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Abstract: The degradation of cadmium yellow in paintings is influenced by various factors, primarily
environmental conditions and light exposure. Applying a thin protective layer of linseed oil on the
surface could help mitigate these processes. Linseed oil, being a natural material, acts as a barrier
against harmful atmospheric agents like moisture and oxygen, which contribute to the degradation
of pigments including cadmium yellow. Additionally, linseed oil reduces direct light exposure,
thereby lowering the risk of fading and color alteration. In this study, we explored the degradation of
cadmium pigments mixed with oil and applied on canvas. We elucidated how the use of a binder
prevents the direct oxidation of the pigment, inducing artificial degradation by irradiating samples
with UVA (365 nm) and UVC (250 nm) sources. By employing various spectroscopic techniques such
as three-dimensional fluorescence mapping (PLE) and Raman, along with colorimetric analysis, we
gained a comprehensive understanding of the degradation process, particularly when linseed oil
serves as a protective layer.
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1. Introduction

The degradation of an artistic work, particularly in the case of a painting, involves each
of its elements in a distinct yet significant manner. A common objective within the realm of
cultural heritage conservation is to ascertain the most suitable method to decelerate the
degradation process.

Cadmium yellow pigment is typically a synthetic cadmium sulfide [1,2], with its
synthesis dating back to the 19th century. Gay-Lussac outlined its synthesis in 1818 [3],
although the commercialization of the pigments did not occur until the mid-1840s. Cad-
mium sulfide (CdS) exhibits a golden yellow hue. In nature, it can be found in the mineral
greenockite [4,5], which manifests as impurities in zinc ores [6]. To economically produce
different shades of this color during the 20th century, its synthesis began to incorporate
zinc to lighten the color and selenium (cadmium sulfoselenide [7]) to intensify the red
hue, enabling a spectrum of colors ranging from pale yellow to red, collectively known as
cadmium pigments. In 1920, a new recipe was developed, also involving the use of barium
sulfate (BaSO4) to achieve a lighter shade.

Cadmium yellow is renowned for its extensive use by Impressionist artists such as Van
Gogh, Matisse, Munch, and Ensor. Despite being synthetic and possessing good coverage
properties, cadmium yellow undergoes a rapid degradation process over time which has
been extensively documented in the literature, encompassing surface alterations such as
chalking, lightening, flaking, and spalling [2,8–11].

The degradation of cadmium yellow pigment can be instigated by various factors,
including exposure to light, moisture, and atmospheric pollution. Its sensitivity to sunlight
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can lead to color loss and the surface deterioration of the painting over time. Additionally,
internal chemical reactions may occur between the pigment itself and the components
of the painting’s binder, hastening the degradation process. Moisture and atmospheric
pollution can also contribute to the formation of corrosive substances that damage the
pigment over time [12–14].

It is well known that UV components and blue light from artificial museum white LED
lighting is itself a degrading agent for paintings, especially when their paint film consists
of photosensitive pigments, as in the case of cadmium yellow [15–18].

An additional UV exposure with high energy could derive from biofilm removal
procedures, used recently in wall paintings made by organic binders, which inevitably
subjected the organic components to color changes [19,20].

Special precautions are necessary for the conservation of artworks containing cad-
mium yellow pigment. These may involve monitoring environmental conditions such as
temperature, humidity, and lighting levels to minimize deterioration. Furthermore, restora-
tion techniques and conservation treatments may be employed to protect the painting and
preserve its beauty over time. Ongoing research in the field of cultural heritage conser-
vation is essential for developing increasingly effective methods to safeguard valuable
artworks for future generations.

The degradation process primarily involves the formation of whitish compounds,
as documented in [9], where the degraded crust of the paints reveals the presence of
cadmium carbonate, sulfate, and oxalate. Van der Snickt et al. [2] elucidated the formation
of cadmium sulfate on the paint surface upon exposure to environmental conditions
through the oxidation of CdS pigment.

In the study by Van Der Snickt et al. [10], the authors proposed cadmium carbonate as
the ultimate photo-degradation product of CdS.

Various accelerated degradation studies on CdS pigment [1,21,22], along with com-
putational simulations [23–25], have been conducted previously to gain insights into the
intricacies of its degradation process.

