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Abstract: Considering the rapid evolution of lithium silicate-based glass ceramics (LSCs) in den-
tistry, this review paper aims to present an updated overview of the recently introduced commercial
novel LSCs. The clinical and in vitro English-language literature relating to the microstructure,
manufacturing, strengthening, properties, surface treatments and clinical performance of LSC ma-
terials was obtained through an electronic search. Findings from relevant articles were extracted
and summarised for this manuscript. There is considerable evidence supporting the mechanical
and aesthetic competency of LSC variants, namely zirconia-reinforced lithium silicates and lithium–
aluminium disilicates. Nonetheless, the literature assessing the biocompatibility and cytotoxicity of
novel LSCs is scarce. An exploration of the chemical, mechanical and chemo-mechanical intaglio
surface treatments—alternative to hydrofluoric acid etching—revealed promising adhesion perfor-
mance for acid neutralisation and plasma treatment. The subtractive manufacturing methods of
partially crystallised and fully crystallised LSC blocks and the additive manufacturing modalities
pertaining to the fabrication of LSC dental restorations are addressed, wherein that challenges that
could be encountered upon implementing novel additive manufacturing approaches using LSC print
materials are highlighted. Furthermore, the short-term clinical performance of zirconia-reinforced
lithium silicates and lithium–aluminium disilicates is demonstrated to be comparable to that of
lithium disilicate ceramics and reveals promising potential for their long-term clinical performance.

Keywords: lithium silicate-based glass ceramics; CAD/CAM; crystallisation; surface treatments

1. Introduction

Lithium silicate-based glass ceramics (LSCs) were first identified by Stookey [1] in
1959 from precipitations of lithium disilicate crystals in glass and nucleating clusters
of Ag, forming a binary lithium disilicate glass ceramic system; this was subsequently
reformulated by Beall [2] into a multi-component lithium disilicate and lithium metasilicate
system. Later Ivoclar Vivadent (Schaan, Liechtenstein) introduced two pressable LSCs,
IP Empress 2 (1998) and IPS e.max Press (2005), along with a machinable LSC block,
IPS e.max CAD (2006) [3]. As a measure of the clinical success of its lithium disilicate
formulation, Ivoclar Vivadent delivered 75 million IPS e.max Press and IPS e.max CAD
restorations from 2005 to 2013 [4]. This success encouraged competing manufacturers
to develop a plethora of commercial LSCs with patented chemical compositions and
strengthening mechanisms in pressable and machinable formats [5]. In 2013, machinable
zirconia-reinforced lithium silicates were developed by VITA Zahnfabrik (Bad Säckingen,
Germany) and Dentsply Sirona (Salzburg, Austria) in the form of VITA Suprinity and Celtra
Duo, respectively [6], and pressable versions were later introduced (Celtra Press, Dentsply
Sirona, Salzburg, Austria, 2017 and VITA AMBRIA, VITA Zahnfabrik, Bad Säckingen,
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Germany, 2021). Moreover, lithium–aluminium disilicates were offered as fully crystallised
CAD/CAM blocks, namely n!ce, by Straumann (Basel Switzerland) in 2017, and CEREC
Tessera was developed by Dentsply Sirona (Salzburg, Austria) in 2021 [4,7]. Recent in vitro
investigations by Ivoclar Vivadent explored the effects of incorporating lithium tantalate
and lithium niobate precipitations in LSC formulations and reported positive findings
for future material development [8–10]. Considering the similar coefficients of thermal
expansion of LSCs and zirconia, novel LSC spray deposition has been advocated as a
promising surface pre-treatment for zirconia restorations in an attempt to obtain favourable
characteristics from both materials as well as to enhance the bond strength between zirconia
and underlying resin cement [11–13].

Tables 1 and 2 highlight the composition, flexural strength and clinical indications of
pressable and CAD/CAM LSCs that are currently commercially available.

Table 1. Composition, flexural strength and clinical indications of pressable lithium silicate-based
ingots as published by representative manufacturers.

Ceramic Type
Product Name,
Manufacturer
(Launch Date)

Chemical
Composition (wt%)

Flexural
Strength

(MPa)

Clinical
Indications

Lithium-
disilicate
(Li2Si2O5)

IPS e.max® Press,
Ivoclar Vivadent,

Schaan,
Liechtenstein (2005)

SiO2 (57.0–80.0), Li2O
(11.0–19.0), K2O (<13.0), P2O5
(<11.0) ZrO2 (<8.0), ZnO (<8.0),

colouring oxides (<12.0)

470

Inlays, onlays,
veneers, crowns,

3-unit FPDs up to
2nd premolar,

implant-supported crowns

InitialTM LiSi Press,
GC Corp., Tokyo,

Japan (2016)

SiO2 (71.0), Li2O (13.0), Al2O3
(5.4), Na2O (1.4), K2O (2.0),
P2O5 (2.6), ZrO2 (1.7), B2O3

(0.007), CeO2 (1.2), V2O5 (0.15),
Tb2O3 (0.35), Er2O4 (0.4),

HfO2 (0.03)

508

Inlays, onlays, veneers,
anterior and posterior

crowns, implant crowns,
3-unit FPDs on teeth or

implants up to
2nd premolar

Amber® Press, HASS
Corp., Gangwon State,

Korea (2020)

SiO2 (<78), Li2O (<12),
colouring oxides (<12) 460

Inlays, onlays, veneers,
anterior and posterior

crowns, 3-unit FPDs on
teeth up to 2nd premolar

Livento Press,
Cendres + Métaux,

Biel/Bienne,
Switzerland (2019)

SiO2 (65–80), Al2O3 (<11),
Li2O (11–19), K2O (<7), Na2O
(<5), CaO (<10), P2O5 (1.5–7),

ZnO (<7), others (<15)

300

Inlays and onlays, veneers,
partial crowns, anterior
and posterior crowns,

hybrid abutment crowns,
3-unit anterior and

posterior bridges up to
2nd premolar

Zirconia
reinforced lithium

silicates
(Li2SiO3/Li2Si2O5)

Celtra® Press, Dentsply
Sirona, Salzburg,

Austria (2017)

SiO2 (58), Li2O (18.5), ZrO2
(10.1), P2O5 (5), Al2O3 (1.9),

CeO2 (2), Tb4O7 (1)
>500

Inlays, onlays, veneers,
anterior and posterior

crowns, 3 unit
anterior bridges

VITA
AMBRIA®, VITA
Zahnfabrik, Bad

Säckingen,
Germany (2021)

SiO2 (58–66), Li2O (12–16),
Al2O3 (1–4), K2O (1–4), P2O5
(2–6), ZrO2 (8–12), B2O3 (1–4),
CeO2 (<4), V2O5 (<1) Tb2O3

(1–4), Er2O4 (<1), Pr6O11 (<1)

400

Inlays, onlays, veneers,
anterior and posterior

crowns, implant crowns,
3-unit FPDs on teeth or

implants up to
2nd premolar



Prosthesis 2024, 6 480

Table 2. Composition, flexural strength and clinical indications of CAD/CAM lithium silicate-based
blocks as published by representative manufacturers.

