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Abstract: This article provides an overview of the progress made in skin imaging using two emerging
imaging modalities, optical coherence tomography (OCT) and photoacoustic imaging (PAI). Over
recent years, these technologies have significantly advanced our understanding of skin structure and
function, offering non-invasive and high-resolution insights previously unattainable. The review
begins by briefly describing the fundamental principles of how OCT and PAI capture images. It then
explores the evolving applications of OCT in dermatology, ranging from diagnosing skin disorders
to monitoring treatment responses. This article continues by briefly describing the capabilities of
PAI imaging, and how PAI has been used for melanoma and non-melanoma skin cancer detection
and characterization, vascular imaging, and more. The third section describes the development of
multimodal skin imaging systems that include OCT, PAI, or both modes. A comparative analysis
between OCT and PAI is presented, elucidating their respective strengths, limitations, and synergies
in the context of skin imaging.
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1. Introduction

In the dynamic realm of medical diagnostics and healthcare, technological advance-
ments are enhancing our understanding of physiological processes and enabling improved
patient care in many ways including faster, less invasive diagnoses, improved treatment
monitoring, and more [1]. Among the many areas witnessing such progress, skin imaging
stands out, as these emerging technologies have profound implications for dermatology,
plastic surgery, and overall healthcare management. This review describes two cutting-edge
imaging modalities—optical coherence tomography (OCT) and photoacoustic imaging
(PAI)—that are revolutionizing clinical care by offering unprecedented insights into skin
structure and function that can lead to significant reductions in skin biopsies, leading to
reduced morbidity which otherwise often relies on skin biopsies [2,3]. The reduction in
or elimination of the need for skin biopsies for diagnosis and treatment monitoring not
only decreases discomfort, reduces scarring, speeds up recovery, and minimizes risk from
complications, but it also often enables non-invasive treatment monitoring that is otherwise
not available. Treatment monitoring at the cellular level is an important element of personal-
ized medicine, permitting the assessment of an individual’s response to a specific treatment
plan and individualized therapy, which can also improve outcomes. This is particularly
important for monitoring interactions between the immune system and inflammatory and
autoimmune skin pathologies [4].

The skin, the largest organ of the human body, serves as a protective barrier against
external threats while harboring complex structures that reflect overall health [1]. Tradi-
tional imaging techniques, though valuable, often provide limited depth and/or resolution,
constraining our ability to explore the intricate layers of the skin in order to identify and
monitor the treatment of skin pathologies without the need for skin biopsy [5–9]. OCT and
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PAI, two innovative technologies that have overcome these limitations, offer a non-invasive,
high-resolution visualization of skin architecture and function [10]. OCT represents a
milestone in medical imaging. In OCT, a broad-bandwidth light source is broken into two
arms, the sample arm and a reference arm, and their interference patterns are analyzed.
The use of low-coherence, broadband light produces a composite waveform of interfer-
ence patterns that can be analyzed by Fourier transform, with the results combined to
generate axial scans or A-lines. Commercial swept-source OCT can acquire 400,000 A-lines
per second with an axial resolution from 2 to 10 µm and a lateral resolution from 1 to
10 µm, depending on the central frequency and other factors [11–14]. Clinically, the use
of OCT for rapid and accurate assessment of the posterior segment of the eye has already
revolutionized the field of ophthalmology [15]. In the context of skin imaging, OCT has
emerged as a powerful tool for dermatologists and researchers alike, allowing real-time
visualization of epidermal and dermal structures. A particularly useful implementation of
OCT is known as OCT angiography, or OCTA, in which multiple images are acquired in
rapid succession and volumetric motion contrast can be used to detect blood vessels [16].
OCT images are suitable for computational analysis to increase the signal-to-noise ratio
and reduce speckle [17–19], reduce motion artifacts [20], and extract information in skin
tissue that is not evident from the images themselves. For example, the optical attenuation
coefficient can visualize the dermis and quantify its thickness [21,22]. Optical features
including the scattering coefficient, absorption coefficient, and tissue anisotropy can also
be extracted [23,24], and they are suitable for other machine learning and deep learning
techniques [25].

