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Abstract: This paper addresses challenges and solutions in urban development and infrastructure
resilience, particularly in the context of Japan’s rapidly urbanizing landscape. It explores the inte-
gration of smart city concepts to combat land subsidence and liquefaction, phenomena highlighted
by the 2011 Great East Japan Earthquake. Additionally, it examines the current situation and lack of
geoinformation and communication technology in the concept of smart cities in Japan. Consequently,
this study employs advanced technologies, including smart sensing and predictive analytics through
kriging and ensemble learning, with the objective of enhancing the precision of geotechnical investi-
gations and urban planning. By analyzing data in Setagaya, Tokyo, it develops predictive models
to accurately determine the depth of bearing layers that are critical to urban infrastructure. The
results demonstrate the superiority of ensemble learning in predicting the depth of bearing layers.
Two methods have been developed to predict undetected geographic data and prepare ground reality
and digital smart maps for the construction industry to build smart cities. This study is useful for
real-time analysis of existing data, for the government to make new urban plans, for construction
companies to conduct risk assessments before doing their jobs, and for individuals to obtain real-time
geographic data and hazard warnings through mobile phones and other means in the future. To
the best of our knowledge, this is the first instance of predictive analysis of geographic information
being conducted through geographic information, big data technology, machine learning, integrated
learning, and artificial intelligence.

Keywords: ensemble learning; geoinformation and communication technology; geotechnical
information; predictive analytics; smart technologies; urban resilience

1. Introduction

Japan’s urban landscape, characterized by rapid urbanization and cutting-edge tech-
nological advances, is at the forefront of addressing complex challenges in the construction
and infrastructure sectors. In Japan, the significant structural damage often caused by the
settlement or tilting of structures, due to the liquefaction of saturated sandy soils during
large earthquakes, has long been a major concern in the field of geotechnical engineering,
as shown in Figure 1. The lateral ground spreading (Dh) due to liquefaction-induced lateral
spreading can occur on both gently sloping ground and fairly level ground with free face
(e.g., river or stream bank). Past earthquakes had devastating effects on infrastructure due
to lateral spread. Hence, the effectiveness of the available approaches for designing civil
engineering structures in areas prone to liquefaction-induced lateral spreading is directly
linked to the Dh value [1]. This phenomenon, which can have serious consequences, was
particularly documented in a seminal study [2–5]. The sudden instability of the ground
during such events can lead to the catastrophic destruction of buildings and infrastructures,
resulting in significant economic losses as well as the tragic loss of human life. This critical
issue was further highlighted in [6,7]. These concerns have led to a significant increase
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in the study and development of activities aimed at improving liquefaction resistance
and developing other mitigation methods. This focus was particularly highlighted by
the groundbreaking work of [8,9], which contributed to a better understanding of these
challenges [10].
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Figure 1. Illustration of liquefaction mechanism and an example of liquefaction disaster.

In response to these pressing issues, the concept of smart cities emerges. The smart city
aims at developing more scientifically, managing more efficiently, and living a better life. It
is supported by information technology and communication technology, and through trans-
parent and sufficient information acquisition, extensive and safe information transmission,
and effective and scientific information processing, improving urban operation efficiency,
improving public service levels, and forming a new form of city built on the basis of a
low-carbon urban ecosystem. With the rapid development of science and technology and
the advent of the information society, smart cities have become a new direction for urban
planning in the future, as a key strategy that combines the resilience of smart buildings and
the precision of smart sensing technologies. Smart buildings, using advanced materials
and structural designs, can withstand the damaging effects of subsidence and liquefaction,
thereby ensuring the integrity and durability of infrastructure assets. In addition, the use
of smart sensing technologies is revolutionizing the process of monitoring and assessing
geotechnical risks. Seamlessly integrated into the urban fabric, these sensors provide con-
tinuous, real-time data on critical factors such as ground movement and moisture levels,
which are essential for maintaining soil stability. In addition, the integration of smart grids
and infrastructure strengthens the resilience of urban spaces by optimizing the distribution
of resources and energy. This harmonious integration ensures the continued operation of
essential services in the aftermath of a disaster, facilitating rapid recovery. The collaborative
functioning of smart grids, infrastructure, and sensing technologies promotes a proac-
tive approach to disaster management and mitigation, moving from reactive measures to
preventive strategies.

Despite continued advances in monitoring and mitigation technologies for liquefaction
and subsidence, significant limitations remain. Challenges related to site availability, time,
funding, and physical constraints underscore the need for groundbreaking approaches.
Traditional empirical methods, while widely used, lack the precision and reliability re-
quired for robust risk management. In this light, the fields of geostatistics and machine
learning emerge as promising areas for improving predictive accuracy and understanding
of geotechnical phenomena. Techniques such as kriging [11,12], a sophisticated interpola-
tion tool, and ensemble learning [13,14], which enhances prediction through algorithmic
diversity, are at the forefront of spatial and temporal data analysis.

