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Abstract: Recently, new surface treatments for the corrosion protection of Al alloys by forming
self-healing layers have attracted the attention of many researchers. The authors of this paper have
previously developed self-healing polyurethane coatings with micro-capsules containing healing
agents and porous anodic oxide films filled with healing agents. In this study, self-healing coatings
consisting of an outer electrodeposited epoxy resin layer and an inner porous anodic oxide layer with
healing agents were developed for the corrosion protection of Al alloys. The corrosion protection
abilities of the self-healing coating were shown in Cu2+/Cl− solutions after damaging with indenters
and were affected by freezing treatments and the tip angles of the indenter.
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1. Introduction

Galvanized steels have domestically been commonly used as automobile body com-
ponents [1–3], and they are going to be replaced with Al alloys because they have low
densities, low costs, and excellent processabilities [4–6]. The corrosion protection abilities of
Al alloys are too low for them to be used as industrial products for long-term applications
because the corrosion of Al alloy products causes the deterioration of their performances
and safeties. Therefore, surface treatments, including anodizing, chemical treatments,
organic coating, metal plating, and thermal spraying, are applied to improve the corrosion
protection of Al alloy products [7–10].

However, when the films formed by the surface treatment are damaged physically and the
substrate is exposed to the surroundings, the local corrosion of Al soon occurs [11–15]. From
this viewpoint, “self-healing coatings” that are automatically healed without maintenance
have attracted a lot of attention from many researchers.

Firstly, a self-healing coating was proposed by S. R. White et al. [16]. Capsules con-
taining dicyclopentadiene, as a liquid repairing solution, and a catalyst for the promotion
of the repairing of the coating were dispersed in a coating. When cracking of the coating
occurs due to physical damage, the cracking breaks the capsules. The repairing solution
flows from the capsules into the cracks and fills the cracks by capillary action. Then, the
repairing solution reacts with the catalyst to form a structure with a cross-linked network
at the damaged area of the coating.

Lingwei Ma et al. [17] successfully produced a novel core–shell nano-container con-
sisting of a core of TiN nanoparticles and a shell of mesoporous silica. The core–shell
nano-container was incorporated into a thermo-responsive shape memory polymer (SMP)
mixed with an epoxy coating to provide ultra-fast self-healing properties and corrosion
protection. SiO2 core–shell nano-containers also served as a reservoir for benzotriazole
(BTA)-based corrosion inhibitors. The BTA-based corrosion inhibitor was efficiently re-
leased by the photothermal effect. The heat generated by the photothermal effect of the TiN
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core induced the shape memory effect of the coating matrix, and this induced the damage
closure effect.

The authors of this study recently developed self-healing polyurethane coatings with
micro-capsules containing healing agents. The healing mechanism is similar to that described
above [18,19]. In this case, the capsules consist of a polyurethane shell and a diisocyanate
core [20,21]. When the capsules are broken, the diisocyanate flows into the damaged area and
reacts with moisture in the air to form a polyurethane-like polymer Equation (1). Finally, the
polymer covers the substrate exposed by the damage to the coating.

OCN-R-NCO + H2O→ H2N-R-NH2 + CO2
Healing Agent
(Diisocyanate)

OCN-R-NCO + H2N-R-NH2 → -CONH-R-NH-

(1)

However, the synthesis of the capsule includes relatively complex processes and gives
low yields of capsules. In order to solve this problem, the authors developed a new type
of self-healing coating [22,23]. In the new process, Al alloys are anodized in oxalic acid
solutions to form porous anodic oxide films [24–30], and the pores of the anodic oxide film
are filled with healing agents. Then, a polyurethane coating is spread on the specimen
(Figure 1a). When the specimen is damaged, the porous oxide film is broken simultaneously,
and the healing agent filling the pores flows into the damaged area (Figure 1b). By reacting
the healing agents with moisture in the air, a self-healing structure is formed on the exposed
substrate (Figure 1c).
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Figure 1. Schematic illustration of self-healing mechanism of coatings consisting of an outer
polyurethane coating layer and an inner anodic oxide layer with healing agents. (a) Injection of
healing agents into nano-pores of porous anodic oxide film and coating of outer polyurethane layer.
(b) Flowing of healing agents into cracks at damaged areas. (c) Formation of self-healing structure to
cover the exposed substrate.