Ceramic Type
Product Name,
Manufacturer
(Launch Date)

Chemical
Composition (wt.%)

Flexural
Strength

(MPa)
Processing Clinical

Indications

Lithium-
disilicate
(Li2Si2O5)

IPS e.max® CAD,
Ivoclar Vivadent,

Schaan,
Liechtenstein (2006)

SiO2 (57.0–80.0), Li2O
(11.0–19.0), K2O (<13),

P2O5 (<11), ZrO2
(<8.0), ZnO (<8.0),
Al2O3 (<5.0), MgO

(<5.0), pigments (<0.8)

360 ± 40 Two-step

Inlays, onlays, veneers,
anterior and posterior
crowns, 3-unit FPDs
up to 2nd premolar,
implant supported

crowns

Rosetta SM, HASS
Corp., Gangwon

State, Korea (2013)

SiO2 (<78), Li2O (<120,
colouring oxides (<12) 400 Two-step

Inlays, onlays, veneers,
anterior and posterior

crowns, 3-unit
anterior FPDs

Amber® Mill, HASS
Corp., Gangwon

State, Korea (2018)

SiO2 (<78), Li2O (<12),
colouring oxides (<12) 450 Two-step

Inlays, onlays, veneers,
anterior and posterior
crowns, 3-unit FPDs
(up to 2nd premolar)

InitialTM LiSi Blocks,
GC Corp., Tokyo,

Japan (2021)

SiO2 (81), P2O5 (8.1),
K2O (5.9), Al2O3 (3.8),
TiO2 (0.5), CeO2 (0.6)

408 One-step

Inlays, onlays, veneers,
anterior and

posterior crowns,
implant-supported

crowns

Lithium-metasilicate
(Li2SiO3)

Obsidian®,
Glidewell

Laboratories, CA,
USA (2013)

SiO2 (50–58), Li2O
(10–20), GeO2 (1–10),
K2O (2–6), P2O5 (2–4),

Al2O3 (2–4), ZrO2
(2–4), others (<10)

385 Two-step
Inlays, onlays, veneers,

anterior and
posterior crowns

Zirconia
reinforced lithium

silicates
(Li2SiO3/Li2Si2O5)

Celtra® Duo,
Dentsply Sirona,
Salzburg, Austria

(2013)

SiO2 (58), Li2O (18.5),
ZrO2 (10.1), P2O5 (5),
Al2O3(1.9), CeO2 (2),

Tb4O7 (1)

370 One-step

Inlays, onlays, veneers,
partial crowns,

anterior and
posterior crowns,

implant-supported
crowns

VITA Suprinity®

VITA Zahnfabrik,
Bad Säckingen,
Germany (2013)

SiO2 (56–64), Li2O
(15–21), ZrO2 (8–12),

P2O5 (3–8), Al2O3
(1–4), K2O (1–4), CeO2

(<4), La2O3 (0.1),
pigments (<6)

420 Two-step

Inlays, onlays, veneers,
partial crowns,

anterior and
posterior crowns,

implant-supported
crowns

Lithium aluminium
disilicate

(LiAlSi2O6/Li2Si2O5)

n!ce®, Straumann,
Basel, Switzerland

(2017)

SiO2 (64–70), Li2O
(10.5–12.5), Al2O3
(10.5–11.5), Na2O

(1–3), K2O (0–3), P2O5
(3–8), ZrO2 (<0.5), CaO
(1–2), colouring oxides

(<9)

350 ± 50 One-step

Inlays, onlays, veneers,
anterior and

posterior crowns,
implant-supported

crowns

CEREC TesseraTM,
Dentsply Sirona,
Salzburg, Austria

(2021)

Li2Si2O5 (90), Li3PO4
(5), Li0.5Al0.5Si2.5O6 (5) 700 Two-step

Inlays, onlays, veneers,
anterior and

posterior crowns
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Previous existing review papers in the literature have investigated the chemical,
aesthetic and mechanical aspects that govern the performance of recent LSC materi-
als [5–7,14,15], while others have evaluated the outcomes of internal surface treatments on
LSC cementation and adhesion [14,16]. The main aim of this narrative review is to shed
light on the manufacturing and strengthening methodologies of the notably recent LSC ma-
terials pertaining to dental applications and to consolidate a comprehensive understanding
of the updated fabrication techniques and surface treatment modalities available in the
literature to enhance the knowledge of dental practitioners regarding the contemporary
developments in this rapidly evolving field. The review methodology herein comprises
applying a search strategy (Table 3), defining inclusion and exclusion criteria, screening
relevant abstracts, retrieving the full text of studies from selected abstracts and extracting
the main outcomes/findings. Inclusion selection criteria were articles written in English
and related to LSC materials, including in vitro studies (comparative or experimental),
technique reports, review articles, case reports and clinical studies. Exclusion criteria
included any articles that failed to align with the items described in the inclusion criteria.
Electronic searches included research in the literature published until February 2024.

Table 3. Search strategy for narrative review.

Database Search Terms

Pubmed/
Medline

“Lithium silicate-based glass-ceramics” OR “Lithium disilicate” OR “Zirconia-reinforced
lithium silicate” OR “Lithium aluminum disilicate” OR “Advanced lithium disilicate” OR

“Glass-ceramics” OR “Dental ceramics” OR “dental materials” [Mesh] OR “dentistry”
[Mesh] OR “CAD/CAM” [Mesh] OR “machinable lithium silicate” OR “pressable lithium

silicate” OR “heat pressed lithium silicate”

Scopus

“Lithium AND silicate-based AND dental AND ceramics” OR “Zirconia-reinforced AND
lithium AND silicate” OR “Advanced AND lithium AND disilicate” OR “Reinforced AND

lithium AND silicate” OR “CAD/CAM AND lithium AND silicate” OR “Heat AND
pressed AND lithium AND silicate”

Google Scholar

“Lithium silicate-based glass-ceramics” OR “Lithium disilicate” OR “Zirconia-reinforced
lithium silicate” OR “Lithium aluminum disilicate” OR “Advanced lithium disilicate” OR
“Glass-ceramics” OR “CAD/CAM lithium silicates” OR “machinable lithium silicate” OR

“pressable lithium silicate” OR “heat pressed lithium silicate”

2. Microstructure

The microstructure of LSCs comprises lithium disilicate crystals (≥50 vol%) formed
via volume crystallisation with phosphorus pentoxide (P2O5) as their primary nucleant and
(in some derivatives) zirconia (ZrO2) as a secondary nucleating agent [2,17]. Lithium (Li)
was initially extracted from silicate mineral petalite (LiAlSi4O10) and later from spodumene
(LiAlSi2O6). LSCs consist of three main silicate forms (Figure 1):

1. Lithium disilicate (Li2Si2O5): a layered silicate (i.e., phyllosilicate) in which silicon
shares three oxygen atoms with its neighbouring atoms; this phase exists between
800 and 850 ◦C;

2. Lithium metasilicate (Li2SiO3): a single-chain silicate (i.e., inosilicate) where silicon
shares only two oxygen atoms; this phase is metastable and exists exclusively between
600 and 800 ◦C;

3. Cristobalite (SiO2): a stable silica framework, i.e., tectosilicate, in which silicon shares
all four oxygen atoms; this secondary phase crystallises following that of Li2Si2O5.
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Figure 1. Molecular representation of (a) lithium disilicate, (b) lithium metasilicate and (c) cristobalite.