This study aims to transcend conventional geotechnical investigation technologies by
harnessing the dynamic potential of smart technologies. It seeks to refine the prediction
of unknown soil points or areas with unprecedented accuracy using existing datasets.
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By combining kriging and ensemble learning with the innovative application of smart
buildings, sensing technologies, and infrastructure, the study proposes a holistic approach
to address the problems of subsidence and liquefaction in Japan.

The Initial concept of a smart city has been recognized as a framework that builds on
advances in information and communication technology (ICT) to address the challenges of
urbanization. In a broader context, the vision of smart cities, underpinned by intelligent
infrastructure and data-driven insights, heralds a new era of urban development. People
are increasingly engaging with smart city platforms in multiple ways (e.g., mobile devices,
connected cars, and smart homes). However, the development of smart city frameworks
has not fully matured to take advantage of new and emerging data-driven technologies.
The advancement of new technologies such as big data, artificial intelligence (AI), machine
learning, deep learning, and the Internet of Things (IoT) will further shape the smart city
framework and revolutionize different sectors of smart cities [15,16]. Geoinformation and
communication technology (GeoICT) [17] is another emerging field that is increasingly
being used to promote urban sustainability and smart cities. GeoICT is of great importance
for the implementation of ICT, which includes geographic information science and systems
in smart cities to support analysis and decision making. Geospatial data and geographic
information are essential components for building smart cities in a fundamental way that
maps the physical world into a virtual environment as a reference framework. In the
digital city era, digital maps and geospatial databases have long been integrated into
government workflows for land management, urban planning, and transportation. People
have expected Geographic Information System (GIS) to be more powerful, not only as
an archiving and data management tool, but also as a spatial model to support decision
making in smart cities. Successful applications have been developed in private and public
organizations by using GIS as a platform for data integration, a system for geospatial
analysis, and a collection of models for visualization and decision making [18].

As Japan’s population declines and ages, various social problems are becoming more
serious, including the intensification of natural disasters and the spread of COVID-19.
Under the Vision for a Digital Garden City Nation, the Government of Japan aims to realize
a “fulfilled life” (well-being) by solving social problems and enhancing regional charm
through the use of digital technology, while capitalizing on the uniqueness of each region.
In this context, smart city initiatives aimed at improving well-being are finally entering the
implementation stage across the country. According to the Bureau of Digital Services in
Japan, only three of Tokyo’s 23 wards, Sumida, Itabashi, and Minato, have so far vigorously
promoted smart cities. In addition, through the existing data integration platforms in Japan,
the current situation only uses sensors and other real-time data collection. Therefore, how
to manage, analyze, and predict the large amount of geotechnical information collected by
numerous sensors in the cloud computing environment to achieve GeoICT is an urgent
issue to promote smart city management.

This study aims to go beyond conventional geotechnical investigation technologies by
exploiting the dynamic potential of smart technologies. It attempts to refine the prediction
of unknown soil points or areas with unprecedented accuracy using existing datasets.
By combining kriging and ensemble learning with the innovative application of smart
buildings, sensing technologies, and infrastructure, the study proposes a holistic approach
to the problems of subsidence and liquefaction in Japan, which will be used to facilitate
urban modeling and decision making.

2. Overview of Predictive Analytics for Bearing Layer Depth

In the field of urban development and smart city planning, the intricate interplay
between geotechnical engineering and urban infrastructure is of paramount importance.
This paper reports on a comprehensive study conducted in Setagaya, Tokyo, focusing
on the prediction of the depth of the bearing layer—a critical factor in the foundation
and stability of urban structures. By applying sophisticated methods such as kriging and
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ensemble learning, the study utilizes data from 433 geotechnical surveys and provides
insights into optimizing construction processes in the context of smart cities.

The foundation of this study is the use of data from the standard penetration test and
the mini-ram sounding test. Introduced in 1951, the standard penetration test has become a
staple of soil investigation methods due to its proven applicability to Japanese soil types
(excluding special soils). The test was originally designed to determine the relative density
of cohesionless soils, but its use has been extended to include the design of foundations
by determining the load and the required embedment of piles into the bearing strata. The
standard penetration test is performed by the use of the cable percussion drilling rig and its
accessories [19], quickly gained popularity for its effectiveness in evaluating soil suitability
for buildings, condominiums, and other civil structures. Complementing this, the mini-ram
sounding test uses half the impact energy of the automatic ram sounding test, providing an
alternative dynamic penetration testing method.