When Al alloys are used as automobile body components, a typical surface treatment
that is applied to the components includes electrodeposition. Thus, developments in
electrodeposited coatings with self-healing properties for the corrosion protection of Al
alloys is significantly important for industrial purposes. However, it is unclear whether
the technique of the formation of a self-healing polyurethane coating can be applied to
that of the electrodeposition of an epoxy coating. In order to keep the corrosion protection
abilities high after damage to the coating occurs, the self-healing structure formed at the
damaged areas must firmly adhere to the coating. The self-healing structure consisting of
a polyurethane-like polymer firmly adheres to the polyurethane coating, but it may not
adhere to the electrodeposited epoxy resin coating.



Corros. Mater. Degrad. 2023, 4 518

In cold regions where the outdoor temperature drops to lower than 0 ◦C in winter, rain
freezes on the body of automobiles, and the ice may cause physical damage to the body,
especially at the healed areas due to volume expansion through phase transformation.

In the present study, the effects of the tip angle of indenters and freezing treatments
on the self-healing properties for the corrosion protection of Al alloys covered with elec-
trodeposited epoxy resin coatings on porous anodic oxide films filled with healing agents
are examined by electrochemical impedance spectroscopy (EIS) and scanning electron
microscopy (SEM).

2. Materials and Methods
2.1. Formation of Self-Healing Electrodeposition Coating

Specimens of 1050 Al alloy plates (Fe: 0.25, Si: 0.15, Cu: 0.05, Al: 99.5 mass%) with a
1.5 mm thickness were cut into 20× 20 mm specimens. The specimens were electropolished
in a 78 vol% CH3COOH/22 vol% HClO4 solution with a constant voltage of 30 V for 30 s
as a pretreatment. Then, the pretreated specimens were anodically oxidized in a 2 wt%
(COOH)2 solution with a constant current density of 200 A m−2 at 313 K for 60 min to form
porous oxide films with a thickness of 30 µm on the specimens.

After anodizing, the specimens were immersed in isophorone diisocyanate (IPDI), a
coating-healing agent, for 100 min under supersonic vibration to fill the pores with this
agent. On the surface of the specimens, a prepolymer mixture of polyurethane and ethylene
glycol at a mass ratio of 75:10 was spread to form a thin polyurethane coating, covering the
healing agent in the pores of the porous films. Then, all the specimens were aged for 48 h
in an air atmosphere at room temperature.

The prepolymer was produced by the following procedure. First, 2,4-tolylene-diisocyanate
(TDI) was reacted with glycerol at a mass ratio of 1:6 in cyclohexanone at 348 K for 24 h under
agitation at 600 rpm. In order to remove water from this solution, N2 gas was blown into
the solution during the first 1 h.

Finally, electrophoretic deposition was carried out in a cationic electrodeposition
coating solution (NIPPON PAINT AUTOMOTIVE COATINGS CO., LTD., Hirakata, Japan),
which is used as a primer coating for automobile bodies, at a constant potential of −20 V
for 60 min to obtain an epoxy resin coating with a thickness of 30 µm on the specimens
after filling the pores with healing agents, and then aging was carried out for 24 h in an air
atmosphere at room temperature.

2.2. Scratching of Coating Films with Indenters and Freezing Treatments

In order to evaluate the self-healing properties of the electrodeposited coatings, 5 lines
of scratches were formed on the specimens with the coated layer using two types of
indenters. One was a cutter-type indenter with a tip angle of 50◦, and the other was a
conical-type one with a tip angle of 120◦. The depth of the scratches was adjusted to about
45 µm by controlling the load (see Figure A1).