Complementing OCT, PAI has gained prominence for its ability to combine the
strengths of both optical and ultrasound imaging [26–28]. PAI operates by pulsing light
directly at tissue. Chromophores in tissue absorb the light, leading to thermoelastic ex-
pansion and the emission of acoustic waves. These waves are then read by ultrasound
transducers and reconstructed into images. Because only chromophores emit acoustic
waves, and chromophore emissions are concentration- and wavelength-dependent, PAI can
be used to probe the location and concentration of a range of endogenous chromophores, in-
cluding hemoglobin, melanin, and collagen, as well as exogenous contrast agents, to create
detailed images of tissue vasculature and chromophore distribution. The rich absorption
contrast of hemoglobin and melanin in the skin makes PAI particularly adept at visualizing
blood vessels, pigmented lesions, and other structures with high optical absorption. The
synergy between OCT and PAI becomes evident when considering their complementary
strengths [2]. While OCT excels in providing high-resolution structural information, PAI
enhances functional and molecular insights, creating a holistic approach to skin assessment.
Together, these modalities offer unprecedented opportunities for early disease detection,
precise treatment planning, and monitoring therapeutic outcomes.

We conducted a literature review of primary research describing OCT and PAI to
characterize skin that was published before December 2023. The literature search was
conducted using the terms ‘photoacoustic imaging’ and ‘optoacoustic imaging’ and ‘optical
coherence tomography’ with ‘skin imaging’. Studies were excluded if they (1) did not
utilize PAI or OCT methods, (2) were on organs other than skin, (3) were not in English,
or (4) were not primary research papers. Our primary source was Google Scholar, which
yielded 386 total results. From these, we selected a wide range of papers demonstrating the
breadth of research and clinical applications that have been demonstrated to date.

2. Application of OCT in Skin Imaging

OCT in skin imaging offers valuable insights into both normal and pathological condi-
tions [29–44]. In the assessment of inflammatory skin diseases such as psoriasis and eczema,
OCT allows the real-time visualization of morphological changes within the skin layers.
OCT enables clinicians to observe alterations in epidermal thickness, identify structural
anomalies, and assess the vascular network in the dermis [45–50]. This capability is instru-
mental in characterizing lesions and understanding the dynamic evolution of inflammatory
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processes. For example, in psoriasis, OCT can delineate the hyperkeratosis and acanthosis
of the epidermis, providing a detailed view of the pathophysiological changes associated
with this chronic condition [51–54]. OCTA is particularly useful for imaging inflammatory
dermatological conditions such as psoriasis and chronic graft-versus-host disease, where
differences in microvasculature can be fairly dramatic [55]. Moreover, OCT plays a pivotal
role in monitoring therapeutic responses in dermatology [56,57]. This is particularly useful
for nailbed diseases where biopsies are not straightforward [58]. As clinicians strive to
tailor treatments for individual patients, the ability to visualize changes at a microscopic
level becomes crucial. OCT also allows for the objective assessment of treatment efficacy by
tracking alterations in skin architecture over time. This is particularly relevant in conditions
like atopic dermatitis [51,59–63], where treatment outcomes can manifest as changes to
epidermal thickness, inflammation, and barrier integrity. The real-time feedback provided
by OCT aids clinicians in making informed decisions about treatment adjustments, en-
suring optimal patient care. The utility of OCT extends beyond diagnosis and treatment
monitoring to the realm of procedural guidance. In dermatological procedures such as skin
biopsies, the precise localization of target areas is important. OCT facilitates this process
by offering real-time visualization of the skin layers, assisting clinicians in identifying
regions of interest with a high degree of accuracy [64–67]. This not only enhances the
diagnostic yield of biopsies but also minimizes the invasiveness of the procedure. The
non-destructive nature of OCT is a key advantage in dermatology, allowing for repeated
imaging sessions without compromising tissue integrity. This longitudinal capability is
invaluable in studying disease progression and understanding the long-term effects of
therapeutic interventions [68–70]. Longitudinal OCT imaging in chronic skin conditions,
such as scleroderma or chronic wounds, provides a dynamic portrait of changes in tissue
morphology, aiding researchers in unraveling the complexities of these disorders [71–73].
OCT aids in the early detection and characterization of skin cancers, offering detailed
insights into lesion morphology, thickness, and depth [74–80]. Particularly valuable in non-
melanoma skin cancers like basal cell carcinoma and squamous cell carcinoma, OCT assists
clinicians in assessing tumor margins and guiding treatment decisions [76,78,79,81–95]. Its
non-invasive nature and ability to capture real-time images make OCT a valuable tool for
dermatologists, contributing to more accurate diagnostics and improved management of
skin cancer patients. In the research arena, OCT has become an indispensable tool for ad-
vancing our understanding of skin pathophysiology. Its ability to capture high-resolution,
cross-sectional images enables researchers to explore nuances in cellular and tissue struc-
tures. OCT extends its reach to the assessment of nail disorders, providing detailed imaging
of the nail plate and bed [52,54,96–99]. Moreover, OCT has been used in characterizing
cutaneous vasculature, guiding interventions for conditions such as hemangiomas and
port-wine stains [100]. Additionally, OCT plays a role in investigating novel therapeutic
approaches, providing researchers with a means to visualize the impact of experimental
treatments on skin structures.