A key aspect of soil mechanics is the calculation of the pressure on the bearing layer,
which decreases with depth until it reaches a point where it becomes negligible. This critical
depth, beyond which the pressure can be ignored, defines the bearing layer—a key concept
in pile foundation design. Soil selection for the bearing layer is stringent, with viscous
soils with low compressibility, silty soils, and medium-density or dense sands favored due
to their superior bearing properties. The study underscores the importance of selecting
the appropriate soil type to ensure the stability and longevity of urban infrastructure, a
principle that is increasingly relevant in the context of smart cities, where efficiency and
sustainability are paramount.

The methodology of this study involved the construction of a predictive model
based on the results of geotechnical surveys at 433 locations within Setagaya, Tokyo. The
433 locations are shown in Figure 2. The specific latitude and longitude used are available
from the authors upon reasonable request. The model identifies layers with an N value
of 50 or more that extend more than 2 m as indicating the presence of a bearing layer. In
general, soil with an N value of 20 or more or rock is desirable as a foundation bearing
layer. When the N value is between 30 and 50, it can be said that the layer is suitable as
the foundation ground for civil engineering and building structures. If the N value is 50
or more, it can be judged to be very solid. It is a good bearing layer that can withstand
even large structures, such as high-rise condominiums. Therefore, in this study, if the N
value is greater than 50 or more within the range of more than 3 m in a row, it is called the
bearing layer [20]. Notably, the study introduces “bearing layer depth A” as a standardized
measure, adjusting for elevation differences by subtracting elevation from all bearing layer
depths. Elevation is mainly used to refer to the height above the Earth’s surface, and is
also called altitude above sea level, since the mean sea level is 0. This adjustment allows
for more accurate comparison and analysis across sites, thereby increasing the reliability
of predictions. The figures and tables presented in the paper, such as Figures 3 and 4 and
Table 1, detail the statistical analysis and data used to make the predictions for Setagaya,
Tokyo. The data of longitude, latitude, and bearing layer depth come from the actual data
provided by the company, and the elevation comes from the Japan Geographical Institute
map. Table 2 details the difference in the target variable used by two methods. These visual
aids not only illustrate the methodology and results, but also serve as a valuable reference
for future studies and applications in urban planning and smart city development.

In the broader context of smart cities, the implications of this study are many. Using
advanced predictive models, urban planners and engineers can more accurately assess the
suitability of sites for development and optimize the design and placement of buildings,
infrastructure, and public utilities. This proactive approach to urban development aligns
with the principles of smart cities, which emphasize the use of technology and data to
improve the efficiency, sustainability, and resilience of urban environments. In addition, the
study’s focus on the depth of the bearing layer aligns with the growing interest in sustain-
able building practices. By ensuring that urban structures are built on solid foundations,
cities can reduce the risk of structural failure, minimize maintenance costs, and extend the
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life of buildings and infrastructure. This not only contributes to the economic viability of
urban projects, but also supports the environmental and social pillars of sustainability.

The study presented in this paper provides valuable insights into the prediction of
bearing layer depth in Setagaya, Tokyo, and demonstrates the potential of kriging and
ensemble learning methods in improving urban construction practices. As cities worldwide
strive to become smarter and more sustainable, the integration of geotechnical engineering
principles with advanced predictive analytics will play a critical role in shaping the urban
landscapes of the future.
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Figure 3. Histogram of bearing layer depth A for Case 1.
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Table 1. Data conditions used in predicting bearing layer depth for Setagaya, Tokyo.

Area (km2)
Number of Data

(pcs)
Data Density

(pcs/km2)
Standard Deviation

of Data

Setagaya 58.1 433 7.46 9.53

Table 2. Differences in target variable used by two methods.

Case Target Variable Actual Value of Target Variable

Case1 Bearing layer depth A Bearing layer depth—Elevation
Case2 Bearing layer depth Bearing layer depth

3. Models Used in Predictive Analysis

In the rapidly evolving landscape of urban development, smart cities have emerged
as a beacon of innovation, using technology to improve infrastructure, sustainability, and
living conditions. The new generation of information technology represented by the
mobile Internet can promote the gradual formation of a smart city. A critical aspect of this
transformation lies in the careful design and construction of urban infrastructure, where
the stability and safety of buildings depend on the accurate prediction of geotechnical
properties, such as the depth of the bearing layer. This study explores the application of
advanced predictive analytics, specifically kriging and ensemble learning, to predict the
bearing layer depth in Setagaya, Tokyo, using a dataset of 433 data points.

Kriging, a geostatistical method named after South African engineer D.G. Krige,
provides a sophisticated approach to spatial interpolation. By incorporating the geographic
coordinates of the data points, this method makes it possible to create a spatial model
that predicts the depth of the bearing layer at various locations in Setagaya, Tokyo. The
essence of kriging lies in its ability to provide not only an estimate, but also a measure of
the uncertainty of the estimate, making it invaluable for urban planning in smart cities,
where risk assessment is critical. Ordinary kriging is by far the most popular method,
partly because it is robust with respect to departures from the underlying assumptions [21].