Our research group previously studied the degradation of pure cadmium yellow
pigment both due to temperature effects and UV radiation.

This phenomenon occurs when pigments undergo chemical or physical changes re-
sulting in a loss of color intensity. Temperature can accelerate this process by increasing the
rate of chemical reactions within the pigment molecules, leading to structural alterations or
breakdown. UV irradiation, on the other hand, can cause photochemical reactions in the
pigment molecules, resulting in degradation or discoloration. Understanding these mech-
anisms is crucial for preserving the color stability and longevity of pigmented materials,
particularly in applications exposed to environmental factors such as sunlight or heat [14].

After exposure, NIR–Raman spectra show the formation of a new strong peak at
990 cm−1 related to sulfate compounds, which is confirmed also by the presence of two
additional weak bands at around 1060 and 1120 cm−1 [26]. Additionally, the reflectance
revealed a color change induced in the pigments compatible with the formation of sulfate
patinas, as already demonstrated in literature [2,9].

Following the previous work, the objective of this study is to investigate and compre-
hend the degradation process when the pigment is enveloped with a layer of linseed oil.
Through the utilization of optical and analytical techniques, we aim to examine the forma-
tion of potential degradation compounds or physicochemical alterations on the surface of
the paint.

In this investigation, our focus will be on two variants of cadmium powder pigments,
specifically those exhibiting yellow and orange hues, for which we have conducted a
comprehensive characterization in a preliminary study. These variants are chosen as they
serve as representative samples of cadmium pigments [14].

This study employs a multi-technique approach, encompassing 3D photolumines-
cence excitation–emission (PLE), Raman spectroscopy, and reflectance spectroscopy. These
methods are complemented by colorimetric analyses [27–31].
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By combining the results obtained from these methodologies, our objective is to
gain a comprehensive understanding of the role played by each component and to de-
lineate the distinct stages of degradation after UV light exposure (250 nm and 365 nm).
Subsequently, these insights will be applied to canvas paintings to simulate the degrada-
tion process observed in authentic artworks and to discriminate which elements create
the “fading/chalking” phenomena, which further degrades with whitish compounds or
dark crusts.

2. Materials and Methods
2.1. Mock-Ups Samples
2.1.1. Pigments

Cd pigments used for accelerated degradation studies were bought from Kremer
pigments. We used the pigment numbers 21040 (white yellow) and 21080 (orange). The
artificially aged samples are labelled with the initial C or S to indicate yellow or orange
followed by 250 nm and 365 nm to indicate the wavelength used for the degradation and
the time of exposure in hours.

2.1.2. Sole Binder and Mixture Binder with Pigment

The degradation process of the binder (linseed oil acquired by Zecchi Company,
Florence, Italy) involved the deposition of oil on a glass surface and exposure to UV
radiation (250 nm and 365 nm) The sample was named with the initial “O” followed by
250 nm and 365 nm to indicate the wavelength used for the degradation and the time of
exposure in hours.

The pigment–linseed oil mix in a mass ratio of 0.5:1 was deposited onto a glass surface
exposed to the same degradation process as the pure binder. The samples were named
C-O and S-O followed by 250 nm and 365 nm to indicate the wavelength used for the
degradation and the time of exposure in hours.

2.1.3. Oil on Canvas Samples

We also realized mock-ups of oil on canvas. The canvas samples were of two typolo-
gies: painted only with oil and a composition of pigment plus oil in a 0.5:1 mass ratio.

The degradation process was realized via UV light exposure (250 nm and 365 nm), and
reflectance spectra were collected at different intervals of time, while Raman spectra were
collected at the start- and endpoint of each degradation process. These samples are labelled
O-canvas, C-canvas, and S-canvas followed also in this case by the time of exposure.

