations (A4) and (A5) into
Equation (A1):

P0 : f
(

y(0) , y′(0), y′′ (0) , . . . , y(m)(0)
)
= 0 ,

P1 : f
(

y(L) , y′(L), y′′ (L) , . . . , y(m)(L)
)
= 0

(A6)

The series of order n is considered, and since (n > m), where m is the order of the
differential equation, the number of equations is smaller than the number of unknowns.
The Equation (A1) must be obtained, and the boundary values must be substituted in them
to construct the n + 1 equations to calculate the n + 1 unknowns:

P′K : f
(

y′ , y′′ , y′′′ , . . . , y(m−1)
)
= 0,

P′′k : f
(

y′′ , y′′′ , y(IV) , . . . , y(m+2)
)
= 0.

(A7)

Once the system of equations is computed, the unknown coefficients α0, α1, . . . , αn
are calculated, and ultimately, the solution to the differential Equation (A1) is obtained.
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