Ensemble learning, on the other hand, uses multiple machine learning algorithms
to produce weakly predictive results based on features extracted through a variety of
projections on the data and fuse the results with various voting mechanisms to achieve
a better performance than that obtained by any constituent algorithm alone [22]. By
aggregating predictions from different models, ensemble learning reduces the likelihood of
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overfitting and increases the robustness of the prediction. In this study, ensemble learning
used the same input variables, latitude and longitude, to predict bearing layer depth,
illustrating the method’s versatility and power in handling complex urban datasets.

The comparative analysis of the two methods, kriging and ensemble learning, focused
on the prediction accuracy against measured values and the mean prediction error at
validation points. Such an evaluation is critical in urban planning contexts, where the
accuracy of predicting geotechnical properties directly impacts the feasibility, safety, and
cost-effectiveness of construction projects.

Smart cities, with their emphasis on data-driven decision making, will benefit signifi-
cantly from advances in predictive analytics, as demonstrated in this study. In addition,
the horizontal analysis between Case 1 (kriging) and Case 2 (ensemble learning) provided
insights into the suitability of each method for urban geotechnical prediction; Table 3
details the differences between Case 1 and Case 2. This analysis is not only academic, but
has practical implications for urban developers, engineers, and policy makers involved in
smart city projects. The method that exhibits higher accuracy and lower average error can
inform more reliable geotechnical investigation protocols, contributing to safer and more
sustainable urban environments. Bagging is conducted with spiders (Anaconda 3).

Table 3. Explanatory variables and target variable used in two cases.

Case Explanatory Variables Target Variable

Case 1
Bearing layer depth A

Bearing layer depth ALatitude
Longitude

Case 2

Bearing layer depth

Bearing layer depthLatitude
Longitude
Elevation

The implications of this study extend beyond the boundaries of Setagaya, Tokyo or
even Tokyo. As cities around the world strive to become smarter by integrating technology
into every facet of urban life, the methods validated by this study provide a blueprint for
using predictive analytics in urban planning. By accurately predicting the depth of bearing
layers, city planners can optimize the location and design of buildings and infrastructure,
mitigate risks associated with soil instability, and ensure the long-term resilience of urban
developments. This study exemplifies the synergy between geotechnical engineering
and smart city concepts and highlights the potential of kriging and ensemble learning
to improve urban infrastructure projects. As smart cities continue to evolve, the use of
data-driven methodologies will be paramount in addressing the complex challenges of
urban development, ensuring that cities become not only smarter, but also safer and more
sustainable for future generations.

3.1. Kriging

Smart cities represent the pinnacle of urban planning and development, where tech-
nology, data, and efficient resource management converge to create environments that are
sustainable, livable, and technologically advanced. At the heart of smart cities is the need
for accurate, reliable data about the urban landscape, its resources, and the environment.
Geostatistics provides a powerful toolkit for analyzing and predicting variables across
space and time, which is essential for the complex task of urban planning and management
in smart cities.

Kriging comes from the earth sciences and has been progressively developed since the
1950s along with the discipline called geostatistics [23]. Using geology data, researchers
established geology models primarily based on statistical methods, which produced geo-
statistics [24,25]. In land resource inventories, kriging and its variants have been widely
recognized as primary spatial interpolation technologies from the 1970s. In the 1990s, with



Smart Cities 2024, 7 1096

the emergence of GIS and remote sensing technologies, soil surveyors became interested in
using exhaustively mapped secondary variables to directly map soil variables. The first
applications were based on the use of simple linear regression models between terrain
attribute maps and soil parameters. In the next phase, the predictors were extended to a
set of environmental variables and remote sensing images [26,27]. This evolution reflects
a broader trend toward comprehensive, data-driven approaches to urban planning and
resource management. By enabling precise mapping of soil variables, terrain attributes, and
other environmental factors, kriging facilitates the detailed, accurate modeling of urban
spaces that is essential for smart city development.

In this study, ordinary kriging is utilized, which imposes constraints on weighting
and can relatively express spatial random fields. The method predicts the bearing layer
depth. The research in [28] defines a functional random variable as a random variable
taking values in a space of functions [29]. In this paper, at a certain point x, the estimated
value of the target value ŵ(x) is generally the measured value at n points xi around it. It is
given as the weighted average of ŵ(x) (i = 1, 2, · · · , n), as shown in Equation (1) [30,31].