2.1.4. Reflectance Measurements

Reflectance measurements were performed by means of a laser-driven Xenon lamp
(EQ-99X) with wide emission spectrum from 200 to 2000 nm and an average optical power
of 1 mW/nm. The source was coupled with an optical fiber, an integrating sphere, and
an Advantes Sensiline Avaspec-ULS-TEC Spectrometer (spectral range 250–900 nm). The
measurements were taken in 10◦ reflection mode (including the specular component) using
a BaSO4 plate as a reference. Each measurement for every sample and time interval was
conducted three times. The results were related to the D65 illuminant and the CIELab
standard colorimetric observer. The CIE coordinates were obtained by using the Color-
Convert v7.77 software. The color change was characterized according to the change in
brightness ∆L, red–green difference ∆a, yellow–blue difference ∆b, and total calculation of

color difference ∆E using the following formula: ∆E =
√
(∆L)2 + (∆a)2 + (∆b)2.

2.1.5. Raman Measurements

Near-infrared micro-Raman scattering measurements were carried out in back-scattering
geometry with the 1064 nm line of a Nd–YAG laser. Measurements were performed with a
compact spectrometer B&WTEK (Newark, NJ, USA) i-Raman Ex integrated system with a



Heritage 2024, 7 2429

spectral resolution of 8 cm−1. For each experimental setup, all the spectra were collected
with an acquisition time of about 60 s (five replicas) and a power excitation between 5 and
10 mW concentrated in a spot of 0.3 mm2 on the surface through a Raman Video MicroSam-
pling System (Nikon Eclipse for high-resolution and BAC151B in the other case) equipped
with a 20× Olympus objective to select the area on the samples. Each measurement area
represents a sampling surface of about 1 cm2.

2.1.6. Three-Dimensional Fluorescence Mapping

The three-dimensional fluorescence mapping of samples was performed using a
spectrofluorometer, a Jasco FP-8050, with a 450 W Xenon lamp as the excitation source.
The maps were collected with an excitation range of 200–600 nm and an emission range of
250–850 nm with a 5 nm spectral bandwidth for excitation and emission.

2.1.7. Steady-State Absorption Measurements

Absorption measurements were obtained by using a double beam a UV-Vis-NIR
Agilent Technologies Cary 5000 Spectrometer. The samples were deposited on a slide
and the measurements were performed in the UV-VisVIS region (250–500 nm) by using
deuterium and tungsten lamps and a reference beam in air. Spectral resolution was set to
2 nm. For differential absorption, a pristine slide was used as a reference to highlight the
differences.

3. Results and Discussion

Carefully prepared mock-ups were created to represent three distinct sample sets,
each consisting of oil and a mixture of oil and pigments. These mock-ups underwent an
accelerated degradation process induced by exposure to UV lamp irradiation (250 and
365 nm). In the following sections, we present a comprehensive analysis of the results
obtained for each sample type, elucidating the effects of UV-induced degradation on their
composition and characteristics.

3.1. Pigment Characterization

The pure pigments utilized in creating the mock-ups underwent comprehensive
characterization through X-ray diffraction (XRD), Raman spectroscopy, and reflectivity
analysis.

XRD analyses of the yellow pigment (C) revealed the presence of the hexagonal phase
of Cd1−xZnxS (with x = 0.19), alongside approximately 7% barium sulfate (Figure 1a).
In contrast, the orange pigment (S) consisted of hexagonal CdS1−xSex and CdS phases
(Figure 1b) [14].

The respective Raman spectra obtained for both samples with a 1064 nm excitation
wavelength are depicted in Figure 1c,d. These spectra are characterized by typical peaks
around 310 and 600 cm−1, associated with the LO and 2LO phonon modes, respectively, as
well as a peak at 230 cm−1 attributable to the TO mode. Additionally, peaks at 215, 250,
350, and 560 cm−1 correspond to multi-phonon (MP) modes [32–34].

Furthermore, in the pigment C, two additional peaks are observed at 455 cm−1 (doubly
degenerate ν2-symmetric bending of the -SO4

2− group) and at 990 cm−1 (ν1-symmetric
stretching of the SO4

2− group) [35,36]. These peaks are associated with barium sulfate,
which is utilized as an additive compound according to the composition provided by the
producer (Kremer Pigments).
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Figure 1. XRD patterns of C (a) and S (b) samples. NIR Raman spectra of C (c) and S (d) samples. 
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ated with ω (CH) in CH=CH wagging [37]. We conducted a comprehensive examination 
of this phenomenon by subjecting the oil to aging under UV light exposure at wavelengths 
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Figure 1. XRD patterns of C (a) and S (b) samples. NIR Raman spectra of C (c) and S (d) samples.