The microstructure of LSCs is governed by heterogeneous nucleation via a micro
immiscilibity approach where foreign substrates are integrated within a glass matrix and
create a microphase that acts as a heterogenous nucleating agent. Microphases gain kinetic
energy upon heating, promoting crystal growth, phase separation and the development of
additional crystal phases. Phosphorus pentoxide (P2O5) is considered the main LSC nucle-
ant, and supplemental oxides (e.g., Al2O3, K2O, ZrO2, ZnO, MgO and CeO2) are added as
secondary nucleating agents, fluxes or fining agents to accelerate crystallisation kinetics,
control melting temperatures and viscosity and improve corrosion resistance [18–20]. Heat-
ing LSCs with P2O5 (>2 mol%) to 500–560 ◦C results in lithium orthophosphate (Li3PO4)
and cristobalite (SiO2) [20]:

6
(
SiO−Li+

)
+ P2O5

500–560 ◦C−−−−−−→ 2Li3PO4 + 3(Si − O − Si) (1)

Li3PO4 serves as a heterogeneous nucleus initiating the layered deposition (i.e., epitax-
ial growth) of lithium metasilicate crystals (Li2SiO3) starting from 530 to 590 ◦C until they
decompose at 780–820 ◦C. Cristobalite crystals also decompose below 820 ◦C; concurrently,
lithium disilicate (Li2Si2O5) crystals start growing in a rapid manner at 820 ◦C [20]:

SiO2 + Li2SiO3
820 ◦C−−−→ Li2Si2O5 (2)

The elongated morphology of Li2Si2O5 crystals (i.e., high aspect ratio) toughens
LSCs by virtue of crack deflection and crack bridging mechanisms [19]. Furthermore,
the resultant LSC crystalline structure is a remarkably interlocked crystal network, and
its epitaxial crystal growth relies on the minimal distance (<15%) between the nuclei
lattices and growing crystals; fortunately, this is easily attained by the similar orthorhombic
structures of Li3PO4 and Li2SiO3 [20]. Furthermore, in general, LSCs are considered to be
multi-component and non-stoichiometric (i.e., with non-ratio atomic relationships within
its elemental composition) and thereby can be further divided based on the dominance of
the microstructural phase/phases [4,5] into four sub-classes:

Lithium disilicate ceramic (LDS): predominantly lithium disilicate (Li2Si2O5);
Lithium metasilicate ceramic (LM): predominantly lithium metasilicate (Li2SiO3);
Zirconia-reinforced lithium silicate (ZLS): biphasic lithium metasilicate/lithium disilicate
(Li2SiO3/Li2Si2O5);
Lithium aluminium disilicate (ALD): biphasic spodumene/lithium disilicate
(LiAlSi2O6/Li2Si2O5).
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The majority of the CAD/CAM LSCs in the market (IPS e.max CAD, Rosetta SM,
Amber Mill, Obsidian and VITA Suprinity) are available as partially crystallised blocks
from Li2SiO3 to facilitate their soft-milling, and then undergo mandatory crystallisation and
glaze firing protocols at higher temperatures (>800 ◦C) for Li2SiO3 phase transformation
into the desired Li2Si2O5 crystalline structure. In the pre-sintered state, IPS e.max CAD
blocks demonstrate low mechanical properties; however, upon sintering and crystallisation,
the strength of the ceramic blocks improves tremendously [3]. More recently, attempts in
limiting the CAD/CAM fabrication time have led to the development of fully crystallised
LSC blocks either with post-milling glaze firing regimens (Celtra Duo and CEREC Tessera)
or without glaze firing prerequisites (Initial LiSi Block and n!ce) [4,7].

2.1. Zirconia-Reinforced Lithium Silicate Ceramics (ZLSs)

The unique microstructure of these ceramics is due to the tetragonal zirconia fillers
(ZrO2) added in concentrations of ~10 wt% in the glassy matrix, serving as a secondary
nucleant to diphosphorus pentoxide (P2O5) (Figure 2) [21]. Currently, commercial ZLSs
are offered as pressable ingots, including Celtra Press (Dentsply Sirona, Salzburg, Austria)
and VITA AMBRIA (VITA Zahnfabrik, Bad Säckingen, Germany), as well as machinable
blocks in a fully crystallised form, e.g., Celtra Duo (Dentsply Sirona, Salzburg, Austria),
and in a partially crystallised from, e.g., VITA Suprinity (VITA Zahnfabrik, Bad Säckingen,
Germany) [7]. The partially crystallised ZLS machinable blocks (VITA Suprinity, VITA
Zahnfabrik, Bad Säckingen, Germany) are composed of pre-sintered Li2SiO3 nanocrystals
embedded within moderately polymerised zirconosilicate glass. Upon heating the block
to 810–820 ◦C, the Li2SiO3 crystals react with the glass to generate Li2Si2O5 (major) and
Li3PO4 (minor) precipitates, resulting in a ~60 vol% crystalline phase with an average
crystal size of 0.5–1 µm being incorporated in a zirconosilicate glass matrix [4,6,21,22]. This
intricate microstructure provides the ZLSs with superior flexural strength, and improved
aesthetics and machinability because of the higher percentage of the glassy matrix [23].
In vitro chewing simulation and artificial ageing studies conducted by the manufacturers
of Celtra Duo (Dentsply Sirona, Salzburg, Austria) [24] claim that these ceramics behave in
an uncharacteristic manner in which they gain strength upon hydrothermal ageing. Other
published studies have explained this on the basis of zirconia phase transformation from
tetragonal crystals into monoclinic ones, thereby resulting in crack retardation and, in turn,
higher fracture loads [25–27]. X-ray diffraction (XRD) investigations have been employed
to identify and quantify the crystalline structures within ZLS, while some researchers have
not detected crystalline zirconia structures [21,28], but others have identified tetragonal
ZrO2 crystals and aluminium silicate (VITA Suprinity, VITA Zahnfabrik, Bad Säckingen,
Germany) after sintering at 840 ◦C [29], and extended firing at >875 ◦C [18].
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2.2. Lithium–Aluminium Disilicates (ALDs)

ALDs were initially introduced by Straumann (Basel Switzerland) as one of the n!ce
products, distinguished by the high density of ß-spodumene (LiAlSi2O6) (~41 vol%) in
addition to Li2Si2O5 (28.5 vol%) and Li3PO4 (~10 wt%) [5,7] (Figure 3). The most recent
ALD materials (CEREC Tessera) are advertised as “advanced lithium disilicates”, ostensibly
due to the manufacturer (Dentsply Sirona, Salzburg, Austria) marketing of added Al2O3
content (~5 wt%) in the form of γ-spodumene, i.e., virgilite crystals (Li0.5Al0.5Si2.5O6), as
well as Li2Si2O5 (~90 wt%) and Li3PO4 (~5 wt%). Toughening of CEREC Tessera occurs
as a result of the thermal mismatch between Li0.5Al0.5Si2.5O6 and Li2Si2O5 crystals, which
both form between 800 and 850 ◦C, causing residual stresses and crack tip shielding upon
cooling of the ALD [7,30]. However, XRD investigations [5,31] obtained from Rietveld
refinement have refuted this claim, stating that instead of virgilite, the crystalline content is
composed of quartz (~3 vol%). Although ALDs are currently supplied as fully crystallised
CAD/CAM blocks that can be cemented post-milling without further heating or glaze
treatment requirements, evidence in the literature suggests that additional sintering is
beneficial in minimising milling-induced surface flaws [7].
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3. Manufacturing Techniques

The manufacturing of LSC materials is achieved through consolidating and heating
ceramic powders by virtue of complex temperature-controlled crystallisation methods.