Examples of the use of OCT skin and nail imaging for disease diagnosis and treatment
monitoring are shown in Figure 1. In Figure 1a, Ha-Wissel et al. demonstrate through cross-
sectional and en face OCTA images some differences in epidermal thickness, vascular density,
and plexus depth that can be used for disease diagnosis and differentiation [62]. Figure 1b,
from the same report, shows through cross-sectional and en face imaging the efficacy of
a specific biologic therapy for atopic dermatitis over the course of a year (t = weeks). In
Figure 1c, Gambichler et al. compare the ability of histopathology and OCT to detect basal
cell carcinomas [57]. Nail pathologies, whether inflammatory disease or cancerous lesions
are suspected, are particularly difficult to biopsy and lead to significant morbidity and long
recovery times. In Figure 1d, Saleah et al. show the use of cross-sectional OCT imaging of an
onychomycosis-affected toenail to assess morphological changes and treatment efficacy [58].
Waibel et al. demonstrate the capability of OCT to visualize port-wine birthmarks and
hemangiomas in Figure 1e [100]. Figure 1f shows a report by Glinos et al. of a comparison
of the use of OCT and histopathology for assessment of wound healing, a very significant
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morbidity for seniors and persons with diabetes [101]. From a cosmetic perspective, the
ability of OCT to assess epidermal thickness and skin architecture means that OCT can be
used to evaluate the efficacy of many skin aesthetic procedures [102].
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mission from [62]. (b) Monitoring efficacy of biologic therapy in patient with atopic dermatitis (t = 
weeks). Image reproduced with permission from [62]. (c) Basal cell carcinomas identified by histo-
pathology (left) or non-invasive OCT (right) showing multiple tumor lobules. Image reproduced 
with permission from [57]. (d) Cross-sectional images of healthy and diseased toenail, detecting 
differences in nail thickness. Image reproduced with permission from [58]. (e) En face images show-
ing cutaneous vasculature of port-wine birthmarks (PWBs) and hemangiomas compared with nor-
mal skin. Image reproduced with permission from [100]. (f) Quantifying changes in wound healing 
by OCT and histopathology. Arrows indicate the initial wound edge, arrowheads indicate edge of 
migrating epithelial tongue. Image reproduced with permission from [101]. 
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Figure 1. Examples of applications of OCT and OCTA imaging. (a) Some characteristics quantifiable
by OCT include epidermal thickness, vascularity, and plexus depth. Image reproduced with permis-
sion from [62]. (b) Monitoring efficacy of biologic therapy in patient with atopic dermatitis (t = weeks).
Image reproduced with permission from [62]. (c) Basal cell carcinomas identified by histopathology
(left) or non-invasive OCT (right) showing multiple tumor lobules. Image reproduced with permis-
sion from [57]. (d) Cross-sectional images of healthy and diseased toenail, detecting differences in
nail thickness. Image reproduced with permission from [58]. (e) En face images showing cutaneous
vasculature of port-wine birthmarks (PWBs) and hemangiomas compared with normal skin. Image
reproduced with permission from [100]. (f) Quantifying changes in wound healing by OCT and
histopathology. Arrows indicate the initial wound edge, arrowheads indicate edge of migrating
epithelial tongue. Image reproduced with permission from [101].