3.2. Binder Degradation

To study how linseed oil acts as protective layer for the pigment, the degradation of
the oil by itself was studied and the steps of the process were investigated via PLE and
Raman spectroscopy complemented by reflectance measurements.

As previously documented in the literature, exposure to light induces changes in the
Raman spectrum of linseed oil. Specifically, within the range of 700–1800 cm−1, there is a
recognized reduction in the intensities of the 1264 (CH=CH rocking), 1022, 971 (CH=CH
wagging), and 912 cm−1 bands, alongside the disappearance of the 940 cm−1 peak associ-
ated with ω (CH) in CH=CH wagging [37]. We conducted a comprehensive examination
of this phenomenon by subjecting the oil to aging under UV light exposure at wavelengths
of 250 and 365 nm. The outcomes are depicted in Figure 2a,b. In the aged linseed oil, the
Raman spectrum exhibited a broadening of the 866 cm−1 band, along with a significant
decrease in the intensities of the 940, 1264, and 1655 (C=C isolated cis) bands. Conversely,
there was an increase in the intensities of the 1081, 1022, 1302, and 1439 (δCH2) bands, as
well as the 1655 cm−1 band.

The 1743 cm−1 (C=O) band showed a soft increase in its intensity and a slight shift
toward lower cm−1. An evident inversion of intensity between the 1264 and 1302 cm−1

bands is observed.
After 365 nm light exposure the absorption spectrum appears similar to the one of the

fresh oil except for a slight blue shift (Figure 2c), while the exposure at 250 nm irradiation
wavelength showed the formation of a shoulder around 340 nm in the absorption spectrum,
with the formation of a very broad band leading to a yellowish color (Figure 2c,d).
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Figure 2. (a) Raman spectra of fresh oil and irradiated oil samples after exposure to 250 and 365 nm 
wavelengths; (b) Raman spectra of fresh oil and irradiated oil after 365 nm light exposure and Ra-
man spectra of fresh oil and irradiated oil after 250 nm light exposure; (c) absorption spectra of the 
different degradation process of linseed oil; (d) the differential absorbance ∆α. 

Figure 2. (a) Raman spectra of fresh oil and irradiated oil samples after exposure to 250 and 365 nm
wavelengths; (b) Raman spectra of fresh oil and irradiated oil after 365 nm light exposure and Raman
spectra of fresh oil and irradiated oil after 250 nm light exposure; (c) absorption spectra of the different
degradation process of linseed oil; (d) the differential absorbance ∆α.
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Since 250 nm light exposure produced irradiation effects (yellowing) on the oil whilst
365 nm did not cause any change in color, to understand the total process degradation, we in-
vestigated the process by performing three-dimensional fluorescence mapping (Figure 3a).
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Figure 3. (a) Three-dimensional fluorescence mapping of pure linseed oil obtained using an excita-
tion range of 200–600 nm and an emission range of 250–850 nm (see also Figure S2). The color gra-
dient within the map corresponds to the intensity of the emitted fluorescence. (b) Fluorescence as a 
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Figure 3. (a) Three-dimensional fluorescence mapping of pure linseed oil obtained using an excitation
range of 200–600 nm and an emission range of 250–850 nm (see also Figure S2). The color gradient
within the map corresponds to the intensity of the emitted fluorescence. (b) Fluorescence as a function
of the irradiation time at 250 nm. (c) Fluorescence as a function of the irradiation time at 365 nm.

Following exposure to 250 nm light, we observed a significant decrease in fluorescence
intensity and a slight blue shift within the initial 28 h of irradiation (see Supplementary
Information Figure S2). Subsequently, there was a pronounced decrease in intensity along
with a red shift observed at 51, 70, and 94 h of irradiation, as depicted in Figure 3b. Another
significant observation arose from these measurements when comparing the emission
intensities at 5 and 28 h of irradiation. Interestingly, the intensity at 28 h was slightly higher,
suggesting that the degradation process takes place in distinct layers within the linseed
oil sample.
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For the 365 nm irradiation (Figure 3c and Figure S2), we noted a distinct behavior in
the degradation process. Specifically, the process was characterized by a sudden decrease
in emission intensity and a blue shift, without any observed red shift even after prolonged
exposure. Additionally, similar to the observations with 250 nm irradiation, we found
evidence suggesting the involvement of multiple layers in the degradation process, high-
lighted by small variations in signal intensity over the studied time interval and further
indicating the complexity of the degradation mechanism within the linseed oil sample.