After aging for 24 h, 0.16 mL of Milli-Q water was dropped onto the scratched surface,
and the specimens were kept at −25 ◦C for 5 h and then kept at 20 ◦C for 3 h. The time
transients from room temperature to −25 ◦C and from −25 ◦C to 20 ◦C were one hour.
During the freezing treatment, water on the specimens was present in a liquid phase for
about 3 h and in a solid phase for about 5 h. The surface of specimens before/after the
freezing treatments was observed by SEM.

2.3. Evaluation of Corrosion Protection of Damaged Specimens with Self-Healing Coating

In order to examine the corrosion protection of the specimens with the coating, cross-
shaped scratches were formed on the specimen surfaces by two types of indenters with
50◦ and 120◦ tip angles, and then the specimens were immersed in a 1.57 × 10−3 M-
CuSO4/0.57 M KCl solution for 24 h at room temperature. After the corrosion tests,
the specimens were immersed in a commercially available coating remover (Shimizu
Corporation: Non-Chrome W) at 75 ◦C for 1–2 h to remove the electrodeposited coating
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and then immersed in a 10 wt% H3PO4/4 wt% K2CrO4 solution for 40 min at 363 K to
remove deposited Cu particles, corrosion products, anodic oxide films, and healing agents.
The surface morphology of the specimens after the corrosion test and after immersion in
the coating remover and the H3PO4/K2CrO4 solution was observed by SEM. In the present
study, 4 specimens were prepared for each condition in order to examine the reproducibility
of the SEM images. There was no significant difference among the samples under each
condition. The SEM images shown here are typical ones.

The corrosion protection of the damaged specimens with the self-healing coating was
also evaluated by EIS in a boric/borate buffer solution (pH 8.4) after bubbling N2 gas for
20 min. Pt mesh and Ag/AgCl/saturated KCl electrodes were used as the counter and
reference electrodes, respectively. A potential amplitude ranging from 50 mV to a rest
potential of −550 mV (vs. R.E.) was applied in the frequency range between 1 × 10−1 and
1 × 105 Hz. The value of −550 mV (vs. R. E.) was the rest potential of the electropolished
specimen. Here, 7 samples were prepared for the EIS measurements.

3. Results
3.1. Healing Behavior of Self-Healing Coatings after Damaging with 50◦ and 120◦ Tip
Angle Indenters

Figure 2 shows the SEM images of the surface of the specimens covered with films
consisting of: (a) an outer electrodeposited epoxy resin layer and an inner porous anodic
oxide layer (normal coating), (b) films consisting of an outer electrodeposited epoxy resin
layer and an inner anodic oxide layer filled with healing agents (self-healing coating), and
(c) the self-healing coating after the freezing treatments (self-healing coating with freezing).
All the photos were taken at the areas damaged by scratching with a 50◦ tip angle indenter.
In Figure 2a–c, cracks can be seen with a width of 20–25 µm, as shown by the dotted lines
in the image. The rough patterns outside the cracks may have been due to the detachment
of the outer epoxy resin layer from the inner anodic oxide layer. As shown in Figure 2b,c,
as well as in Figure 2a, it seems that there was no healing structure in the cracks.
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Figure 2. SEM images of the surface of specimens covered with: (a) films consisting of an outer
electrodeposited epoxy resin layer and an inner porous anodic oxide layer (normal coating), (b) films
consisting of an outer electrodeposited epoxy resin layer and an inner anodic oxide layer filled
with healing agents (self-healing coating), and (c) the self-healing coating after freezing treatments
(self-healing coating with freezing). All the photos were taken at areas damaged by scratching with
50◦ tip angle indenter.

Figure 3 shows the SEM images of the surface of the specimens after scratching with a
120◦ tip angle indenter covered with: (a) the normal coating, (b) the self-healing coating,
and (c) the self-healing coating with freezing. As shown in Figure 3a–c, clear and wide
cracks can be seen at the center of the images on all the specimens. The difference in the
crack widths in Figure 3a–c cannot be explained clearly, but they may have been due to
the effect of the healing structure or the freezing treatments. There was no self-healing
structure in the samples shown in Figure 3b,c. This agrees with that shown in Figure 2a–c
and is discussed in Section 4.1.
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self-healing coating, and (c) covered with self-healing coating with freezing. All the photos were
taken after scratching with 120◦ tip angle indenter.