A major refinement in OCT imaging includes line-field confocal OCT (LC-OCT), in
which light is focused to acquire only a fraction of the A-line per sweep (e.g., a confo-
cal volume), leading to a greatly increased lateral resolution, down to ~1 µm [11]. The
trade-off is that while LC-OCT can produce 3D volumes, its penetration depth is limited
to the papillary dermis, missing deeper parts of tumors (~500 µm per report) [103]. An-
other advanced use of OCT is optical coherence elastography (OCE), in which OCT is
acquired while stimulating or perturbing tissue, enabling analysis of tissue stiffness [12,13].
Polarization-sensitive OCT (PS-OCT) can measure tissue anisotropy and is especially use-
ful for mapping collagen [14]. One group has collected data on the detection of elastic
anisotropy using a combination of micro-tapping OCE with PS-OCT [104], in a small model
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of healthy volunteers, including analysis of scar tissue. They found that the collagen fibers
in healed scar tissue had an increased density and higher elastic moduli than healthy skin.
Another way to quantify tissue composition is photothermal OCT (PT-OCT), in which skin
is simultaneously illuminated with OCT and intensity-modulated photothermal lasers. The
modulation establishes a thermal wave field, from which thermo-mechanical properties of
the media can be inferred based on changes in the phase of the OCT signal as the lasers
are varied [105], but this technology for use with endogenous imaging agents (collagen,
lipids, melanin) is still in the early stages of being developed. However, PT-OCT coupled
with gallic acid-tyrosine carbon dots, which are exogenous agents with high photothermal
conversion efficiency, has been proposed for post-operative wound management for the
prevention of microbial infection in a mouse skin wound model [106]. Limitations and
challenges of OCT in skin imaging are important factors to consider in the progress of
this imaging technique [107–110]. One limitation is the depth penetration of OCT, which
restricts its ability to visualize deeper structures in the skin even with performing en-
hancement postprocessing algorithms [17,21,29,31,111–125]. Additionally, motion artifacts
can affect image quality, especially in areas of the body prone to movement. Another
challenge is the interpretation of OCT images, as complex structures can sometimes be
difficult to interpret accurately. Furthermore, the cost and availability of OCT systems can
be a limitation, restricting its widespread use in clinical practice. Finally, there remains a
need for standardized protocols and guidelines for OCT imaging in dermatology to ensure
consistency and reliability across different healthcare settings. Addressing these limitations
and challenges will be crucial in advancing the field of OCT imaging in dermatology and
improving its clinical utility.