3.1. Melting Casting Crystallisation Method

Raw glass-forming components and nucleating agents are uniformly mixed and
simultaneously melted at high temperatures ranging between 1300 and 1500 ◦C. The
molten glass is quenched via casting it into the desired geometry and slowly cooling it at
room temperature, i.e., it is annealed to form a precursor glass. Subsequently, a two-stage
controlled heat treatment takes place, initially at temperatures slightly above the glass
transition temperature (Tg), to stimulate nucleation; then, the temperature is raised in a
second heating stage to facilitate the stable growth of crystals of minimal inherent stresses
within the precursor glass. The final microstructure depends on the type and concentration
of nucleating agents as well as the dimension and shape of the crystals (Figure 4). Complex
geometries can be manufactured using this method, yielding uniformly dense compositions
with accurate dimensions. However, as melting temperatures can be reduced via the
addition low-melting-temperature oxides, the overall high temperatures and prolonged
treatment time are considered limitations of this approach [32–35].
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Figure 4. Melting casting crystallisation manufacturing method; raw minerals (a) are milled into fine
powders (b), mixed, then heated into a molten state (c), quenched and cast within a mould (d), slowly
annealed (e) to form a precursor glass (f), re-heated to illicit nucleation, (g) re-heated a second time to
active crystallisation kinetics (h) and finally cooled slowly to obtain a glass ceramic with optimum
properties (i).

3.2. Powder Sintering Method

This method attempts to speed up manufacturing through the coincident sintering and
crystallisation of glass particles; the raw glass materials are melted at high temperatures,
quenched in water, finely ground into a powder, sieved in a blank and pressed at specific
temperatures. The final crystalline structure is achieved via bulk nucleation along the
glass grain border without the need for additional nucleating agents. This approach
is less complex and time-consuming than the melting casting method and allows for
the production of high-temperature fused glasses that cannot easily form a molten glass
phase. However, a significant drawback is the resultant inherent porosity, which limits the
fabrication of geometrically intricate configurations [32–36].

3.3. Sol–Gel Method

Hydrolysis is employed to create a gel from glass element precursors that is then dried
into glass powder, moulded and sintered at reduced temperatures (600–800 ◦C). The main
advantages of this method are the nano-scaled dimensions of glass particles that enhance
the homogeneity of the final product, and that lower temperatures prevent the possible
volatilisation of glass particles, thus reducing contamination. Nonetheless, this approach is
time-consuming and expensive, and the sintering shrinkage of the gel poses a potential
risk [32,35,37].

4. Strengthening Mechanisms

Owing to their brittle nature, LSCs cannot plastically deform to dissipate pre-existent
internal dislocation energy, which could thus potentially result in catastrophic cleavage.
Manufacturing processes inevitably generate critical flaws (inherent bulk flaws or outer
surface defects) that act as strength-limiting zones of high-stress concentrations. The
stochastic fracture behaviour of LSCs is thus due to the multi-fold randomly distributed
critical flaws from which cracks of differing dimensions and orientations initiate and,
subsequently, propagate. Ultimately, crack progression is governed by the size effect and
weakest link theory postulating that cracks originate from the largest flaws oriented in
a manner susceptible to the alignment of weakening tensile stresses [38–41]. Thus, the
strengthening or toughening of LSCs is imperative to providing longevity and can be
performed via a variety of intrinsic or extrinsic mechanisms [41–44]; the former focuses on
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inherent processes located within the crack tip vicinity (Figure 5), whereas the latter are
acquired processes that impede the driving force behind the extension of a crack.
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Intrinsic strengthening mechanisms

• Crack tip deflection: Added particles in the glass matrix act as obstacles deflecting the
crack into an altered plane, increasing the surface area per distance of the crack and
consequently causing crack advancement to be decelerated as extra energy is needed
for its propagation.

• Crack tip shielding: This is triggered by high stresses within the crack tip vicinity,
where residual stresses arise from mismatches in the coefficients of thermal expansion
(CTE) between crystalline particles and the glass matrix; the greater CTE of crystals
than that of the surrounding glass matrix stimulates compressive stresses at the crack
tip that minimise its opening.

• Crack bridging: In ceramic networks of high crystalline density, cracks spread in an
inter-granular manner, thereby causing friction to be generated between the grains
along crack surfaces, triggering grain pull-out, frictional interlocking and bridging,
and thus impeding further crack extension. Bridging can also be accomplished via the
reinforcement of added fibres or whiskers within the ceramic matrix.

• Microcrack formation and crack branching: Concentrated stress around the crack tip
generates microcracks within adjacent inherent flaws and grain boundaries oriented
perpendicularly to the stress plane. Microcracks dissolve the crack expansion energy
within the tip region, thereby hindering further crack advancement. Branching at the
crack tip also acts to delay crack motion by increasing the crack surface area.

• Transformation toughening: Stresses surrounding the crack tip region prompt crys-
talline phase transformations that are accompanied by volumetric expansion exerting
favourable compressive residual stresses coalescing the crack tip.
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Extrinsic strengthening mechanisms

• Thermal tempering: This involves the controlled heating of a ceramic to a temperature
that is slightly above the glass transition point (Tg) and beneath the softening point
(Ts), creating a rigid exterior surface that envelopes a molten centre [45]. Upon cooling,
the molten core contracts and a temperature gradient is generated between the surface
and bulk, yielding residual compressive stresses within the former and inner residual
tensile stresses within the latter (Figure 6). Therefore, to fracture tempered ceramic
restorations, externally applied tensile loads must counter the residual compressive
stresses of the ceramic surface.
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Figure 6. Thermal tempering of a ceramic restoration (a), placed in a furnace, initially heated to a
temperature between its Ts and Tg (b), and then cooled rapidly via assisted forced air cooling (c). The
final tempered ceramic has two-fold residual stresses: outer compressive stresses (blue arrows) and
inner tensile stresses (orange arrows) (d).

• Chemical tempering: This is also known as ion exchange or ion stuffing, where
the exchange of different sized ions at the outer ceramic surfaces yields residual
compressive stresses as the larger ions swap those of smaller sizes. This is achieved
via the immersion of the LSC in a molten potassium nitrate (KNO3) salt bath; smaller-
sized ions on the LSC surface (e.g., Na+ and Li+) are substituted by larger ions in the
salt bath (e.g., K+). The resultant chemically tempered ceramics are electroneutral by
virtue of the equivalent counter ion flux diffusion (Figure 7) [43,46,47].
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ions; the latter generates favourable compressive stresses throughout the silicate framework that
retard the propagation of pre-existing crack (c).
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5. Fabrication Methods

Currently, various LSC dental restorations can be fabricated via one of the following
methods.