3.2. Corrosion Behavior of Self-Healing Coating during Immersion in Cu2+/Cl− Solution after
Scratching with 50◦ Tip Angle Indenter

In previous studies, the authors of this paper found that a Cu2+/Cl− solution is
significantly useful for detecting imperfections in oxide films on Al alloys [18,19,22,23]. Cu2+

and Cl− ions synergistically enhance the local corrosion of Al alloys through imperfections.
Copper particles are deposited on the specimens through the imperfections in the oxide
film by the reaction indicated in Equation (2).

2Al + 3Cu2+ → 2Al3+ + 3Cu (2)

Figure 4 shows the SEM images of the surface of specimens covered with: (a) normal
coating, (b) the self-healing coating, and (c) the self-healing coating with freezing after
the corrosion tests in a Cu2+/Cl− solution and after the removal of the coatings, oxide
films, healing agents, corrosion products, and deposited Cu particles. All the photos were
taken at areas scratched with a 50◦ tip angle indenter. In Figure 4a, an elliptical concave
section with an area of 100 × 50 µm2 and several deep pits with a diameter of about 5 µm
can be seen. Further, zig-zagging narrow channels in the vertical direction of the image
can be seen along the scratch. In Figure 4b,c, zig-zagging narrow channels can be seen,
but there are no elliptical concave areas or deep pits. The patterns in Figure 4 reflect the
corrosion of the substrate. The elliptical concave section with an area of 100 × 50 µm2

represents relatively severe corrosion and the deep pits correspond to pitting corrosion. The
zig-zagging channels are considered to correspond to slight corrosion through micro-cracks
formed in the innermost oxide layer by the scratching. This is discussed in Section 4.1.

It can be seen from Figure 4 that the specimen covered with the normal coating
proceeded much more severely than that covered with the self-healing coating and that the
freezing treatments only slightly affected the corrosion rate.

Figure 5 shows the Bode plot from the EIS measurements obtained for the speci-mens
covered with the normal coating (
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). All the curves were measured after scratching with a 50◦ tip angle indenter.
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) had a flatter slope than −1, and the Z values
were much smaller than those of the self-healing coatings with/without freezing. The ∆θ
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increasing f, passing through a minimum. The minimum values of ∆θ were almost −90◦

for the self-healing coatings with/without freezing and −60◦ for the normal coating. The
data for the self-healing coating (
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) showed
an appreciable scattering between 0.1 and 1 Hz, and this was due to high impedances.
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Figure 4. SEM images of the surface of specimens covered with: (a) normal coating, (b) self-healing
coating, and (c) self-healing coating with freezing after the corrosion test in Cu2+/Cl− solution and
after removal of coating, oxide film, corrosion products, and deposited Cu particles. All the photos
were taken at areas damaged with 50◦ tip angle indenters.
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Figure 5. Typical Bode plot from EIS measurements obtained for specimens covered with normal
coating (
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). All the curves were
measured after scratching with 50◦ tip angle indenters.

3.3. Corrosion Behavior of Self-Healing Coating Film after Damaging with 120◦ Tip
Angle Indenter

Figure 6 shows the SEM images of the surface of the specimens with: (a) the normal
coating, (b) the self-healing coating, and (c) the self-healing coating with freezing, obtained
after damaging with a 120◦ tip angle indenter, corrosion tests, and the removal of the
coating, oxide film, healing agents, corrosion products, and deposited Cu particles.
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Figure 6. SEM images of the surface of specimens covered with: (a) normal coating, (b) self-healing
coating, and (c) self-healing coating with freezing after the corrosion test in Cu2+/Cl− solution and
after removal of coating, oxide film, corrosion products, and deposited Cu particles. All the photos
were taken at areas damaged with 120◦ tip angle indenters.

