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Abstract: We simulate ultrafast electronic transitions in an atom and corresponding absorption line
changes with a numerical, few-level model, similar to previous work. In addition, a convolutional
neural network (CNN) is employed for the first time to predict electronic state populations based on
the simulated modifications of the absorption lines. We utilize a two-level and four-level system, as
well as a variety of laser-pulse peak intensities and detunings, to account for different common scenar-
ios of light–matter interaction. As a first step towards the use of CNNs for experimental absorption
data in the future, we apply two different noise levels to the simulated input absorption data.

Keywords: atomic physics; ultrafast science; electronic population transfer; free-electron laser;
transient absorption spectroscopy; extreme ultraviolet light; convolutional neural network

1. Introduction

The development of attosecond laser sources [1–3] not only allows for capturing
electronic motion in atoms, molecules and solids on their natural time scales, but it
has also expanded the spectral regime of ultrafast pulses into the ultraviolet (UV) and
extreme-ultraviolet (XUV) ranges. Besides the pioneering work on high-order harmonic
generation (HHG) from near-infrared optical pulses [1–3], free-electron lasers can also
generate XUV laser pulses [4], which are, since recently, also available with attosecond
pulse durations [5,6]. One of the crucial benefits of FEL pulses is their high peak inten-
sity, which allows for all-XUV pump–probe experiments [7] and strong-field effects in the
XUV range on ultrashort time scales, such as Rabi cycling [8] or absorption line shape
modifications [9–12]. Although properties such as the temporal dipole moment can be
reconstructed under certain circumstances [13], the (intra-pulse) time-dependent state
populations have not yet been directly reconstructed. This kind of inversion problem is
common in a broad variety of quantum-based experiments, where phase information is
typically lost and inversions are non-trivial, if possible at all. Still, electronic state popula-
tions and coherences are crucial for understanding effects such as Rabi cycling [8] or X-ray
lasing [14] in atoms or charge transfer in molecules [15–17].

In contrast, machine learning (ML) in general and especially neural networks [18] as
a subtype of ML based on multilayers of interconnected ‘neurons’ are well-known meth-
ods for pattern recognition and solving inversion problems. While nowadays utilized in
broad areas and diverse applications, ML has recently also been used in ultrafast science,
for example, in laser pulse reconstructions [19–24], high-order harmonic generation [25],
noise reduction [26] and molecular- [27–30] or electronic-structure reconstruction meth-
ods [31–33]. In these applications, neural networks [19–23,25,27,28,30,33], and especially
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convolutional neural networks (CNNs) [23,27,28,30,33], based on convolutional operations
on spectral data, are utilized frequently. A common technique is to train the CNNs on simu-
lated or modeled datasets [21,23–25,27,28,30,33] and (potentially) use them on experimental
data afterwards. Besides large-scale quantum simulations and experimental approaches,
ML can provide new insights for data analysis and reconstruction problems, with the goal
of ultimately enhancing the understanding of the underlying quantum processes. Most
recently, the first steps towards reconstructing time-resolved molecular dynamics have
been demonstrated [28].

In this work, we simulate strong-field-induced line shape modifications with a numer-
ical, few-level system, similar to previous work [9–12]. Furthermore, we implement a CNN,
which reconstructs the electronic populations during the driving pulse from the simulated
strong-field-modified absorption spectra of a two-level system. To allow the CNN to predict
populations from experimental data in the future, we also introduce different noise levels
into the absorption spectra before training the CNN. To extend our model towards more
complex electron dynamics involving several states, we additionally apply the CNN to a
four-level system, where a coherent wavepacket of three excited states is initiated.