5.1. Heat Pressing

Also known as injection moulding, this method utilises the lost wax technique in
which a wax model of an LSC restoration is embedded in gypsum materials to create a
mould. Subsequently, LSC ingots are heated to a temperature at which they melt into
a highly viscous liquid, allowing them to be pressed/injected into the lost wax mould
cavity. This fabrication method allows the production of full-contour restorations as well
as frameworks designed to be veneered with feldspathic porcelain. The benefit of this
technique is its resemblance to and familiarity with the lost wax method used to produce
metal castings, therefore minimising potential laboratory mishaps [48,49].

5.2. CAD-CAM Technology

This method is conducted throughout three main processes:

1. Data acquisition: The prepared abutment teeth and their surrounding tissues are
recorded indirectly via conventional dental impressions or directly through virtual
impressions [50,51];

2. Data processing and computer-aided design: Software programs transfer the acquired
data to a processing centre, and the desired restoration is created [50–52] with the aid
of software tools such as smile design, tooth form libraries, colour shade matching
and jaw tracking programs [53];

3. Computer-aided manufacturing: Upon finalising the LSC restoration design, it can be
manufactured via subtractive (SM), additive (AM) or hybrid SM and AM mechanisms.

5.2.1. Subtractive Manufacturing

Herein, the LSC block (partially or fully sintered) is fixed onto a workpiece and a
milling drill (spindle) subtracts from the material to create the desired restoration. Subtrac-
tive manufacturing is executed by a computer numeric-controlled (CNC) milling machine
with a series of successive commands regarding the milling tool type, path and speed, as
regulated by the thickness and morphology of the desired restoration. Within most CNC
milling systems in dentistry, milling burs operate along 3 or 4 defined axes, with 5-axis
milling machines being less common (Figure 8):
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Three-axis devices function within XYZ spatial paths; the workpiece moves horizon-
tally in the X-axis (left/right) and Y-axis path (forward/backward), and the spindle moves
vertically along the Z-axis (up/down). These systems require minimal control and can
fabricate restorations in a short milling time with low costs; hence, they are the most popu-
lar in dental clinics. However, internal fit and marginal adaptation are frequent concerns.
Four-axis milling devices have an additional rotational axis: an A-axis, which pertains to
the X-axis, allowing the workpiece to move in a pendulum-like fashion, thereby exposing
greater surfaces to be milled by the spindle and allowing access to the undercut areas of the
restorations; nonetheless, these devices are less widespread in the dental field due to their
higher costs. In terms of 5-axis milling devices, there is an added rotational axis: a B-axis,
which relates to the Y-axis, in addition to the XYZA axes. The automated maturity of these
systems facilitates the efficient milling of surfaces adjacent to the insertion axis with an
accuracy of up to 0.01 mm; nonetheless, their large footprint and financial restraints limit
their placement to external laboratories only. The indication of 3- and 4-axis systems are
limited to single-unit or short-multi-unit prostheses, whereas 5-axis systems can fabricate
long-span multi-unit and geometrically complex restorations [54]. Subtractive manufactur-
ing has increasingly gained popularity within the last decade; however, milling-induced
strength-limiting surface flaws and material wastage are significant drawbacks [53–57].

5.2.2. Additive Manufacturing

LSC restorations are constructed as a function of a structured passive layering tech-
nique guided by the information from the three-dimensional design data, yielding less
material waste, and thus endorsing industrial sustainability. The unique software al-
gorithms of additive manufacturing can generate multi-shade prostheses of geometric
complexity. In contrast to subtractive approaches, additive manufacturing allows the
fabrication of larger-sized structures with extensive surface irregularities.; therefore, it is
preferred for the construction of extra-oral hard- and soft-tissue facial prostheses. This can
be accomplished using seven main technologies [58–60]:

1. Material jetting (MJ): This is also recognised as direct inkjet printing, in which a layer
of tiny droplets of the print material (i.e., ink) are selectively deposited onto a build
platform, where the latter is heated or exposed to ultraviolet (UV) radiation to the
facilitate immediate photopolymerisation of the jetted layer ink before the subsequent
ink layer is added. Ceramic particles can be suspended into water, organic solvents or
wax solutions to create the ceramic ink needed to fabricate dental restorations via the
material jetting method.

2. Vat polymerisation (VP): This entails the selective photocuring of radiation-sensitive
liquid polymers contained within a tank (i.e., vat). This is the most frequently used
additive method for fabricating dental ceramics, wherein ceramic suspensions are
developed through the incorporation of resin polymers in high concentrations within
ceramics powders. VP can be further subdivided into three main technologies; stere-
olithography (in which a concentrated UV-laser beam is directed onto a photosensitive
liquid resin generating layers of the desired object through the crosslinking of the
polymers), digital light processing (a digital UV screen simultaneously deposits and
photocures an entire layer of photopolymerisable liquid) and continuous liquid inter-
face production (a vat with transparent base serves as an oxygen-permeable window,
where resin polymerisation is prevented and can flow freely, creating continuous
printed material rather than layered material).

3. Binder jetting (BJ): Binding liquid agents and powder print materials are deposited in
alternating layers to create the final build, and the binder acts as an adhesive between
powder layers. Layer-wise slurry deposition is a variant of BJ that uses a ceramic slip
instead of dry powder.
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4. Material extrusion (ME): This is also known as fusion deposition modelling, direct ink
writing or robocasting, wherein a heated nozzle contains a thermoplastic filament that
is melted into an ink and deposited in layers to generate the 3D object. The fabrication
of LSCS via ME is achieved by using a ceramic slurry—composed of chemically or
heat-bonded ceramic particles—as the ink material.

5. Powder bed fusion (PBF): In this process, a powdered material is selectively melted and
fused via laser or electron beams to fabricate the final product. This method can be further
subdivided into the following: selective laser sintering, selective laser melting and electron
beam Melting. This method has not been successful in fabricating LSC restorations, due to
the laser-induced cracks that result from drastic temperature fluctuations.

6. Sheet lamination (SL): In this process, multiple layered sheets of the build are superim-
posed, laminated and then cut into the final shape using lasers or CNC milling devices.

7. Direct energy deposition (DED): Deposited materials are concurrently melted and fused
via focused thermal energy into their final morphologies. Based on the type of thermal
energy employed (focused electron beam or focused laser), this method is further divided
into laser engineering net shape or electron beam additive manufacturing, respectively.

In general, dental 3D printers function within an XYZ axis system; the X-, and Y-axes
control the horizontal movement of the build platform, while the Z-axis controls the vertical
movement of the applied nozzle; hence, the latter determines the layer’s thickness. The
additive manufacturing of LSCs is in its nascent phase, as the unique composition of the
ceramics and their heat sensitivity permit them to be fabricated with MJ, VP, BJ, MJ, PBF
and DED technologies only [57,60,61].