3. Application of Photoacoustic Imaging (PAI) for Skin Imaging

In addition to many other applications [126–131], one significant application of PAI
in skin imaging is its ability to visualize and characterize pigmented lesions. Melanin,
the major pigment in the skin, strongly absorbs laser light, leading to the generation of
photoacoustic signals. This property is particularly advantageous in the detection and
analysis of pigmented skin lesions, such as melanomas. PAI allows for the differentia-
tion between melanin-rich lesions and surrounding tissues, providing information about
the depth and distribution of pigmentation [132–141]. This can aid clinicians in early
melanoma detection and in distinguishing benign from malignant lesions [142]. Further-
more, PAI is instrumental in studying hemoglobin and blood vessel distribution in the
skin. Hemoglobin exhibits strong absorption in the visible and near-infrared spectrum,
allowing PAI to provide detailed information about blood vessel networks and oxygenation
levels. This is particularly relevant in dermatology for assessing conditions such as vascular
malformations, hemangiomas, and inflammatory skin disorders [143,144]. The capability
to visualize and quantify blood perfusion in the skin enhances diagnostic accuracy and
aids in treatment planning. In fact, a recent study was able to assess dermal microvascu-
lature for the purpose of staging diabetes by relating the loss of dermal microvasculature
with the increased likelihood of other, system diabetic complications including the extent
of diabetic neuropathy and even atherosclerosis [145]. In addition to its morphological
imaging capabilities, PAI can be employed for functional imaging in the skin. For instance,
it enables the assessment of oxygen saturation levels in blood vessels, offering insights
into tissue oxygenation. This is critical in conditions where alterations in oxygenation play
a role, such as in wound healing or peripheral vascular diseases. PAI can contribute to
a comprehensive understanding of tissue physiology, guiding therapeutic interventions
and monitoring treatment responses. Moreover, the potential for molecular imaging is an
exciting aspect of PAI in dermatology. By utilizing contrast agents or specific wavelengths
that target molecular markers, researchers can visualize and characterize molecular changes
associated with skin diseases [146–148]. This capability holds promise for early diagno-
sis and personalized treatment strategies, particularly in the context of skin cancer and
inflammatory disorders. The FDA has approved several organic dyes for such applications,
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including methylene blue and indocyanine green, which have been used experimentally
in animal models and in human studies [149,150]. The versatility of PAI extends to its
use in guiding dermatological procedures [135,151]. For instance, during laser therapies
or dermatologic surgeries, PAI can assist in the real-time monitoring of tissue responses
and guide the precise delivery of therapeutic interventions [152–154]. This contributes to
improved treatment outcomes and minimizes potential damage to surrounding healthy
tissue. PAI’s ability to assess hemoglobin concentration and oxygenation in tissue has
profound implications for burn depth assessment and wound monitoring by providing
real-time, multispectral imaging of tissue oxygenation, showcasing the potential of PAI in
guiding wound management decisions [155–160]. PAI’s ability to visualize subcutaneous
structures and monitor changes in collagen and elastin content positions it as a valuable tool
for guiding cosmetic procedures [161–163]. PAI further demonstrated non-invasive in vivo
imaging to evaluate immune responses and antimicrobial therapy against skin infections,
exemplifying the versatility of PAI in cosmetic and therapeutic applications [161–163]. One
popular form of PAI for skin imaging is raster scan optoacoustic mesoscopy (RSOM) [164].
This technique can acquire information from different chromophores through multispectral
imaging or through use of dual transducers tuned to different wavelengths.

In Figure 2, significant applications of PAI for skin imaging are demonstrated. He
et al. compare dermatoscopic, histopathologic, and PAI imaging (cross-sectional maximum
intensity projection (MIP) image of the epidermis and dermis and en face MIPs from the
epidermis and dermis layers) of a dysplastic nevus (top) and melanoma (bottom), as
shown in Figure 2a. Note the significant difference in the dermal layer of the density
of surrounding tissue vessels, which is evident in both the cross-sectional and en face
images [142]. Figure 2b shows a report by many members of the same group of the effect of
hemangioma treatment [165]. As with Figure 2a, the acoustic signals are divided into two
frequency bands, low (red channel) and high (green channel), and beamforming is used to
generate two separate images. The composite image is generated by fusing the two channels.
Separation of the signal into two channels and recombination after frequency equalization
enables improved rendering of fine spatial details (high frequency) and lower-resolution
skin structures (low frequency). In Figure 2c, Geisler et al. demonstrate the use of PAI for
wound depth assessment and the monitoring of wound healing [166]. The two channels
in Figure 2c show the total PA signal intensity (scale bar, red) and oxygen saturation of
tissue (scale bar, blue to red). Oxygen saturation is computed by unmixing multispectral
PA images and accounting for the different contribution of saturated and unsaturated
hemoglobin to the total signal. PA can not only detect psoriasis but can also be used to
calculate a psoriasis area severity index (PASI). In [167], He et al. develop a deep learning-
based method for automated analysis of RSOM image volumes and use it to demonstrate
psoriasis severity. Again, the signal is separated into low and high frequencies. Although
not particularly noticeable en face, in the cross-section, the vascular distribution in the
epidermis is quite prominent compared with healthy skin. Nitkunanantharajah et al. [168]
demonstrate nail imaging (Figure 2e). After first showing the significantly enhanced image
quality of PAI compared with capillaroscopy and dermoscopy, they show its use in detecting
the autoimmune disease systemic sclerosis, where there is a clear comparison between a
healthy nail and examples of a sclerotic nail displaying capillary drop out, capillaries with
increased width, and angiogenic, twisted capillaries. In addition to monitoring treatment
response, PAI can also monitor skin damage over time [169].
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tissue vessels. Image reproduced with permission from [142]. (b) Imaging hemangiomas using a 
combination of high (33 –100 MHz) and low (10 –33 MHz) transducers by RSOM. Image reproduced 
with permission from [166]. (c) Wound depth assessment and monitoring of wound healing by 
quantifying PA signal intensity and oxygen saturation of tissue. Image reproduced with permission 
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ing. Psoriasis area severity index: PASI. Reproduced with permission from [167]. (e) Nailfold imag-
ing by PAI shown in comparison with conventional imaging for healthy nail and systematic 