In Figure 6a, it can be seen that there were shallow concaves along the damaged area
and pits as small as 10 µm in size, suggesting that local corrosion proceeded at the damaged
areas. In Figure 6b, it can be seen that a zig-zagging linear pattern appeared along the
damaged area. In Figure 6c, it can be seen that there was an elliptical concave area that
was 300 × 100 µm in size and pits with a 10 µm diameter. It is clear from Figure 6 that
the corrosion protection ability of the specimens covered with the self-healing coating was
the highest after damaging with a 120◦ tip angle indenter and that the freezing treatments
significantly suppressed the corrosion protection ability of the specimens covered with
the self-healing coating, leading to a lower ability than that of the specimen with the
normal coating. This was entirely different from the results obtained with the 50◦ tip angle
indenter (see Figure 5), and the difference in the behavior between the 50◦ and 120◦ tip
angle indenters is discussed in Sections 4.1 and 4.2.

Figure 7 shows Bode plot obtained from the EIS measurements for the specimens
covered with the normal coating (
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) after damaging with a 120◦ tip angle indenter. As can be seen in this figure,
the plot of log Z vs. log f for all the specimens had a linear relationship between 10 and
1000 Hz. The relationship for the specimen covered with the self-healing coating had a
slope of almost−1, but the relationships for the specimens covered with the normal coating
and self-healing coating with freezing had slopes less than −1. The Z values between 10
and 1000 Hz for the three kinds of specimens were in the following order:

Self-healing coating >> Normal coating > Self-healing coating with freezing

The ∆θ values of all the specimens decreased with increasing f and then increased
with increasing f, passing through a minimum between 10−1 and 104 Hz. The minimum
value was in the following order:

Normal coating = Self-healing coating with freezing >> Self-healing coating

Comparing Figure 5 with Figure 7, one can see that impedance of the self-healing
coating with freezing (

Corros. Mater. Degrad. 2023, 4, FOR PEER REVIEW  8 
 

 

the plot of log Z vs. log f for all the specimens had a linear relationship between 10 and 
1000 Hz. The relationship for the specimen covered with the self-healing coating had a 
slope of almost −1, but the relationships for the specimens covered with the normal coat-
ing and self-healing coating with freezing had slopes less than −1. The Z values between 
10 and 1000 Hz for the three kinds of specimens were in the following order: 

Self-healing coating >> Normal coating > Self-healing coating with freezing 

 
Figure 7. Typical Bode plot from EIS measurements obtained for specimens covered with normal 
coating ( ), self-healing coating ( ), and self-healing coating with freezing ( ). All the curves were 
measured after scratching with 120° tip angle indenters.  

The Δθ values of all the specimens decreased with increasing f and then increased 
with increasing f, passing through a minimum between 10−1 and 104 Hz. The minimum 
value was in the following order: 

Normal coating = Self-healing coating with freezing >> Self-healing coating 

Comparing Figure 5 with Figure 7, one can see that impedance of the self-healing 
coating with freezing ( ) was considerably decreased after damaging it with a 120° tip 
angle indenter, while it remained constant after damaging it with a 50° tip angle indenter.  

4. Discussion 
4.1. Analysis of the EIS Data of the Specimens Covered with Normal Coating and Self-Healing 
Coating after Damaging 

From the EIS data shown in Figures 5 and 7, an equivalent circuit can be assumed, as 
shown in Figure 8 [22,31–34].  

) was considerably decreased after damaging it with a 120◦ tip
angle indenter, while it remained constant after damaging it with a 50◦ tip angle indenter.