In order to incorporate LSC material within the feedstock supply, a ceramic powder
must be first obtained through calcination or ball milling; subsequently, the powder is
mixed with binders/additives into a ceramic slurry that is fed as a printing ink into the
manufacturing device and that forms the shaped ceramic with the desired anatomy, i.e., a
green body. Upon debinding, the binder burns out and the green body is consolidated into
a brown body; the latter is heated in a furnace to promote the complete crystallisation of
the ceramic microstructure and achieve a densely sintered body [62]. AM has proven its
significant potential in fabricating LSC crowns of high density, thereby yielding improved
biaxial flexural strength and reliability as well as fracture toughness and hardness values
comparable to those of LSC fabricated via traditional heat pressing methods [63]. Further-
more, recent research data regarding additively manufactured glass products have demon-
strated promising efficiency in printing multi-material, multi-scale, and multi-functional
glass products, and these could be suggested as the research trends for the 3D printing
of LSC restorations in the future [64]. The surface accuracy and internal fit of additive
manufacturing-fabricated LSCs is impacted by the print material composition and thickness
of the print layers. Nonetheless, the layering in additive manufacturing could result in
staircase morphologies that alter the surface texture, hence dictating the need for further
finishing and polishing. Unfortunately, the inherent porosities of restorations and the pro-
longed durations of drying, de-binding and sintering have not been resolved and diminish
the appeal of fabricating LSC restorations with additive manufacturing [4,55,56,60,65].

6. Properties
6.1. Biocompatibility

Broadly speaking, LSCs are considered to be among the most biocompatible biomate-
rials in dentistry based on their high resistance to structural degradation in erosive and
corrosive environments. To date, there is an absence of clinical reports of allergic reactions
or long-term adverse biological effects of LSCs on tooth structure or surrounding soft
tissues [66–70]. ZLS have been deemed biocompatible by the North American Science
Associates standards of cytotoxicity, genotoxicity and systemic toxicity [71]. Polished ZLS
surfaces present a more homogenous topography in comparison with glazed surfaces,
thereby inciting less biofilm accumulation and indicating the promising potential of the
former for implant-supported restorations with subgingival margins [72]. Furthermore,
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polished ZLS surfaces reveal lower bacterial adhesion and plaque formation than polished
LDS ceramics do [73]. Data regarding ZLS biocompatibility in terms of cellular adhesion are
scarce; ZLS has been shown to yield lower human periodontal ligament stem cell adhesion
than LDS has [74], and lower human gingival fibroblast proliferation than yttrium-stabilised
tetragonal zirconia has [75]. Unfortunately, to date, in vitro studies evaluating the ALDs’
biocompatibility and cytotoxicity are non-existent, excluding manufacturer-supplied safety
data sheets.

6.2. Mechanical Properties

In general, the brittle nature of LSCs provides high resistance to compressive stresses
and poor resistance to tensile/shear stresses, and the increase in crystalline content is
accompanied by an increase in strength and fracture toughness [38,76]. The hardness of
LSCs is higher than that of the tooth structure; hence, it may be a cause of detrimental wear
in contrast to resin composite restorations [77–80]. In comparison with leucite reinforced
glass-ceramics, LSCs demonstrate superior mechanical properties, allowing them to be
applied in high-occlusal-stress-bearing areas [76,81,82]. Studies regarding ZLS restorations
have reported high fracture resistance surpassing masticatory occlusal forces, feldspathic
ceramics, polymer-infiltrated ceramic networks (PICNs) and bilayered ceramic-veneered
zirconia restorations [83–85]. Moreover, ZLS yield adequate flexural strength and fracture
toughness values comparable to those of LDS and higher than those of feldspathic ceramics
and PICNs [5,22,83]. Wear rates of ZLS (Celtra Duo, Denstply Sirona, Salzburg, Austria)
have been shown to not be statistically different from those of dental enamel after artificially
induced chewing cycles; nonetheless, the reduced wear rate of fully crystallised ZLS has
been noted upon glaze firing [86]. ZLS have demonstrated exceptionally low reliability
(i.e., a low Weibull modulus), implying the presence of widely distributed material-
dependent strength-limiting defects within their microstructure, ostensibly a result of
a thermal mismatch between glass and crystalline phases [22]. Regarding ALDs, some
studies have reported similar mechanical strengths to those of LDS and inferior mechanical
strengths compared with those of ZLS and zirconia [87,88], while others have reported on
the inferior mechanical performance of ALDs compared with that of ZLS or LDS [89,90].
Nonetheless, despite their high crystalline content, ALDs have low fracture toughness [4,5]
which is attributed to their nano-scale crystal sizes. In terms of marginal adaptation and
the trueness of internal fit, both the ZLS and ALD materials have demonstrated acceptable
accuracy and internal adaptation within the required clinical values, and thus have proven
to be comparable to those of LDS materials [91–95].

6.3. Optical Properties

The chemical composition, crystalline type and crystalline phase of LSCs have been
shown to influence their optical properties, e.g., increased crystalline density decreases
light transmission and thereby increases opacity. Furthermore, greater translucency is
found in LSCs with smaller crystals and when similar refractive indices exist between glass
and crystalline phases [96]. The type and shade of cementing agent, surface treatments,
substrate thickness, surface texture and ageing all play a crucial role in the final colour of
a restoration [97–100]. LSCs are accessible in a wide range of shades and translucencies;
shades are regulated in the manufacturing process by incorporating pigmenting oxides
within the glass matrix, while translucency is regulated via the nano-scaling of crystals [7].
Most products are available in four translucency levels: high translucency (HT), medium
translucency (MT), low translucency (LT) and high opacity (HO). Partially crystallised
LSC HT blocks contain numerous large-size lithium metasilicate crystals while LT blocks
comprise an abundance of smaller crystals [101]. Studies have reported that ZLS restora-
tions demonstrate higher translucency than RNCs, PICNs, feldspathic ceramics, LDS and
monolithic zirconia [12,101–103], which is attributed to the smaller silicate crystals and
thereby the higher glassy matrix percentage. Conversely, other studies [104] have stated
that ZLS exhibit lower translucency and higher opalescence in comparison with LDS and
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resin-matrix ceramics, which could be explained by the higher amount of oxides in the
former. The translucency of ALD materials is equivalent to that of LDS and ZLS, and
is significantly impacted by ageing, glaze treatments and the colour of the underlying
substrate [88,105,106].

7. Surface Treatments of LSCs

Mechanical, optical and topographical characteristics of LSC restorations depend on
the conditioning treatments applied to the external or internal (intaglio) surfaces.

7.1. Intaglio Surface Treatments

LSC intaglio surfaces must be roughened to amplify the surface area, thereby fa-
cilitating luting cement retention and optimising the strength of the bond to the tooth
substrate. Nonetheless, extensive alterations to the internal surfaces could be damaging,
as they lead to unfavourable glassy matrix removal and grain pull-out, causing adverse
volumetric loss that could weaken the LSC [107]. Various chemical, mechanical and chemo-
mechanical approaches have been employed to increase the micromechanical retention of
LSC substrates.

7.1.1. Mechanical Surface Treatments

• Airborne particle abrasion: Sandblasting with alumina oxide or silica oxide particles
creates surface alterations that are determined by the size, hardness, pressure, incident
angle and velocity of abrading particles and the distance between the substrate and
sandblasting nozzle. Since sharp edges of alumina particles chip away weaker glassy
phases creating microcracks, this method could have a degrading impact on LSCs
with high glass contents [108,109].