Figure 2. Selected applications of PAI for skin imaging. (a) Detection of melanoma and differentia-
tion from benign dysplastic nevus. Dermoscopic, histologic, cross-sectional, and en face images of
dysplastic nevus (top) and melanoma (bottom). EP = epidermis, DR = dermis, STV = surrounding
tissue vessels. Image reproduced with permission from [142]. (b) Imaging hemangiomas using a
combination of high (33–100 MHz) and low (10 –33 MHz) transducers by RSOM. Image reproduced
with permission from [166]. (c) Wound depth assessment and monitoring of wound healing by
quantifying PA signal intensity and oxygen saturation of tissue. Image reproduced with permission
from [169]. (d) Psoriatic skin imaged by RSOM with depth of plaque quantified through deep learning.
Psoriasis area severity index: PASI. Reproduced with permission from [167]. (e) Nailfold imaging
by PAI shown in comparison with conventional imaging for healthy nail and systematic sclerosis.
Image reproduced with permission from [168]. (f) Quantitative analysis of volume photoacoustic
signal amplitudes (left) and sO2 averages of burn zone (right). Image reproduced with permission
from [169].

Despite its many advantages, PAI also has certain limitations and challenges for skin
imaging [28], such as the necessity for safety goggles, the risk of skin damage from high-
energy lasers, and the use of ultrasound gel which may not be comfortable for some kinds
of lesions, but none of these limitations will stop the technology from appearing in the
clinic. Moreover, the cost right now for a PAI system is far higher than those of imaging
modalities such as OCT or ultrasound and is likely to be too high for a dermatology office
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to use as a diagnostic-assistant device for point-of-care usage. Motion artifacts can be
another limitation. Additionally, PAI has limitations in differentiating between different
types of skin tissues [170]. While PAI can provide functional information about blood
vessels and oxygenation levels, it may struggle to distinguish between various tissue types
with similar optical properties. This can make it challenging to accurately identify specific
skin structures and differentiate between healthy and diseased tissues [171]. Furthermore,
the imaging speed of PAI can be a limitation in certain scenarios. PAI typically requires the
acquisition of multiple images for volumetric imaging, which can increase the imaging time
compared to OCT. This can be problematic for imaging moving structures or for real-time
imaging applications. Finally, the availability and accessibility of PAI systems in clinical
practice remain a challenge. PAI is still a relatively new and evolving technology, and
its widespread adoption in dermatological practice may be limited by the availability of
specialized equipment and trained personnel [171].