ŵ(x) = ∑n
i=1 biw(xi) (1)

The ordinary kriging used in this study is an example of integrating geostatistical
methods with smart city technologies. By imposing constraints on the weighting and
expression of spatial random fields, ordinary kriging allows for the accurate prediction
of bearing layer depths, a critical factor in urban infrastructure development. The trans-
formation of latitude and longitude data into Transverse Mercator coordinates for kriging
prediction exemplifies the methodological precision required for smart city planning. The
orthogonal UTM coordinate system, by representing the spherical Earth in a planar view,
ensures accurate distance representation, essential for the meticulous design and layout of
urban infrastructure [32]. The kriging procedure is depicted in Figure 5.
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The application of kriging to the prediction of bearing layer depth illustrates the utility
of the method in a smart city context. By converting geographic data to UTM coordinates
and incorporating elevation conditions, this study demonstrates how geostatistical pre-
dictions can inform urban infrastructure development. The resulting three-dimensional
map of the predicted distribution of bearing layer depth provides a fundamental tool for
planners and engineers to make informed decisions in the construction of buildings, roads,
and other critical infrastructure components.
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The impact of accurate geostatistical predictions extends beyond infrastructure de-
velopment to include environmental management, resource allocation, and emergency
response planning. In smart cities, where efficiency and sustainability are paramount, the
ability to accurately predict environmental and spatial variables is invaluable. It informs the
deployment of resources, the management of environmental challenges, and the planning
of future development with an unprecedented level of precision and foresight.

The integration of geostatistics, and kriging in particular, into the fabric of smart cities
represents a significant advancement in urban planning and management. By enabling
accurate spatial predictions and analysis, these methods provide the data-driven foundation
necessary for the efficient, sustainable development of urban environments. As smart
cities continue to evolve, the role of geostatistical methods will undoubtedly expand,
driving innovation in urban planning, infrastructure development, and environmental
management. The case study presented in this analysis, focusing on the prediction of
bearing layer depth, exemplifies the practical applications and potential of kriging in
the context of smart cities, underscoring its importance in the quest for more livable,
technologically advanced urban spaces.

3.2. Ensemble Learning

Ensemble learning methods utilize a variety of machine learning algorithms that aim
to produce weakly predictive results through a variety of data projections. These results
are then aggregated using various voting mechanisms to outperform the performance
achievable by each individual algorithm [33]. This strategy can be broadly categorized into
three different types. Among them, our study highlights the use of the bagging method
due to its effectiveness and simplicity.

The bagging technique, a cornerstone of ensemble learning, involves generating
multiple subsets of the original training dataset through random sampling. These subsets
are then used to train basic models in parallel, and their outputs are integrated to form a
comprehensive predictive model [34]. Bagging is characterized by its simple, yet powerful
approach of combining multiple basic learners to construct a highly accurate predictive
model [35].

The procedural essence of bagging is illustrated in Figure 6, which shows the use of
decision trees for each bagging-derived data segment. In addition, a decision tree diagram
is shown in Figure 7, highlighting the structural foundation of the method. Prior to actual
model assembly, hyperparameter optimization is meticulously performed, identifying the
optimal model configuration that achieves peak accuracy with 91 decision trees. Decision
tree is the most commonly used algorithm because of its ease of implementation and
because it is easier to understand compared to other classification algorithms [36,37].
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Building a predictive forest by bagging involves several key steps. First, “sample
data” are generated by randomly selecting from the training dataset, allowing for data
reuse across different samples. Among the 433 data, 70% are used for training and 30%
are used for verification. Next, 91 decision trees are cultivated using the sample data, and
their predictions are averaged to derive the final prediction. This averaging process follows
Equation (2). The values of the hyperparameters are shown in Table 4.

Y =
1
N

N

∑
n=1

Xn (2)

where Y is the predicted value of the forest, Xn is the prediction of an individual decision
tree, and N is the total number of decision trees.

Table 4. The values of tuned hyperparameters of bagging in Case 2.

Hyperparameters Value

N_esimators 91
Max_depth 1

Max_features None

Cross-validation is a data resampling method used to assess the generalization ability
of predictive models and to prevent overfitting [38,39]. This study uses k-fold cross-
validation to examine the performance of the model built with certain data test. The k
value used in this k-fold cross-validation is 10, with the review of 433 data test as testing
data and using 10-fold cross-validation so that the prediction will be repeated 10 times [40].
As depicted in Figure 8, testing data are randomly extracted, while the remaining data are
divided into training and validation sets.

In smart cities, the implications of using ensemble learning, particularly the bagging
technique, are profound. By harnessing the collective intelligence of multiple predictive
models, city officials can achieve unprecedented accuracy in predicting and managing city-
wide systems. Whether optimizing traffic flow, improving energy efficiency, or enhancing
public safety, the strategic application of ensemble learning paves the way for smarter,
more responsive urban environments. As smart cities continue to evolve, the integration
of advanced ensemble learning techniques will play a critical role in shaping their future.
By bridging the gap between complex data patterns and actionable insights, ensemble
learning is a testament to the transformative power of machine learning in the quest for
more livable, efficient, and sustainable urban landscapes.
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4. Results and Discussion

In the context of smart city development, the integration of advanced spatial anal-
ysis techniques can significantly improve urban planning and management. This study
focuses on two case studies in Setagaya, Tokyo, where the kriging method and the bagging
algorithm are used to predict the distribution of bearing layers, a critical factor in urban
infrastructure development. The accuracy and effectiveness of these methods are crucial
for smart city applications, including urban planning, environmental monitoring, and
infrastructure management.