• Laser irradiation: Heat introduction by a laser creates conchoidal (scalloped) defects
within LSC surfaces, promoting the micromechanical retention needed for bond-
ing. Erbium: yttrium aluminium garnet laser is commonly employed [110,111], as
is CO2 laser, to treat LSC surfaces, owing to their complete absorption of CO2 wave-
lengths [112]. Recently, femtosecond laser treatments have been explored to treat LSC
surfaces, wherein ultrashort optical pulses are generated per femtosecond, producing
micro-retentive topographical changes [113].

7.1.2. Chemical Surface Treatments

• Hydrofluoric acid etching: The etching of LSC restorations is most frequently per-
formed using buffered hydrofluoric acid (HF), since the unbuffered version of HF is
highly caustic; most HF etching products offered in the dental market are buffered
down to 5% or 10% concentrations through the addition of an ammonium fluoride
(NH4F) buffering agent. HF reacts with silica in the glassy matrix, yielding a tetrafluo-
rosilane compound (SiF4), succeeded by a hexafluorosilicate complex ([SiF6]−2) and
subsequently soluble hydrofluorosilicic acid (H2[SiF6]) that is washed away along
with the glassy matrix, hence exposing the underlying crystalline network (Figure 9)
and providing the retention needed for LSC cementation [69,107,114,115].
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4 HF + SiO2 → SiF4 + 2 H2O (3)

2 HF + SiF4 → [SiF6]−2 + 2 H+ (4)

[SiF6]−2 + 2 H+ → H2SiF6 (5)

X-ray photoelectron spectroscopy (XPS) of superficial atomic layers of etched LSC
nano-surfaces (≤4 nm) [116] has verified that the HF mechanism of action is actually
two-fold; it causes the dissolution of the glassy matrix, and alters the chemical composi-
tion of LSCs at a nano-level. LSCs with higher crystalline densities demonstrate lower
HF-induced SiO2 dissolution, as evident from the percentage of SiO2 remaining in LSC
surfaces post-etching; 18.3% SiO2 was found in IPS e.max CAD (Ivoclar Vivadent, Schaan,
Liechtenstein) and 9.1% was found in Celtra Duo (Dentsply Sirona, Salzburg, Austria) [116].
Conversely, the complete dissolution of SiO2 glass has been seen in etched VITA Suprinity
(VITA Zahnfabrik, Bad Säckingen, Germany) and n!ce (Straumann, Basel Switzerland)
nano-surfaces [116]. The microscopic evaluation of etched LSC surfaces has revealed elon-
gated crystals distributed among shallow irregularities (Figure 10), in contrast to etched
leucite ceramics surfaces that display a characteristic honeycomb-like appearance [114].
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Figure 10. FE-SEM image (×20,000) of an LSC (Celtra Duo, Dentsply Sirona, Salzburg, Austria)
following etching with 9% hydrofluoric acid for 30 s.

The differences between etching patterns are caused by lithium disilicate crystals’
greater resistance to HF dissolution compared with that of SiO2 as twice the HF concentra-
tion is needed to dissolve a single lithium disilicate molecule.

Li2Si2O5 + 14 HF → 2 LiF + 2 H2SiF6 + 5 H2O (6)

Variations in the Li content (atomic%) of nano-layers post-etching are explained by
the differing Li:Si ratios in LSCs; a low ratio indicates minimal Li within the glassy matrix,
such as in IPS e.max CAD (1:5.75) and in n!ce (1:5.49), whereas a higher ratio implies a
lithium-rich glassy matrix, such as in Celtra Duo (1:1.84) and VITA Suprinity (1:2.41) [113].
Many different LSC etching protocols have been investigated in the literature, exploring the
effect of etching durations as well as etchant concentration [98,117–126]. In general, etching
LSCs had a negative impact on their flexural strength [98,119,120,127]. Moreover, etching
with pre-heated HF (50–70 ◦C) yielded higher bond strengths compared with etching with
room-temperature HF [124–126].
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• Acid etching with HF substitutes: Owing to the toxic and corrosive potential of HF
as a result of its low dissociation constant, it can easily penetrate dermal, epidermal
and mucosal tissues entering into the blood stream; however, its slow interaction
with nerve endings delays the burning sensation. Hence, HF must be handled with
utmost caution in extra-oral conditions, only with adequate ventilation and protective
gear [107,128]. Attempts in minimising occupational hazards with HF have led to the
exploration of alternative etching modalities with agents of reduced acidic capacities:

1. Phosphoric acid: Theoretically, etching with phosphoric acid (35–40%) should
create LSC morphological modifications; however, microscopic evaluations re-
veal surfaces minimally altered by phosphoric acid post-etching in comparison
with the use of HF and a weaker bond strength [107,129].

2. Acidulated phosphate fluoride (APF): This is composed of 1.23% fluoride ions de-
rived from sodium fluoride and hydrofluoric acid that become acidified through
the addition of phosphoric acid. APF has proven to be a more efficient etchant
for leucite-based ceramics than for LDS, due to the faster crystalline dissolution
rate in the former [130], with greater bond strengths reported upon longer APF
etching durations [107].

3. Ammonium bifluoride (ABF): Herein, a linear etching pattern is formed due to
the targeted action of ABF on grain boundaries and pre-existing cracks within
LSCs, reacting with the silica matrix and generating silicon tetrafluoride and
ammonium fluoride:

4 NH4HF2 +SiO2 → SiF4 + 4 NH4F + 2 H2O (7)

As ABF is less toxic than HF, longer etching times are required to create etching
patterns similar to those of HF of similar concentrations. While etching with ABF
results in adequate bonding strengths, it is mainly used as an intermediate for
fabricating HF [107,131].

4. Ammonium polyfluoride (AP): This is provided within the composition of self-
etching ceramic primers (SEP), serves as a silane coupling agent stabiliser and,
despite its notably low acidity, has been shown to create sufficient micro-retentive
etching patterns in LSCs [132,133] (Figure 11) and reliable adhesion to the tooth
substrate [134,135].
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Figure 11. FE-SEM image (×20,000) of an LSC (Cerec Tessera, Dentsply Sirona, Salzburg, Austria)
following etching with a self-etch primer (Monobond Etch & Prime, Ivoclar Vivadent, Schaan,
Liechtenstein) under 20 s of active application with a microbrush and then 40 s of passive application.
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• Acid neutralisation: Alkaline agents such as calcium gluconate, sodium bicarbonate
and calcium carbonate have been used to neutralise the acidity of LSC surfaces caused
by HF residues through an acid–base reaction that produces sodium fluoride and
calcium fluoride salts and that arrests further etching by HF residues by generating
adverse topographical changes (Figure 12) [136–141].

HF + Na2CO3 + Ca2CO3 → NaF + CaF2 + H2CO3 (8)
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Figure 12. FE-SEM image (×20,000) of LSC (Celtra Duo, Dentsply Sirona, Salzburg, Austria) after
etching with 5% hydrofluoric acid for 30 s and immersion in a neutralising solution for 1 min.

There is contradicting evidence in the literature concerning the impact of acid neu-
tralisation on mechanical and optical traits of ceramics and the strength of their bonding
to resin cements. Several studies have observed that neutralising etched ceramic surfaces
improves their wettability [89,142] and bond strengths [136,143], while others [140,144]
have refuted this observation, claiming that precipitated salts interfere with adequate resin
cement penetration and subsequent bonding.