4. Application of Multimodal Skin Imaging Systems

Both OCT and PAI have significant strengths for skin imaging, but they also have limi-
tations. One way to overcome such limitations is through the development of multimodal
imaging systems which can extend the scope of information acquired. The natural comple-
ment for all PAI systems is ultrasound, as both can utilize the same transducer. One recent
example of the combined use of PAI and ultrasound for skin lesion assessment involves
a setup that integrates an acoustic mirror to enable en face and 3D imaging [172]. Dual
PAI/US systems have been used to assess scleroderma [173], nails and the nail bed [174],
burn injury [158], and other conditions. Another multimodal skin imaging system re-
ported is a concurrent five-modal microscopy system for resolving processes in wound
healing [175]. There, researchers simultaneously captured PAI, two-photon excitation
fluorescence, brightfield contrast, and second- and third-harmonic generation modalities.
Hyperspectral skin imaging (HSI) is a modality that has been paired, separately, with
both PAI or OCT. HSI acquires multiple skin images at narrow spectral bands and extracts
structural and compositional information by changes in the spectral signature of different
endogenous chromophores. In this way, HSI can reveal changes in cell composition and
structural changes, although it cannot image very deeply. A combined PA-HSI system has
been proposed for imaging melanoma and cutaneous squamous cell carcinomas from the
same system [176]. A combined OCT-HSI system has also been proposed to take advan-
tage of structural information gleaned from OCT systems and the functional information
obtained through HSI analysis [177].

Given the highly complementary nature of OCT and PAI systems, a number of re-
search groups have explored the use of multimodal PAI/OCT systems for skin imag-
ing [3,178,178–180]. Dual systems have the potential to overcome some of the limitations
of each individual system [2]. The dual systems are typically implemented using a Fabry–
Perot interferometer for PA pulse scanning and a typical swept-source OCT [178], although
it has been implemented with a switchable sensor head for a dual-modality system, which,
the authors claim, greatly improves OCT sensitivity [3]. The use of both techniques enables
the imaging of both the microvasculature in the papillary dermis (through OCTA) and
deeper vasculature (through PAI) [2]. Figure 3 shows PAI/OCTA images of the same re-
gions of skin at the same depth, acquired using such a system. In Figure 3a, a 3D projection
of healthy skin showing vasculature is presented [178]. Figure 3b shows a melanocytic
lesion captured by PAI/OCTA [3]. In Figure 3c, a mouse ear is imaged before and af-
ter a burn wound [3]. There, the PAI and OCTA show changes in vasculature, while
OCT demonstrates structural loss of the dermal epidermal junction. Another reported
multimodal imaging setup combines OCT and PA with Raman spectroscopy [181]. In a
preliminary study, the Raman signal, collected via the OCT scanning lens, was able to
identify distinctive differences between normal skin and melanomas to complement the
PAI/OCT results.
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5. Discussion and Conclusions

Recent advances in OCT and PAI have enabled a more comprehensive understand-
ing of skin pathologies. OCT provides high-resolution (~2–10 µm axial, 1–10 µm lat-
eral) [11,183,184], non-contact cross-sectional imaging of the skin and has found applica-
tions in dermatology primarily for diagnosing and monitoring non-melanoma skin cancers,
evaluating skin aging, and assessing inflammatory skin diseases and wound healing. The
depth of penetration of OCT is limited to the epidermis and part way into the dermis.
PAI, on the other hand, offers functional and molecular imaging capabilities, enabling
the identification of specific skin components and biomarkers. The depth of penetration
includes the epidermis, dermis, and sub-dermis vasculature. Table 1 identifies the use of
OCT and PAI for the diagnosis and monitoring of the therapeutic efficacy of specific clinical
conditions and other dermatological uses.

Although both techniques have their limitations and challenges, their complementary
nature expands the clinical potential of both modalities in the field of dermatology.
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Table 1. Applications of OCT and PAI for skin imaging by condition or usage.

Condition OCT PAI

Psoriasis, eczema, and other inflammatory conditions Changes in epidermal thickness, structural anomalies,
alterations in dermal vascular network [45–50,55,185]. Changes in vascularity [143,144,186].

Atopic dermatitis treatment efficacy Changes in skin architecture and dermal vascular network
over time [51,59–63,187]. Changes in vascularity [188,189].