Corros. Mater. Degrad. 2023, 4 523

Corros. Mater. Degrad. 2023, 4, FOR PEER REVIEW  8 
 

 

the plot of log Z vs. log f for all the specimens had a linear relationship between 10 and 
1000 Hz. The relationship for the specimen covered with the self-healing coating had a 
slope of almost −1, but the relationships for the specimens covered with the normal coat-
ing and self-healing coating with freezing had slopes less than −1. The Z values between 
10 and 1000 Hz for the three kinds of specimens were in the following order: 

Self-healing coating >> Normal coating > Self-healing coating with freezing 

 
Figure 7. Typical Bode plot from EIS measurements obtained for specimens covered with normal 
coating ( ), self-healing coating ( ), and self-healing coating with freezing ( ). All the curves were 
measured after scratching with 120° tip angle indenters.  

The Δθ values of all the specimens decreased with increasing f and then increased 
with increasing f, passing through a minimum between 10−1 and 104 Hz. The minimum 
value was in the following order: 

Normal coating = Self-healing coating with freezing >> Self-healing coating 

Comparing Figure 5 with Figure 7, one can see that impedance of the self-healing 
coating with freezing ( ) was considerably decreased after damaging it with a 120° tip 
angle indenter, while it remained constant after damaging it with a 50° tip angle indenter.  

4. Discussion 
4.1. Analysis of the EIS Data of the Specimens Covered with Normal Coating and Self-Healing 
Coating after Damaging 

From the EIS data shown in Figures 5 and 7, an equivalent circuit can be assumed, as 
shown in Figure 8 [22,31–34].  

Figure 7. Typical Bode plot from EIS measurements obtained for specimens covered with normal
coating (

Corros. Mater. Degrad. 2023, 4, FOR PEER REVIEW  8 
 

 

the plot of log Z vs. log f for all the specimens had a linear relationship between 10 and 
1000 Hz. The relationship for the specimen covered with the self-healing coating had a 
slope of almost −1, but the relationships for the specimens covered with the normal coat-
ing and self-healing coating with freezing had slopes less than −1. The Z values between 
10 and 1000 Hz for the three kinds of specimens were in the following order: 

Self-healing coating >> Normal coating > Self-healing coating with freezing 

 
Figure 7. Typical Bode plot from EIS measurements obtained for specimens covered with normal 
coating ( ), self-healing coating ( ), and self-healing coating with freezing ( ). All the curves were 
measured after scratching with 120° tip angle indenters.  

The Δθ values of all the specimens decreased with increasing f and then increased 
with increasing f, passing through a minimum between 10−1 and 104 Hz. The minimum 
value was in the following order: 

Normal coating = Self-healing coating with freezing >> Self-healing coating 

Comparing Figure 5 with Figure 7, one can see that impedance of the self-healing 
coating with freezing ( ) was considerably decreased after damaging it with a 120° tip 
angle indenter, while it remained constant after damaging it with a 50° tip angle indenter.  

4. Discussion 
4.1. Analysis of the EIS Data of the Specimens Covered with Normal Coating and Self-Healing 
Coating after Damaging 

From the EIS data shown in Figures 5 and 7, an equivalent circuit can be assumed, as 
shown in Figure 8 [22,31–34].  

), self-healing coating (

Corros. Mater. Degrad. 2023, 4, FOR PEER REVIEW  8 
 

 

the plot of log Z vs. log f for all the specimens had a linear relationship between 10 and 
1000 Hz. The relationship for the specimen covered with the self-healing coating had a 
slope of almost −1, but the relationships for the specimens covered with the normal coat-
ing and self-healing coating with freezing had slopes less than −1. The Z values between 
10 and 1000 Hz for the three kinds of specimens were in the following order: 

Self-healing coating >> Normal coating > Self-healing coating with freezing 

 
Figure 7. Typical Bode plot from EIS measurements obtained for specimens covered with normal 
coating ( ), self-healing coating ( ), and self-healing coating with freezing ( ). All the curves were 
measured after scratching with 120° tip angle indenters.  

The Δθ values of all the specimens decreased with increasing f and then increased 
with increasing f, passing through a minimum between 10−1 and 104 Hz. The minimum 
value was in the following order: 

Normal coating = Self-healing coating with freezing >> Self-healing coating 

Comparing Figure 5 with Figure 7, one can see that impedance of the self-healing 
coating with freezing ( ) was considerably decreased after damaging it with a 120° tip 
angle indenter, while it remained constant after damaging it with a 50° tip angle indenter.  