2. Materials and Methods
2.1. Few-Level Systems for Simulations of Absorption Line Shape Changes

To simulate strong-field light–matter interaction and the resulting absorption changes,
we consider a few-level system and solve the Schrödinger equation numerically, as de-
scribed in detail in our previous work [11]. First, we describe a generic two-electronic-state
system in an atom interacting with a laser pulse, cf. Figure 1a,b, with a Hamiltonian
as follows:

H2lvl =

(
Eg dgeε(t)

dgeε(t) Ee − ihΓe/2

)
(1)

The diagonal matrix elements contain the eigenstate energies of the ground (g) and
excited (e) state, Eg = 0 a.u and Ee = 0.2932 a.u., and the inverse lifetime of the excited state,
Γe = 0.002 a.u. (a.u. denotes atomic units). The i represents the imaginary unit, whereas the
h is the Planck constant. The off-diagonal matrix elements describe the dipole coupling
between the two states, where we choose dge = deg = 1 a.u. as the dipole constant and ε(t) is
the electric field of the laser pulse. We use a Gaussian pulse defined in the spectral domain
ε̃(ω), with a spectral width of σ = 0.02314 a.u., corresponding to a 2.5 fs pulse duration, and
centered at the resonance transition of the two states. To additionally produce a detuned
dataset, we shift the excited-state energy by 0.0568 a.u towards lower photon energies
without changing the laser pulse parameters. The time-dependent Schrödinger equation is
solved for each time step t between −2.5 fs and 2.5 fs relative to the pulse peak intensity
in steps of 0.025 fs. The two resulting time-dependent populations, Pg,e(t) = |cg,e(t)|2, of
the bare states are shown in Figure 1c,d for the resonant and detuned pulses, respectively.
cg,e are the coefficients of the general quantum state of the system, |Ψ(t) ⟩ =

[
cg(t), ce(t)

]T,
in the basis of the two bare states. With the help of the state coefficients, we can calculate
the dipole response of the two-level system, d(t) = dge·cg(t)ce × (t) + c.c., see Figure 1e,
and its Fourier transform, d̃(ω). In the case of strong coupling dynamics, the resulting
energy-level shifts lead to a phase shift of the temporal dipole response since the laser pulse
is (much) shorter than the lifetime of the excited state [34]. This leads to line shape changes
in the optical density, OD(ω), which we calculate from the in- and outgoing fields:

OD(ω) = −log10

(∣∣ε̃(ω) + iη·d̃(ω)
∣∣2

|ε̃(ω)|2

)
(2)
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Here, η = 10  is a numerical constant, proportional to the particle density in an ab-
sorption experiment. We illustrate the change in the resonance line shape in OD(ω) from 
the weak-field case in Figure 1f to the strongly driven case for resonant and detuned 
pulses, shown in Figure 1g,h, respectively. OD(ω) is the input for the CNN, see Figure 1i, 
which is used to reconstruct the populations, as described in the next section. 

 
Figure 1. Conceptual overview of the population reconstruction from absorption changes in a two-
level system. (a,b) A laser pulse (violet) excites a two-level system from its electronic ground (blue) 
state to an excited state (green)—either resonantly (a) or with a small detuning (b). (c) Time-depend-
ent populations of the ground (blue) and excited state (green) for the resonant excitation are simu-
lated with the numerical model. (d) Same as (c) but for the detuned case. (e) The excitation of the 
two-level system leads to a dipole response (blue) interfering with the incoming laser pulse (violet). 
(f–h) A spectroscopic measurement of these signals leads to a resonance line in the optical density 
for a weak (Ԑ0 = 0.7 a.u.) and resonant pulse (f), a strongly coupling (Ԑ0 = 6.1 a.u.) and resonant pulse 
(g) or a strongly coupling (Ԑ0 = 6.1 a.u.) and detuned pulse (h). The natural line shape (f) is modified 
due to the strong driving fields (g,h), which we use to train the CNN (i) to predict the state popula-
tions of the two states (c,d). 

Regarding the four-level system, we replace the Hamiltonian with a 4 × 4 matrix con-
taining the four eigen-energies of the ground state and the three excited states (e1, e2 e3): 
Eg = 0 a.u, Ee1 = 0.2676 a.u., Ee2 = 0.2932 a.u. and Ee3 = 0.315 a.u. For all three excited states, 
we use the same inverse lifetime and dipole constant as for the two-level system. No di-
pole couplings are allowed between any two excited states by setting all other off-diagonal 
matrix elements to zero. The laser pulse is defined as above and resonant with the second 
excited state, thus also being equally red- and blue-detuned as the two other excited states. 