• Salinisation: Silanes comprise a γ-methacryloxypropyltrimethoxysilane molecule that
enables bonding between LSC and resin surfaces via its bifunctional monomers; the
alkoxy group (methacryloxy, Si-O-CH3) reacts with the LSCs hydroxyl group (-OH),
forming silanol (Si-OH), and, on the silane monomer end, a methacrylate group
(C=C) reacts with the organic-matrix monomers of the resin, resulting in a bridging
siloxane compound (-Si-O-Si-O-) (Figure 13) that improves LSC wettability and resin
penetration [107,109,145]. To achieve the optimal bonding effects of a silane coating,
LSCs must be pre-treated, e.g., etched, to increase their roughness [107].

• Plasma treatment: When low-temperature atmospheric-pressure plasma is applied
to LSCs, it acts at a molecular level without violating bulk integrity, thereby decon-
taminating LSCs and increasing their surface energy. Moreover, the dry conditions
in which plasma treatment is carried out eliminate the risk of strength-limiting hy-
drolytic damage, yielding sufficient bond strength values for LSCs bonding to resin
cements [146–148].

• 10-methacryloyloxyidecyl-dihydrogenphosphate application (10-MDP): 10-MDP is a
phosphate ester monomer found in primers as well as resin cements that can chemically
react with zirconia by forming a bond with its hydroxyl groups. It has displayed
promising bonding performance when used following the silanisation of HF-etched
ZLS surfaces [149,150].
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Figure 13. Depiction of the formation of the bridging siloxane compound (-Si-O-Si-O-) as a result
of chemical interactions between the silane coupling agent and the etched silicate surfaces. The
methacrylate group (C=C) at the monomer end of the silane coupling agent reacts with the luting
agent’s organic matrix monomers via the breaking of its double bonds (dashed blue circle). Modified
from Benetti et al. [145].

7.1.3. Chemo-Mechanical Surface Treatments

LSC silanisation is facilitated via tribochemical silica-coating, “silicatisation”, through
a three-fold mechanism: Al2O3 particle airborne abrasion, silica-coated Al2O3 particle
airborne abrasion and silanisation (Figure 14) [151–154]. Upon contact with LSC surfaces,
the kinetic energy of silica-coated Al2O3 particles is transferred into thermal energy, thereby
melting the silica coating and fusing the former with the LSC surface, creating surfaces that
are susceptible for silane chemical interactions and, consequently, improving the strength
of bonding to the resin luting agents.
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the zirconia substrate. (c) Most alumina particles are removed completely (left); however, some
alumina fragments and unfused silica particles remain (right). Modified from Nagaoka et al. [154].
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7.2. External Surface Treatments

It is necessary to implement adequate intra-oral finishing and polishing regimens after
intra-oral adjustments are made to LSCs to yield a degree of clinically acceptable surface
smoothness [155,156]. Finishing and polishing can be executed lab-side or chairside and
the efficacy depends on various parameters such as the abrasive particle size, hardness
and shape, applied velocity and pressure, and the LSCs hardness and microstructure. The
glazing of LSCs can be accomplished by over-glazing, in which low-fusing glass coating is
applied and fired at lower temperatures (~700 ◦C) or via auto-glazing (self-glazing), where
a superficial layer of unfilled glass is created upon heating LSCs at a maximum temperature
(~940 ◦C) [157]. Glazing pastes, powder–liquid mixtures or sprays are commonly employed
in the over-glazing method, all of which comprise a wide range of chemical compositions,
some with added pigments or fluorescent agents, applied before the crystallisation of LSC
restorations to facilitate simultaneous glazing and crystallisation [158] Firing and cooling
protocols of LSCs also play a significant role in their optical and mechanical performance,
as altering the temperature gradients gives rise to residual stresses within the surface and
bulk of LSC structures [159].

8. Discussion and Conclusions

In terms of LSC restoration longevity, success rate is a measure of their endurance in
situ without the need for any interventions, survival rate is a measure of on-site permanence
despite the presence of clinically acceptable complications that may or may not involve
further amendments and failure rate is a measure of the technical, biological or aesthetic
complications that dictate the replacement of the restoration (e.g., fracture, marginal dis-
crepancy, debonding and discolouration) [160]. Multiple long-term studies have confirmed
the high success rate of lithium silicate ceramic restorations [161–167]; however, owing
to the recent availability of ZLS and ALD materials in the dental market, there is a lack
of long-term systematic data in terms of clinical longevity. Unfired fully crystallised ZLS
crowns (Celtra Duo, Dentsply Sirona, Salzburg, Austria) revealed high fracture rates (26%)
after one year of clinical function [168], whereas when the same material was exposed
to glaze firing, it exhibited a high success rate (98%) after 3 years [169]. Conversely, oth-
ers [170] reported similar failure rates in unfired and fired ZLS materials after one year
of clinical use. Moreover, a 5-year prospective clinical trial of ZLS partial crowns (VITA
Suprinity, VITA Zahnfabrik, Bad Säckingen, Germany) showed a success rate of 80% and a
91% survival rate [171]. In general, failure rates of chairside-fabricated ZLS crowns within
the first 3 years are comparable to those of lithium disilicate materials with similar clinical
durations [172]. In terms of pressable ZLS, the 2-year clinical performance of implant-
and tooth-supported three-unit FPD’s revealed that complications were mainly due to
shade mismatches (7%) and less likely to be mechanical failures (1%) [173]. Limited in vitro
studies have investigated the longevity of ALD restorations; a clinical study followed
the one-year clinical performance of restorations fabricated from Cerec Tessera (Dentsply
Sirona, Salzburg, Austria) and reported a 100% success rate [174]. On the other hand, others
have observed the clinical survival of implant-supported monolithic crowns fabricated
from n!ce (Straumann, Basel Switzerland) after 33 months and reported a 80.2% success
rate. Nevertheless, similar outcomes have been reported for predrilled blocks compared
with those of blocks that were manually drilled prior to their sintering [175].

The appealing aesthetics and sufficient strength of LSCs have significantly contributed
to their popularity in both the material development sector as well as the clinical application
sector. Nonetheless, certain material limitations remain, considering that the mechanical
requirements of LSC dental materials still cause them to be inadequate in delivering the
strength needs of multiunit prostheses within the molar region [176]. Recently, in vitro
experimentations of LSCs have explored the effects of the incorporation of lithium tantalate
(LiTaO3) and lithium niobate (LiNbO3) precipitations within the crystalline phase composi-
tion [8–10] on the radiopacity and hardness, wherein authors concluded positive findings.
Furthermore, novel LSC coatings such as DCMHotbond that are applied in thin layers
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(<20 µm) on the zirconia fitting surface permitting HF etching and subsequent salinisation
should, in theory, yield higher bond strengths. However, the technical sensitivity of this
approach and concerns about the thickness and durability of the coating layer have not yet
been resolved [11–13].

The improvement of LSCs in terms of dentistry via 3D printing should focus on op-
timising material composition and printability, refining the surface finish and detail, and
enabling customisation for patient-specific needs. Enhancements in additive manufactur-
ing could be tailored to focus on mechanical properties, biocompatibility and longevity.
Furthermore, the long-term cost-effectiveness and scalability of these materials are essential
considerations for the wider adoption of 3D-printed LSC restorations.
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