After studying the degradation of pigments and oil individually, we now turn our
attention to investigating the interaction between these two materials. This combined study
allows us to understand how the degradation processes of both pigments and oil may
influence each other when they are present together. By examining their joint behavior, we
can gain insights into potential synergistic effects, as well as any differences or modifications
in degradation pathways compared to when the materials are studied in isolation. This
holistic approach provides a comprehensive understanding of the overall stability and
durability of pigmented materials, which is crucial for various applications ranging from
art conservation to industrial coatings.

3.3. Degradation of Pigments Mixed with Linseed Oil

After individually studying the effects of exposure to ultraviolet light on pigments [14]
and linseed oil, we proceed to investigate the combination of these two substances to
highlight the role of linseed oil as a protective layer for the pigment. In this case, we
conducted a study using a multi-technical approach focused on PLE, Raman spectroscopy,
and reflectance measurements.

The purpose of this study is to understand how the presence of linseed oil affects the
interaction between pigments and ultraviolet light. By employing multiple techniques, we
aim to gain a comprehensive understanding of the chemical and physical changes occurring
at the interface of these materials.

Based on the study, variations related to C-O and S-O samples were monitored through 3D
fluorescence maps before and after irradiation at 250 and 365 nm (Figures 4a,c,e,g, S1 and S2)
and studied at 380 nm over time (Figure 4b,d,f,h).

Selecting an excitation wavelength of 380 nm for fluorescence monitoring is based
on its suitability to effectively excite the oil molecules. By utilizing this wavelength,
we aim to discern the influence of the oil layer on the behavior of the pigment. This
choice enables us to investigate the protective mechanisms that the oil may exhibit toward
the pigment under study. Furthermore, by observing the fluorescence response at this
specific wavelength, we can closely examine the alterations in pigment behavior when the
superficial oil layer undergoes degradation processes. Thus, this approach allows for a
comprehensive analysis of the interplay between the oil and the pigment, shedding light
on their dynamic interactions and potential protective effects.

Both during exposure to 250 nm (Figure 4b) and 365 nm (Figure 4d), a pattern of peaks
and troughs is observed, representing the emergence of the pigment and the degradation
of the oil, respectively, indicating the involvement of multiple layers in the process. Specif-
ically, for the exposure to 250 nm (Figure 4b), there is an absolute maximum at 70 h of
exposure, while for the exposure to 365 nm (Figure 4d), we observe a maximum at 28 h
and then at 70 and 94 h. These trends are highlighted by the scatter plot inset in graphs
depicted in Figure 4b,d. The same reasoning was applied to the S sample, but in this case,
the observed variations are more evident after treatment at 250 nm rather than at 365 nm
(Figure 4f,h). In this case, for the exposure to 250 nm, there is a maximum at 28 h, while for
the irradiation at 365 nm we observed a maximum at 51 h.

The observable difference in degradation between sample C and sample S can be
attributed to the varying capacities of these samples to absorb UV light. Sample S, charac-
terized by its lower UV light absorption, is less effective in shielding against the detrimental
effects of UV radiation. Consequently, the pigment in sample C is more susceptible to
degradation when exposed to UV light, leading to comparatively lesser degradation in
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sample S. This disparity underscores the importance of UV absorption capacity in deter-
mining the degree of protection afforded by the oil layer against pigment degradation.
Furthermore, this observation highlights the significance of understanding the inherent
properties of the samples under study in elucidating their responses to environmental
factors such as UV radiation.
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Figure 4. (a,c,e,g) Three-dimensional fluorescence mapping of mixed pigment and oil before and 
during the irradiation process (Figure S2), obtained using an excitation range of 200–600 nm and an 
emission range of 250–850 nm. The color gradient within the map corresponds to the intensity of 
the emitted fluorescence. (b,d,f,h) Fluorescence as a function of the irradiation time to study behav-
ior under both 250 and 365 nm light exposure (Figure S2). 