4.1. Results of Cases 1 and 2

In the first case study, the kriging method, a geostatistical technique, was used to
predict the distribution of bearing layers at 10 locations in Setagaya, Tokyo. Actual mea-
surements at these locations provided a basis for evaluating the accuracy of the predictions,
with error values calculated between the predicted and actual values. The results, detailed
in Table 5, underscore the accuracy of the method in spatial prediction. Figure 9 illustrates
the distribution of bearing layers, providing a visual representation of the predicted values
over the area. To understand the relationship between data density and prediction error,
we calculated the correlation coefficient (r) using Equation (3).

r =
sxy

sx × sy
=

1
n ∑n

i=1 (xi − x)(yi − y)√
1
n ∑n

i=1(xi − x)2 ×
√

1
n ∑n

i=1(yi − y)2
(3)

where r is the correlation coefficient between x and y, sxy is the covariance of x and y, sx is
the standard deviation of x, sy is the standard deviation of y, n is the total number of data,
xi and yi are the value of ith data, respectively, x is the average of x, and y is the average of
y [41].

This statistical analysis revealed a correlation coefficient of −0.62, indicating a moder-
ate inverse relationship between data density and error. This finding suggests that areas
with denser data points tend to have lower prediction errors, highlighting the importance of
data quality and quantity in spatial analysis. The proximity of data points to the prediction
location plays a critical role, with more neighboring data points contributing to higher
accuracy. Thus, the quantity of data existing within a 1 km radius (as depicted in Table 6) is
reassessed. This principle is visualized in Figures 10 and 11, which show the data density
around a given point and the correlation between density and error, respectively.
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Table 5. Average error of prediction of bearing layer depth for ten locations in Case 1.

Prediction Location Error (m)

1 1.46
2 1.78
3 1.33
4 4.88
5 3.23
6 3.3
7 2.15
8 7.13
9 3.53
10 2.63

Average error (m) 3.14
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Figure 9. Prediction map of bearing layer depth A by using kriging in Case 1.

Table 6. Comparison of amount of data within 1 km with ten prediction locations as center in
Setagaya, Tokyo.

Prediction Location Error (m) Within 1 km Surrounding Area
Amount of Data (Individual)

1 1.46 32
2 1.78 42
3 1.33 43
4 4.88 12
5 3.23 27
6 3.3 49
7 2.15 32
8 7.13 13
9 3.53. 21
10 2.63 34

Average error (m) 3.14
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Figure 11. Relationship between number of data existing within 1 km of center of prediction point
and average error.

The second case study advances the application of machine learning through the
bagging algorithm by incorporating multiple predictors such as latitude, longitude, and
elevation along with geotechnical data from 433 locations. This ensemble learning method
aims to improve the prediction accuracy of bearing layer depths, a critical component in
urban infrastructure planning. The error analysis shown in Table 7 and the prediction
accuracy shown in Figure 12 demonstrate the effectiveness of the bagging method. The
proximity of the data points to the diagonal in Figure 12 indicates high accuracy, with an
average error value of 0.86 m, demonstrating the potential of machine learning to improve
urban planning processes.
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Table 7. Average error of prediction of bearing layer depth for ten locations in Case 2.

Prediction Location Error (m)

1 0.75
2 0.53
3 3.41
4 1.95
5 0.09
6 0.22
7 0.02
8 0.1
9 0.26
10 1.26

Average error (m) 0.86

4.2. Comparison of Average Error Values for Kriging and Ensemble Learning

In the context of the advancement of smart cities, the implementation of accurate and
efficient predictive modeling techniques is crucial for the development and maintenance
of urban infrastructure. As smart cities leverage data and technology to improve the
efficiency of services and meet the needs of residents, the accuracy of predictive models
such as kriging and ensemble learning, especially bagging, is critical for planning and
operational efficiency. This analysis focuses on comparing the average error values for
kriging and bagging methods used to predict the depth of the bearing layer in Setagaya,
Tokyo, providing insights into their suitability for smart city applications.