2.2. Convolutional Neutral Network for State Population Reconstruction 
2.2.1. Convolutional Neural Network Architecture 

The inputs for the CNN are the OD spectra sampled with 300 data points symmetri-
cally around the resonance position. The output variables of the CNN are the electron 
populations, each sampled on a time grid centered around a pulse between −2.5 fs and 2.5 
fs with 200 points. For the two-level system, this results in a prediction of 2 × 200 output 
variables based on 300 input variables. To achieve such a high-dimensional output 

Figure 1. Conceptual overview of the population reconstruction from absorption changes in a
two-level system. (a,b) A laser pulse (violet) excites a two-level system from its electronic ground
(blue) state to an excited state (green)—either resonantly (a) or with a small detuning (b). (c) Time-
dependent populations of the ground (blue) and excited state (green) for the resonant excitation are
simulated with the numerical model. (d) Same as (c) but for the detuned case. (e) The excitation of the
two-level system leads to a dipole response (blue) interfering with the incoming laser pulse (violet).
(f–h) A spectroscopic measurement of these signals leads to a resonance line in the optical density for
a weak (ε0 = 0.7 a.u.) and resonant pulse (f), a strongly coupling (ε0 = 6.1 a.u.) and resonant pulse (g)
or a strongly coupling (ε0 = 6.1 a.u.) and detuned pulse (h). The natural line shape (f) is modified due
to the strong driving fields (g,h), which we use to train the CNN (i) to predict the state populations of
the two states (c,d).

Here, η = 10−4 is a numerical constant, proportional to the particle density in an
absorption experiment. We illustrate the change in the resonance line shape in OD(ω) from
the weak-field case in Figure 1f to the strongly driven case for resonant and detuned pulses,
shown in Figure 1g,h, respectively. OD(ω) is the input for the CNN, see Figure 1i, which is
used to reconstruct the populations, as described in the next section.

Regarding the four-level system, we replace the Hamiltonian with a 4 × 4 matrix
containing the four eigen-energies of the ground state and the three excited states (e1, e2 e3):
Eg = 0 a.u, Ee1 = 0.2676 a.u., Ee2 = 0.2932 a.u. and Ee3 = 0.315 a.u. For all three excited states,
we use the same inverse lifetime and dipole constant as for the two-level system. No dipole
couplings are allowed between any two excited states by setting all other off-diagonal
matrix elements to zero. The laser pulse is defined as above and resonant with the second
excited state, thus also being equally red- and blue-detuned as the two other excited states.

2.2. Convolutional Neutral Network for State Population Reconstruction
2.2.1. Convolutional Neural Network Architecture

The inputs for the CNN are the OD spectra sampled with 300 data points symmet-
rically around the resonance position. The output variables of the CNN are the electron
populations, each sampled on a time grid centered around a pulse between −2.5 fs and
2.5 fs with 200 points. For the two-level system, this results in a prediction of 2 × 200 output
variables based on 300 input variables. To achieve such a high-dimensional output (relative
to the input), the CNN architecture is constructed with several layers, in total containing
279,932 trainable parameters. The CNN layer-by-layer structure, which is constructed
in a similar way as the methodologies in [30,33] describe, is depicted in Figure 2. The
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CNN architecture is characterized by five blocks, each comprising two convolutional layers
with a convolution window of size = 3 (kernel) and stride = 1, which is the step size by
which the convolutional window moves across the input data. After each convolutional
operation within the network, the convolutional layers are followed up by the Rectified
Linear Unit (ReLU) activation function, defined as ReLU(x) = max(0, x). The convolutional
operations are calculated without padding, resulting in an array size shrinkage of 2 after
each layer. In each block, the two convolutional layers are followed up by a max-pooling
layer with a kernel size = 2 and stride = 2. The inclusion of max-pooling layers segments the
arrays into pooling regions of size 2, resulting in a further reduction in array dimensions
by half after each block. To allow for more complex patterns to be captured by the CNN,
the number of filters in each convolutional layer is doubled between consecutive blocks,
ranging from 8 filters in the initial block to 128 filters in the last block. For the final block,
the max-pooling layer is replaced by a densely, i.e., fully connected layer (with ReLU
activation) consisting of 100 neurons. The final output layer is also a dense layer (with
linear activation) with an output size of 2 × 200—quantifying the two time-dependent
populations of the two-level system.
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left, the sequence of layers is shown. On the right, the (output) array sizes for each layer are given.