4. Discussion 
4.1. Analysis of the EIS Data of the Specimens Covered with Normal Coating and Self-Healing 
Coating after Damaging 

From the EIS data shown in Figures 5 and 7, an equivalent circuit can be assumed, as 
shown in Figure 8 [22,31–34].  

), and self-healing coating with freezing (

Corros. Mater. Degrad. 2023, 4, FOR PEER REVIEW  8 
 

 

the plot of log Z vs. log f for all the specimens had a linear relationship between 10 and 
1000 Hz. The relationship for the specimen covered with the self-healing coating had a 
slope of almost −1, but the relationships for the specimens covered with the normal coat-
ing and self-healing coating with freezing had slopes less than −1. The Z values between 
10 and 1000 Hz for the three kinds of specimens were in the following order: 

Self-healing coating >> Normal coating > Self-healing coating with freezing 

 
Figure 7. Typical Bode plot from EIS measurements obtained for specimens covered with normal 
coating ( ), self-healing coating ( ), and self-healing coating with freezing ( ). All the curves were 
measured after scratching with 120° tip angle indenters.  

The Δθ values of all the specimens decreased with increasing f and then increased 
with increasing f, passing through a minimum between 10−1 and 104 Hz. The minimum 
value was in the following order: 

Normal coating = Self-healing coating with freezing >> Self-healing coating 

Comparing Figure 5 with Figure 7, one can see that impedance of the self-healing 
coating with freezing ( ) was considerably decreased after damaging it with a 120° tip 
angle indenter, while it remained constant after damaging it with a 50° tip angle indenter.  

4. Discussion 
4.1. Analysis of the EIS Data of the Specimens Covered with Normal Coating and Self-Healing 
Coating after Damaging 

From the EIS data shown in Figures 5 and 7, an equivalent circuit can be assumed, as 
shown in Figure 8 [22,31–34].  

). All the curves were
measured after scratching with 120◦ tip angle indenters.

4. Discussion
4.1. Analysis of the EIS Data of the Specimens Covered with Normal Coating and Self-Healing
Coating after Damaging

From the EIS data shown in Figures 5 and 7, an equivalent circuit can be assumed, as
shown in Figure 8 [22,31–34].
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scratched area. Rox: Resistance of the anodic oxide film at the scratched area.

The equivalent circuit is presented by a series connection between Rs, the solution
resistance in the crack formed by scratching, and CPE, the constant phase element of the
anodic oxide films remaining unremoved at scratched area, which has a parallel connection
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with Rox, the resistance of the anodic oxide film at the scratched area. The corrosion
protection ability of the coating at the damaged area can be evaluated from the value of Rox
in the equivalent circuit. The Rox values of the specimens covered with the normal coating,
self-healing coating, and self-healing coating with freezing are summarized in Figure 9.
The Rox value of the three kinds of specimens was in the following order:

Self-healing coating > Self-healing coating with freezing >> Normal coating
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Figure 9. Average Rox value of seven specimens covered with: (N.C.) normal coating, (S.H.C.) self-
healing coating, and (S.H.C.F.) self-healing coating with freezing.

It is clear that self-healing coating had a high corrosion protection ability after being
damaged and that the freezing treatment slightly suppressed the corrosion protection ability.

4.2. Effects of Freezing Treatments and the Tip Angle of Indenters on Corrosion Protection of the
Self-Healing Coating

When the specimens covered with the normal coating, which had an outer epoxy
resin layer with a thickness of 30 µm and an inner anodic oxide layer with a thickness of
30 µm, were damaged with indenters, cracks with a depth of 45 µm were formed under
the conditions used in the present study, indicating that the innermost layer of the anodic
oxide layer remained unremoved with a thickness of 15 µm. The unremoved innermost
oxide layer can be considered to have a network of micro-cracks due to stresses during the
scratching with indenters. During the corrosion tests, the Cu2+/Cl− solution penetrated
through the micro-cracks, leading to a relatively severe level of corrosion on the substrate
(see Figures 4a and 6a).