The prediction results for both the kriging and bagging methods are meticulously
documented in Table 8, which shows that the prediction model using bagging outperforms
kriging in terms of accuracy. And it used three matrices, MAE, MSE, and RMSE, to
evaluate the prediction accuracy of the models in Cases 1 and 2. MAE is the average
of the absolute values of the errors, while MSE is a metric that represents the average
squared difference between the predicted values and the actual values in a dataset. The
lower the MSE, the better a model fits a dataset. RMSE is a metric that represents the
square root of the average squared difference between the predicted values and the actual
values in a dataset. The lower the RMSE, the better a model fits a dataset. According
to these matrices, it can be concluded that the prediction model built using bagging is
higher. This discrepancy in performance prompts a deeper analysis of the advantages and
disadvantages of each method, particularly in the context of their application in smart city
planning and development.
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Table 8. Kriging method and bagging prediction results of bearing layer depth.

Error of Case 1 (Kriging) Error of Case 2 (Bagging)

1 1.46 0.75
2 1.78 0.53
3 1.33 3.41
4 4.88 1.95
5 3.23 0.09
6 3.3 0.22
7 2.15 0.02
8 7.13 0.1
9 3.53. 0.26
10 2.63 1.26

Mean error (m) 3.14 0.86
MAE 3.14 0.86
MSE 12.7 1.8

RMSE 3.56 1.34

The kriging method, although widely used for its interpolation capabilities, has sev-
eral limitations:

(1) Sensitivity to the number and distribution of data points: The performance of
kriging is highly dependent on the availability and spatial arrangement of sam-
pling points. A sparse or uneven distribution can significantly affect the model’s
interpolation accuracy.

(2) Error increases with interpolation distance: As the distance over which interpolation
is performed increases, the potential for error accumulation increases, potentially
limiting the effectiveness of the method over larger areas.

(3) Over-smoothing in the presence of spatial variability: Kriging can over-smooth data
and fail to capture subtle but important variations across terrain surfaces, which is
critical for accurate urban planning in smart cities.

These limitations highlight the need for a dense, uniformly distributed dataset when
using kriging for predictive modeling in urban areas. However, the case of Setagaya, Tokyo
illustrates the challenges that arise when the data are sparse and unevenly distributed at
the depth of the bearing layer, which leads to compromised prediction accuracy with the
kriging method.

Conversely, bagging has several advantages that are well-suited to the needs of pre-
dictive modeling in smart cities:

(1) Strong resistance to noise: The method’s inherent robustness to noisy data, due to
random sampling and optimal feature selection, enhances its reliability in urban
data analysis.

(2) Parallel computing capability: Bagging’s design allows for independent training
of basic learners, facilitating parallel processing that can significantly speed up the
model training process—a critical factor in the fast-paced environment of smart
city development.

(3) Applicability to High-Dimensional Data: Without the need for feature selection,
bagging’s ability to process high-dimensional data makes it particularly suitable for
the complex datasets typical of urban environments.

(4) Insensitivity to missing features: The method’s tolerance for missing data points
ensures that predictive models remain effective even when datasets are incomplete, a
common occurrence in urban data collection.

Given these advantages, bagging emerges as a more suitable method for predicting
bearing layer depth in smart cities, where data complexity, dimensionality, and quality
can vary widely. The higher accuracy of bagging in predicting the bearing layer depth in
Setagaya, Tokyo underscores its potential to enhance the predictive modeling capabilities
of smart cities, ensuring more informed decision making and efficient urban management.
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The comparison between kriging and bagging in the context of predicting bearing
layer depth in Setagaya, Tokyo reveals significant differences in performance, with bagging
showing superior accuracy. This finding suggests that ensemble learning methods, such
as bagging, hold promise for improving the data analysis framework of smart cities. By
leveraging these advanced predictive models, smart cities can optimize their infrastructure
and services, ultimately improving the quality of life for their residents.

4.3. The Relationship between Geological Information Prediction and Smart Cities

The construction of GeoICT requires the availability of both above-ground and un-
derground spatio-temporal data resources. In addition, a big data platform requires
three-dimensional underground spatial data and the quantity, quality, and spatio-temporal
distribution of various natural resource elements to support natural resource management
needs. Urban geology involves the study of urban underground space, resources, environ-
ment, disasters, ecology, and other factors. It uses geological theory and technical methods
to conduct comprehensive analysis and evaluation, determine the status of urban natural re-
sources, evaluate the resource and environmental carrying capacity of urban development,
and serve as a basis for urban planning, construction, and operation management.

In this study, the geological data and results generated by the geological survey in Seta-
gaya were collected, processed, verified, and stored in a “data center”. The two technologies
were comprehensively used for prediction, and three-dimensional visual prediction results
were obtained. Both case studies contribute to the concept of smart cities by providing
methods for accurate urban mapping and planning, as shown in Figures 13 and 14. The
ability to accurately predict the subsurface is of inestimable value for infrastructure de-
velopment, risk management, and environmental protection in urban areas. The accuracy
of spatial predictions has a direct impact on urban planning, infrastructure development,
and environmental management. By leveraging accurate data and advanced analytical
technologies, cities can optimize resource allocation, mitigate risks associated with urban
development, and improve sustainability.