2.2.2. Training Dataset Properties

For the training phase, we generated a comprehensive dataset consisting of 10,000 samples
through repeated simulations of the two-level model by randomly sampling the peak field
strength of the driving laser pulse, ε0, on a logarithmic scale, ranging from 0.1 a.u. to 10 a.u.
The random sampling improves consistency, promotes comparability and serves to minimize
randomness as a confounding factor during the training process. This dataset combines the
resonant and detuned cases introduced in Section 2.1. We allocate subsets of 6400 of these sam-
ples for training, 1600 for validation during training and 2000 for subsequent testing. Exactly
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one half of all (sub)sets are calculated with the resonant and detuned settings, respectively.
Furthermore, we generate two more datasets by introducing two Gaussian noise levels into the
OD spectra. The two noise levels, 1% and 3%, are given as the standard deviation of Gaussian
sampled noise. We chose these noise levels based on our experimental observations, for exam-
ple, detecting absorption changes at a 2% level clearly above a smaller noise level in [35]. For
the four-level system, as described in Section 2.1, we use nearly the same architecture as for the
two-level system. Since the output variables, i.e., the state populations, are twice as large as
before, 4 × 200, we also increase the resolution of the OD to 350 points to maintain comparable
predictive resolution. This results in a total network size of 358,732 trainable parameters for the
four-level system.

2.2.3. Training Process

To train the CNN, we utilize the Adam optimizer [36], a widely known optimization
algorithm used for training deep neural networks. Both the selection of the optimizer and
an initial learning rate of 10−3 are grounded in a heuristic approach, given that the Adam
optimizer inherently adapts the learning rate during training. For the established regression
task, the mean-squared error (MSE) is used as the loss function. This metric quantifies
the average squared difference between predicted and actual values, thereby providing
a measure of the CNN’s proficiency in capturing the deviations between simulated and
reconstructed populations.

MSE(y, ŷ) =
1

nsamples

nsamples

∑
i=1

(yi − ŷi)
2 (3)

Here, ŷi are the (simulated) input values and yi are the values predicted by the CNN.
The sample size, nsamples, sums over all data points, including all populations, time steps
and laser field strengths. By training the CNN on datasets of different sizes and quantifying
the losses with the MSE, as shown in Figure 3a, we observe the loss to be converged for the
scenarios with 1% and 3% noise when our utilized training size of 6400 is reached. The loss
function for the set without noise still decreases within the reported number of samples, as
expected for a noise-free scenario, since the machine precision was not reached. Our goal is
a CNN which, ultimately, can predict populations from (noisy) experimental data; thus,
we did not increase the data size for the noise-free scenario. Further, we also use the Mean
Absolute Error (MAE) as an additional metric, given as follows:

MAE(y, ŷ) =
1

nsamples

nsamples

∑
i=1

|yi − ŷi| (4)
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This choice is grounded in the constraint of our model outputs within the range of
zero to one for the populations. Consequently, interpreting the Mean Absolute Error allows
for an intuitive understanding of our CNN’s performance because it quantifies the average
error over all data points, which can also be read as a percentage, i.e., MAE = 0.01 can
be read as an average error of 1% over all data points. We train the two- and four-level
CNNs for 5000 epochs each, with early stopping after 1000 epochs if the loss function has
already converged. For each epoch, we randomly divide the training set into 100 batches of
size 64, on which the CNN is trained iteratively to circumvent the expansive full training
dataset size of 6400. After training, only the best-performing model is saved and selected
for subsequent testing. As for the two-level case, we evaluate our model with the MSE for
different training data sizes, as shown in Figure 3b. For the two cases containing noise,
the loss converges for our data size of 3200, whereas the noise-free case has not reached
convergence yet.