When the self-healing coatings were scratched with indenters, the healing agents
flowed into the damaged area and penetrated through the micro-cracks, leading to the
appreciable suppression of the corrosion of the substrate. This is also demonstrated in
Figures 4b and 6b. The amount of the healing agents flowing into the damaged area was
too small to form a self-healing structure in the crack, as shown in Figure 1.

The effect of the angle of the tips of the indenters on the formation of micro-cracks can
be explained as follows. By scratching with the indenters, triangular prism-shaped cracks
were formed, and the whole thickness of the epoxy resin layer and half of the thickness
of the anodic oxide layer were removed as debris. In addition, the organic coating and
the anodic oxide layers next to the triangular prism-shaped cracks are considered to be
subjected to compressive stresses in the direction perpendicular to the scratch line. Thus,
the anodic oxide film underneath the bottom of the crack was subjected to tensile stresses,
producing a network of micro-cracks there.



Corros. Mater. Degrad. 2023, 4 525

The indenter with a 120◦ tip angle produced more obtuse cracks than that with a 50◦

tip angle. Thus, the stress to the oxide film underneath the crack was larger with the 120◦

tip angle indenter than with the 50◦ tip angle indenter, and a larger network of micro-cracks
could develop. This was clarified by the fact that the corrosion after damaging proceeded
more significantly with the 120◦ tip angle indenter than with the 50◦ tip angle indenter, as
shown in Figures 4b and 6b.

The effect of the freezing treatments on the structure of network of micro-cracks is
discussed below. When 0.16 mL of water was dropped on the specimens covered with
the self-healing coating after scratching with indenters, the cracks were filled with water,
and the water penetrated through the micro-cracks in the innermost layer, remaining
unremoved. By dropping the temperature of the specimens from room temperature to
−25 ◦C, the volume of water expanded by about 10% due to phase transformation. The
outer epoxy resin layer tended to be deformed elastically and plastically so that the crack
became larger during the temperature drop. When the specimens were heated from−25 ◦C
to 20 ◦C, the crack volume shrank slightly. The polyurethane-like polymer in the micro-
cracks may show a similar behavior to the epoxy resin coating.

During the temperature drop, the anodic oxide film tended to be deformed elastically
and to break beyond the yield point. The difference in the deformation type between the
organic substances and the anodic oxide films can be considered to cause a gap between
them in the micro-cracks, leading to the enhancement of the corrosion of the substrate
during immersion in the Cu2+/Cl− solution. This was ascertained by the facts shown in
Figures 4c and 6c.

Consequently, the enhancement of the corrosion by scratching with the 120◦ tip angle
indenter and the freezing treatment was a result of the synergistic effects of the extent of
the transfer of the Cu2+/Cl− solution by the two treatments.

5. Conclusions

In the present study, a self-healing coating, which consisted of an outer electrode-
posited epoxy resin layer and an inner anodic oxide layer with healing agents, was de-
veloped, and the effects of the tip angles of indenters scratching the coating and freezing
treatments on the self-healing ability of the coating for the corrosion protection of Al alloys
were examined. The following conclusions were drawn:

1. Self-healing coatings consisting of an outer electrodeposited epoxy resin layer and
an inner anodic oxide layer with self-healing agents can be successfully obtained, and the
corrosion protection abilities of the coating were kept high after scratching with indenters.

2. The corrosion protection abilities of the specimens covered with the self-healing
coating suffered significantly from an indenter with an obtuse-angled tip and from a
freezing treatment.
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Appendix A

1 
 

 
Figure A1. Cross-sectional images of specimens with normal coating after damaging with 50◦ (a)
and 120◦ (b) tip angle indenters. These images were taken after embedding the specimen in epoxy
resin. In these images, the interface between electrodeposited coating and embedded resin is not
clear because of the similarity in the chemical compositions of these organic compounds.
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