The goal of smart cities is not only to improve predictive accuracy, but also to facilitate
real-time monitoring and management of the urban environment. In accordance with
the requirements of urban economic development, professional geological applications
are customized and developed to provide geological information services. These services
support the development planning of urban underground space resources, the delineation
of urban production, living, and ecological space, and the site selection of major urban
projects. As shown in Figure 15, geological information is integrated into the core processes
of urban planning, construction, and management as a key component of smart cities. The
main challenge in establishing this process is the availability of comprehensive data, but it
is not feasible to measure all data points. Consequently, in order to obtain all the data, it is
essential to predict the location intelligence of unknown points. Therefore, this study is of
paramount importance to obtain a complete data center. In addition, machine learning can
improve the resilience of infrastructure in smart cities in a number of ways. These include:

(1) Predictive maintenance: Machine learning models analyze sensor data to predict
equipment failures and prevent outages.

(2) Risk assessment: Machine learning algorithms assess risks associated with natural
disasters, climate change, and aging infrastructure.

(3) Early warning systems: Machine learning-based systems can detect anomalies (such
as structural damage) and issue timely warnings.

Recognizing the critical role of machine learning in infrastructure resilience is paramount
to creating more livable, sustainable, and efficient cities. In the future, the integration
of more sophisticated machine learning algorithms and the incorporation of additional
variables such as soil composition, water table levels, and urban density could further
refine predictions. It is paramount that government agencies, research institutions, and
technology companies work together to advance smart city initiatives. By sharing data,
expertise, and resources, stakeholders can drive innovation and develop more resilient,
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sustainable, and livable urban environments. The application of kriging and bagging
algorithms in Setagaya, Tokyo demonstrates the value of advanced spatial analytics in the
context of smart cities. These case studies provide insights into the potential of geostatistical
and machine learning techniques to improve urban planning, infrastructure development,
and environmental management. As cities around the world strive to become smarter and
more sustainable, the integration of these techniques will be paramount in shaping the
urban landscape of the future.
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5. Conclusions

Smart cities represent the pinnacle of urban development and innovation, integrating
technology into the fabric of urban planning and management to create more efficient,
sustainable, and livable communities. At the heart of smart city advancements is the critical
role of predictive analytics, which uses data to predict future scenarios and inform decision-
making processes. This study explores the development and establishment of a highly
accurate prediction method for unknown points or areas in new territory, demonstrating
the potential of smart cities to harness data for urban improvement.

The effectiveness of this prediction was validated using two sophisticated methods,
kriging and ensemble learning, applied to data derived from ground survey results. The
study achieved remarkable results, highlighting the capabilities of these methods in urban
context applications, particularly in smart cities. Here is a detailed look at the results and
their implications for smart cities:

(1) The study demonstrated highly accurate predictions of bearing layer depth by learn-
ing critical geographic and geological variables such as “latitude”, “longitude”,
“elevation”, and “bearing layer depth”. This accuracy is critical for smart cities,
where understanding the geotechnical properties of the ground can significantly
impact infrastructure development, from building construction to transportation
network design.

(2) Kriging analysis revealed a strong correlation between the size of the dataset used
to create the prediction map and the accuracy of the predictions. This finding is
particularly relevant to smart cities, as it underscores the importance of comprehensive
data collection and analysis in improving prediction accuracy, thereby facilitating
better urban planning and management.

(3) The study found that when predicting geotechnical survey results using bagging, a
technique in ensemble learning, the small variation in the bearing layer depth of the
training data significantly affected the accuracy of the predictions. For smart cities,
this finding suggests that even small discrepancies in data can affect the results of
predictive models, emphasizing the need for accurate data collection and processing.

(4) A comparative analysis between kriging and bagging showed that for the same
amount of training data, the prediction model for bearing layer depth was more
accurate when bagging was used. This finding provides valuable guidance to smart
city planners and developers in selecting the most effective predictive models for their
projects to ensure optimal outcomes.

This study suggests areas for future improvement to further enhance the accuracy of
predictions that are critical to the development and management of smart cities:

(1) The study used a Gaussian semi-variogram in kriging, which assumes a gradual
increase in predicted values. However, kriging offers several models, including spher-
ical, exponential, and linear. Future research should quantitatively determine which
prediction model achieves the highest accuracy by considering these other models.

(2) For ensemble learning, the study suggests considering more influencing factors and
identifying the impact each factor has on prediction accuracy. By creating new models
that incorporate a broader range of variables, the data analysis platform can further
improve predictive accuracy.

(3) While promoting the precision of prediction models, the corresponding software is
formed to promote the active use of data by all people, hoping to use data to solve
problems and realize a data-driven society.
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