Selecting an excitation wavelength of 380 nm for fluorescence monitoring is based on 
its suitability to effectively excite the oil molecules. By utilizing this wavelength, we aim 
to discern the influence of the oil layer on the behavior of the pigment. This choice enables 
us to investigate the protective mechanisms that the oil may exhibit toward the pigment 
under study. Furthermore, by observing the fluorescence response at this specific wave-
length, we can closely examine the alterations in pigment behavior when the superficial 
oil layer undergoes degradation processes. Thus, this approach allows for a comprehen-
sive analysis of the interplay between the oil and the pigment, shedding light on their 
dynamic interactions and potential protective effects. 

Both during exposure to 250 nm (Figure 4b) and 365 nm (Figure 4d), a pattern of 
peaks and troughs is observed, representing the emergence of the pigment and the deg-
radation of the oil, respectively, indicating the involvement of multiple layers in the pro-
cess. Specifically, for the exposure to 250 nm (Figure 4b), there is an absolute maximum at 
70 h of exposure, while for the exposure to 365 nm (Figure 4d), we observe a maximum at 
28 h and then at 70 and 94 h. These trends are highlighted by the scatter plot inset in graphs 
depicted in Figure 4b,d. The same reasoning was applied to the S sample, but in this case, 
the observed variations are more evident after treatment at 250 nm rather than at 365 nm 
(Figure 4f,h). In this case, for the exposure to 250 nm, there is a maximum at 28 h, while 
for the irradiation at 365 nm we observed a maximum at 51 h. 

The observable difference in degradation between sample C and sample S can be at-
tributed to the varying capacities of these samples to absorb UV light. Sample S, charac-
terized by its lower UV light absorption, is less effective in shielding against the detri-
mental effects of UV radiation. Consequently, the pigment in sample C is more susceptible 
to degradation when exposed to UV light, leading to comparatively lesser degradation in 
sample S. This disparity underscores the importance of UV absorption capacity in deter-
mining the degree of protection afforded by the oil layer against pigment degradation. 
Furthermore, this observation highlights the significance of understanding the inherent 
properties of the samples under study in elucidating their responses to environmental 
factors such as UV radiation. 

Upon scrutinizing the 3D fluorescence maps, an intriguing observation emerges: 
there is a notable rise in intensity within the spectral band centered around 800 nm when 
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Figure 4. (a,c,e,g) Three-dimensional fluorescence mapping of mixed pigment and oil before and
during the irradiation process (Figure S2), obtained using an excitation range of 200–600 nm and an
emission range of 250–850 nm. The color gradient within the map corresponds to the intensity of the
emitted fluorescence. (b,d,f,h) Fluorescence as a function of the irradiation time to study behavior
under both 250 and 365 nm light exposure (Figure S2).

Upon scrutinizing the 3D fluorescence maps, an intriguing observation emerges: there
is a notable rise in intensity within the spectral band centered around 800 nm when the
excitation wavelength hovers around 510 nm. This phenomenon is indicative of significant
changes occurring within the sample. Specifically, it is linked to the partial degradation
of the pigment as well as the formation of cadmium vacancies within the CdS crystal
lattice [14].

The escalation in intensity at this specific wavelength range serves as a spectral signa-
ture of the ongoing processes within the sample. The partial degradation of the pigment
signifies alterations in its molecular structure or composition, likely due to environmental
factors or chemical interactions.

This multifaceted insight gained from the fluorescence maps not only sheds light on
the evolving nature of the sample under investigation but also underscores the versatility
and sensitivity of fluorescence spectroscopy as a powerful analytical tool for probing
molecular and nanoscale phenomena.