3. Results
3.1. Line Shape Changes and Population Reconstruction for the Two-Level System

In this section, we first show the results of the simulated absorption spectra (Figure 4)
and discuss them with respect to previous findings [11,12]. Afterwards, the results of our
novel approach to reconst the time-dependent electronic state populations from the absorp-
tion spectra are presented and discussed (Figures 5 and 6). In Figure 4a, the field-strength-
dependent absorption is changing continuously in amplitude while staying Lorentzian,
thus symmetric. As shown in our previous work [11,12], dipole phase shifts cancel out for
exactly resonant driving pulses, hence explaining the symmetric line shape. For electric
field strengths of 3.3 a.u. and 6.3 a.u., the resonant OD switches sign due to π-phase jumps
in the Rabi cycle of the population coefficients [12]. In contrast, the detuned pulses can
change the asymmetry of the resonance line by inducing dipole phase shifts [11,12], as
shown in Figure 4b, hence making it Fano-like shaped [37]. For electric field strengths
around 5 a.u. to 6 a.u., Fano-like line shapes emerge, which exhibit negative OD. A more
detailed discussion of these line shape changes and how they are connected to the electronic
state energies and coefficients can be found in [11,12].
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Figure 5. Population reconstructions for different noise levels. The same absorption lineout for a
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CNN reconstructions (blue for no noise, green for 1% noise and orange for 3% noise) of the excited
(d) and ground states (e).

In Figure 5, we illustrate that the CNN is capable of reconstructing the populations of
the ground (Figure 5d) and excited states (Figure 5e), including the three different noise
levels, for a single field strength of ε0 = 6.1 a.u. of a detuned driving pulse. The OD
spectrum is shown in Figure 5a without noise, with a 1% noise level in Figure 5b and
a 3% noise level in Figure 5c. For both states—the ground state in Figure 5d and the
excited state in Figure 5e—the reconstructed populations for the noise-free case (blue) are
in near-perfect agreement with the simulated populations (black). Even when introducing
1% noise into the OD, the CNN reconstructs the state populations excellently (shown in
green). In contrast, when the noise level is increased to 3%, only the slow overall shapes
of the reconstructed populations (orange) can be predicted reasonably well, whereas the
faster dynamics are not accurate anymore. To prove that the CNN can reconstruct the
electronic populations in general for the complete dataset, we compare the simulated
population (Figure 5a,b) of the excited state to the reconstructed population (Figure 5c,d)
as a function of the field strength of the driving pulse in Figure 6. We look at the excited
state population only because the sum of the ground state and excited state populations is
equal to one for all time steps without the presence of further loss channels. For the CNN
reconstruction, we chose the 1% noise level in the OD based on the results obtained for
a single electric field strength, as discussed in Figure 5. For the resonant driving pulse,
the population is reconstructed excellently for most field strengths in Figure 6c compared
to the simulated population in Figure 6a. Only for field strengths from 6.1 a.u. to 6.6 a.u.
does the reconstruction differ from the simulation, as discussed below. In the detuned case,
the population is reconstructed accurately for most field strengths in Figure 6d compared
to Figure 6b. For field strengths of 4.5 a.u. to 4.6 a.u., the reconstruction is significantly
different from the simulation. Looking at the corresponding input ODs in Figure 4a,b
reveals that for a field strength of 3.3 a.u. and 6.5 a.u. in the resonant case (a) and 4.5 a.u.
in the detuned case (b), the ODs are near flat and close to zero. Due to this ambiguity, the
CNN cannot distinguish between the three cases where the OD vanishes, which is why the
training and reconstruction with the CNN fail in these specific cases.
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Figure 6. Field-strength-dependent simulated populations of the excited state for (a) resonant and
(b) detuned driving pulses and respective CNN reconstructions (c,d) for the 1% noise level on the
ODs. In all panels, the populations are close to zero for low field strengths (ε0 ≤ 1). For higher field
strengths (1 a.u. < ε0), the population is first significantly increased and further begins to oscillate up
and down when 7 a.u. < ε0. As is well known from Rabi oscillations [38], the population transfer is
significantly reduced for detuned pulses; thus, the maximum excited state population for the detuned
case (b,d) of Pe

max ≈ 0.5 is smaller than for the resonant case (a,c), where Pe
max = 1. We do not use

the rotating wave approximation; thus, the populations oscillate with 2ωr [38] during the interaction
with the pulse, which is twice the frequency of the resonance transition.