Hyperkeratosis and acanthosis of the epidermis Changes in skin architecture [51–54].

Non-melanoma skin cancers Detection and identification of tumor margins [76,79,81–93]. Changes in vascularity, oxygenation, melanin [190,191].

Nail disorders Difficult-to-biopsy information on nail plate and
bed [52,54,96–99]. Changes in blood oxygenation and collagen content [174].

Hemangiomas and port-wine stains Disordered vasculature [100]. Changes in vascularity [143,144].

Scleroderma and skin involvement in systemic sclerosis Changes in skin architecture, skin fibrosis [71–73,192,193].

Burn assessment Tissue architecture, dermal vascularity [22]. Vascularity and angiogenesis [156,157,169].

Characterization of pigmented lesions and melanoma Using machine learning/deep learning analysis [23,194]. Describes depth and distribution of pigmentation [132–142].

Wound depth assessment, healing, and peripheral
vascular diseases Skin architecture, mechanical properties [195,196]. Assessment of oxygen saturation levels in blood

vessels [155–160,166].

Staging diabetes progression and potential for complications Changes in dermal microvasculature [145].

Preparation for skin biopsies and guiding
dermatological procedures

Detection of regions of interest through structural
changes [64–67]. Use vascularity, melanin location for guidance [135,151–154].

Guiding delivery of therapeutic interventions and real-time
tissue response

Observation of molecular changes associated with skin disease,
including with the use of dyes [146–150,152–154,197].

Guiding cosmetic procedures Assessment of skin architecture can evaluate the efficacy of
many skin aesthetic procedures [102]. Assess collagen and elastin content [161–163].
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The recent advancements in multimodal imaging techniques and the integration
of artificial intelligence (AI) have further enhanced the accuracy and efficiency of skin
imaging. The non-invasive imaging of skin cancer and other skin diseases has shown
promising results. The clinical applications of OCT and PAI in dermatology extend beyond
diagnosis, encompassing imaging-guided dermatological procedures and the monitoring
of treatment efficacy. Advancements in OCT and PAI have the potential to revolutionize
skin imaging. In OCT, advancements in technology have enabled higher resolution and
faster image acquisition, allowing for a more detailed visualization of skin structures. These
advancements have also led to the development of handheld OCT devices, increasing the
accessibility of this imaging technique. PAI, on the other hand, has seen advancements
in both hardware and software, resulting in improved signal detection and image quality.
This has expanded the applications of PAI in dermatology, particularly in the diagnosis and
monitoring of skin cancer. Moreover, the complementary nature of OCT and PAI makes
them an ideal combination in skin imaging. The combined use of these techniques has
shown promising results in detecting and characterizing skin diseases. However, there
are still challenges to be addressed, such as the need for standardized imaging protocols,
automated methods for co-registering PAI and OCT images, and the improvement in image
interpretation algorithms. Despite these challenges, the potential advancements in OCT
and PAI technology hold great promise for the future of skin imaging, paving the way for
more accurate diagnosis and personalized treatment approaches in dermatology.

In order to further enhance the capabilities of these skin imaging techniques, it is
crucial to address their existing limitations and improve accessibility. One major limitation
is the depth penetration of these imaging modalities, especially in deeper layers of the
skin. Efforts are being made to develop techniques that overcome this challenge by using
advanced signal processing algorithms and hybrid imaging approaches. Additionally, the
cost and size of OCT and PAI systems can hinder their usage in some healthcare settings.
To improve accessibility, researchers are exploring the use of miniaturized and portable
devices that are more affordable and can be used in point-of-care settings. Furthermore,
the interpretation and analysis of OCT and PAI images can be time-consuming and require
skilled expertise. Developing automated image analysis algorithms and incorporating AI
techniques can greatly enhance the efficiency and accuracy of these imaging methods. By
addressing these limitations and improving accessibility, OCT and PAI can become more
widely used in dermatology, leading to the better diagnosis, monitoring, and treatment of
various skin conditions.
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