For a quantitative comparison of the reconstructed with the simulated populations,
the MSEs (Equation (3)) and MAEs (Equation (4)) are presented in Table 1 for all three noise
levels. As expected from the above findings, the errors increase with the noise. All error
values are a few percent or less, thus confirming the excellent agreement between the recon-
structed and simulated populations for most field strengths, with the exceptions mentioned
above. This demonstrates that the CNN is capable of reconstructing the populations of two
electronic states based on absorption line changes in all cases where the absorption signal
is larger than the noise.

Table 1. MSE and MAE of the population reconstruction for the two-level system.

Error No Noise 1% Noise 3% Noise

MSE 5.7 × 10−7 3.4 × 10−3 5.5 × 10−3

MAE 4.1 × 10−4 1.5 × 10−2 3.3 × 10−2

3.2. Line Shape Changes and Population Reconstruction for the Four-Level System

To investigate how more complex electronic population dynamics can be reconstructed
with our CNN, we simulate a four-level system, as described in Section 2.1.

The driving pulse, resonant with the central excited state, excites a coherent wavepacket
across the three states, where the energy spacing between the excited states is smaller than
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the spectral bandwidth of the pulse. The resulting absorption spectra for three different
field strengths are shown in Figure 7. With an increasing field strength of the pulse, the
amplitudes of all three resonances are reduced because of a reduction in the ground state
population. As in the two-level system, the resonant excited state stays symmetric, whereas
the line shapes of the two other excited states become more asymmetric with increased
field strength. As shown in [11], for equal red and blue detuning of the driving pulse, their
line shapes become Fano-like with mirrored asymmetries. Small deviations from this asym-
metry come from numerical errors due to the discrete spectral grid. The corresponding
population dynamics of the four states are shown in Figure 8. The CNN can reconstruct
all four state populations for all three field strengths when no noise is added to the OD,
compared to the simulated populations (depicted with black markers; see Figure 8a,d,g).
Adding noise levels of 1% and 3%, the populations can be reconstructed as well, but only
for low and intermediate field strengths; see Figure 8b,c,e,f. For the highest field strength
and a 1% noise level, shown in Figure 8h, the reconstructed populations show similar
slower dynamics as the simulated populations, but the local minima and maxima of the
population transfer are decreased in amplitude when compared to the simulations. When
increasing the noise to 3% for the highest field strength, as shown in Figure 8i, many of the
predicted population dynamics are not correct with regard to the simulated populations:
the fast oscillations are missing, the number of Rabi cycles is reduced and after the pulse
is over (t > 1 fs), the populations of the detuned states, e1 (green) and e2 (red), are larger
than the resonant excited state population (orange), which is in contrast to the simulated
populations. Yet these deviations can only be found for the highest field strengths in the
3% noise case. Overall, the CNN reconstructs the four electronic state populations mostly
accurately, as quantified by the mean errors in Table 2. The mean errors are obtained by
averaging over the populations of all field strengths; thus, the deviations for the highest
field strengths contribute only marginally. As in the two-level system, the errors increase
by an order(s) of magnitude when the noise level is increased. Comparing the overall
performance to the two-level system and the error values in Table 1, the CNN reconstructs
the four-level populations slightly better than for the two-level system, which might be due
to the higher amount of information provided in the OD spectra.
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Figure 7. Absorption of the four-level system for different field strengths. The OD is shown for a
weak field strength, ε0 = 0.1 a.u. (grey), an intermediate field strength, ε0 = 1.2 a.u. (green) and a
high field-strength, ε0 = 9.1 a.u. (blue), of the driving pulse. For the high field strength, the OD is
multiplied by a factor of 4 for better visibility.
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Figure 8. CNN-reconstructed populations of the ground (blue), first excited (green), second ex-
cited (orange) and third excited states (red) in the four-level system for (a–c) low (ε0 = 0.14 a.u.),
(d–f) intermediate (ε0 = 1.23 a.u.) and (g–i) high field strengths (ε0 = 9.06 a.u.) of the pulse, as well as
for (a,d,g) no noise, (b,e,h) 1% and (c,f,i) 3% noise. In (a,d,g), the simulated populations are shown
with black markers. Similar to the two-level case, the populations stay nearly unchanged for low
field strengths but are significantly transferred for higher field strengths and undergo several Rabi
oscillations (and faster 2ωr oscillations) for the highest field strength. In all panels, the populations of
the two detuned excited states, e1 (green) and e2 (red), are nearly the same, whereas the population
of the resonant excited state, e2 (orange), shows clearly different temporal behavior.

Table 2. MSE and MAE of the population reconstruction for the four-level system.

Error No Noise 1% Noise 3% Noise

MSE 3.6 × 10−8 1.7 × 10−4 1.3 × 10−3

MAE 1.2 × 10−4 4.4 × 10−3 1.4 × 10−2

4. Conclusions and Outlook

In summary, we have shown that a CNN can be used to reconstruct time-dependent
electronic state populations from simulated OD spectra for two different scenarios of laser
pulse excitations: the excitation of an individual electronic state (in the two-level system)
as well as launching an electronic wave packet consisting of three excited states (in the
four-level system). We have demonstrated this for driving pulse electric-field strengths
spanning across two orders of magnitude—continuously tuning from the weak-field to the
strong-coupling case. For the two-level system, we have further shown that reconstruction
is possible for (two) different cases of pulse detunings. Furthermore, by including two dif-
ferent noise levels in the input spectra, we have found that a 1% noise level does not change
the CNN reconstructions significantly, whereas an increase to a 3% noise level leads to the
CNN predictions deviating more significantly from the input populations for the highest
driving pulse field strengths. With regards to the pulse intensities and dipole couplings
chosen here, we thus identify the 3% noise level as an upper limit. In the future, for utilizing
the CNN for experimental strong-field-driven absorption spectra, we suggest a dataset
combining theoretical simulations and experimental weak-field absorption measurements—
where the populations are nearly unchanged and could be calculated with perturbation
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theory—which is conceptually similar to previous works [21,23–25,27,28,30,33]. In the XUV
spectral regime, strong coupling experiments have been performed with self-amplified
spontaneous emission (SASE) [4]-based FEL pulses in an autoionizing state [9]. In these
cases, not only the peak intensity but also the spectral structure, central photon energy and
pulse duration vary from shot to shot. The models and datasets discussed here should thus
be expanded to higher dimensions by also training the CNN on this extended parameter
space. To that end, the measurements should account for these different input parameters
instead of averaging over them to provide large enough datasets. As a possible benefit of
this, the CNN might be capable of learning and predicting FEL pulse parameters in parallel
with the populations or could be combined with other neural networks (NNs) trained for
FEL pulses [20,24] to achieve this. Alternatively, using more stable and coherent seeded
FEL pulses [39], the simulation and CNN presented here could already be sufficient to
predict the electronic state populations, but such experiments have not been performed yet.
Furthermore, combinations with noise reduction NNs [26] might be helpful for even more
precise predictions. As an outlook, our simulated two-level dynamics reveal absorption
changes that in principle allow for a novel method of light amplification (when the OD
becomes negative), even without population inversion (cf. Figure 5). In previous work,
light amplification was achieved by population inversion [14], stimulated Raman scatter-
ing [40,41], phase shifts through mechanical displacement [42] or by including additional
states/ionization continua or light fields in the case of amplification without population
inversion [34,43–52]. In most cases, the electron populations play a key role. Thus, we
expect that our approach of a few-level-based simulation and CNN will also help in the
future to investigate different light amplification mechanisms. In addition, the population
dynamics of the coherent wavepacket excitation in the four-level system illustrate how
intra-pulse electronic population transfer leads to absorption changes when more than a
single resonance in an atom is involved. Going one step further by exciting or ionizing
(several) electronic states in molecules could ultimately lead to ultrafast charge transfer
dynamics [15,17,53], where we expect a CNN to provide predictions of electronic popula-
tions during the pulse duration—which might influence subsequent charge transfer and
even slower molecular structural dynamics—perhaps in combination with corresponding
CNNs [27–30]. Overall, strong-field-modified absorption spectra can be used to investi-
gate electronic dynamics in atoms and molecules, which—in turn—can also be used to
shape and modify the driving pulses themselves, such as their amplification in selected
spectral regions. In the future, we expect ML in general and CNNs in particular to provide
new insights into the ultrafast interplay of UV, XUV and X-ray laser pulses with atoms
or molecules.
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