To confirm the observed results and validate the 3D fluorescence technique for mon-
itoring pigment degradation, Raman measurements were conducted on the samples at
the same time intervals (Figure 5a,c,e,g). Since Raman spectroscopy is a point analysis
technique, small variations in the local environment of the measured points can result
in significant differences in the observed spectra. For each time interval, a set of three
measurements was taken at different points, and the average was calculated. The observed
dissimilarities in the variation in the most representative peaks in the Raman spectrum
related to the oil, pigment, and sulfates were analyzed after normalization to the peak
at 1442 cm−1. This peak corresponds to the δCH2 bands of the oil and is typically the
most intense peak that is stable and less prone to fluctuations in the oil’s Raman spectrum.
Furthermore, the δCH2 bands are characteristic of the organic constituents present in the
oil, reflecting its molecular structure and composition. Normalizing to this peak allows
us to focus on changes in other spectral features, such as those related to pigment (2LO at
605 cm−1) or sulfate formations (988 cm−1).
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Figure 5. Cont.
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Figure 5. Raman study of the degradation of the mixed pigment and oil over time with UV (250 and
365 nm) irradiation. (a,c) refers to the C-O sample and (e,g) refers to S-O sample. Degradation has
been studied by normalizing the data to the peak at 1442 cm−1 and following the variation in the
most representative peaks in the Raman spectra related to the oil, the pigment, and the formation of
sulfates (b,d,f,h).

Regarding the C-O sample, the trends in the bands at 988 cm−1 related to sulfate
formation and at 605 cm−1 related to the pigment’s 2LO were studied. Again, we observe
a pattern consisting of peaks and troughs indicating a stratigraphic degradation. When
the oil layer is degraded (trough 1650 cm−1 band), there is also an increase in the band
related to sulfate formation, indicating the degradation of the pigment itself (Figure 5b,d).
Using this technique for the S-O sample also highlights the degradation of an oil layer after
irradiation at 250 nm after 28 h, with minor effects on the sample irradiated at 365 nm. In
this case, no sulfite formation is observed, probably due to the need for prolonged exposure
to initiate the degradation of both the pigment layer and the oil layer (Figure 5f,h).

3.4. Degradation of Pigments Spread on a Canvas

To simulate a real application, we prepared and analyzed the complex mock-ups made
of only linseed oil spread on a canvas as well as both pigments with linseed oil spread
on the same canvas. With the intention of determining the real effect of color change, a
detailed colorimetric analysis was performed, and from the reflectance spectra, the related
CIE Lab coordinates were calculated.

The large chromatic changes induced in the first mock-up sample are reported in
Table 1, whilst a summary for all the mock-ups is proposed in Figure 5a where a CIE
diagram shows the significative color variation.

It is worth noting how the L parameter, representing lightness, tends to fluctuate,
suggesting the involvement of a multilayer degradation process [38]. Additionally, the
value of the total color variation (∆E) keeps increasing with exposure time; in fact, after
5–7 days of 250 nm irradiation, the oil deposited on the canvas showed a visible yellowish
hue, with the degradation increasing by increasing the days of exposure. The trend is
confirmed by the naked-eye inspection of the sample (Figure 6b) and by reflectance spectra
(Figure 6c).
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Table 1. Chromatic coordinates of oil on canvas exposed to different UVC time exposure.

Oil on Canvas L a b ∆L ∆a ∆b ∆E Color

0 days 74 −3.55 1.11 _ _ _ _
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Figure 6. (a) CIE coordinates of the mock-ups before and after UV exposure ; (b) pictures of these 
mock-ups; (c) reflectance spectra of the oil at different days of UV exposure; (d) Raman spectra of 
raw and irradiated canvas; (e) Raman spectra of yellow pigment spread on the canvas at 0 and 5 
days of exposure; (f) Raman spectra of orange pigment spread on the canvas at 0 and 5 days of 
exposure; (g) reflectance spectra of irradiated C sample on canvas and relative first derivative; (h) 
reflectance spectra of irradiated S sample on canvas and relative first derivative. 

In addition, after a further 16 days of air exposure, Raman spectra on the same mock-
ups did not evidence any degradation related to the formation of sulfates in both pigments 
(Figure 6e,f). We then performed a longer UV irradiation (15 days) and collected the Ra-
man spectra (not reported for sake of clarity). Even in these samples, no additive sulfate 
compounds were detected. The reported results seem to suggest that the oil acts as a pro-
tective film avoiding the direct contact of the pigment with the atmosphere and with the 
light, generating a slowdown in the degradation of the pigment. Indeed, for up to 5 days 
of irradiation of the binder, no degradation is observed, and only for larger exposure did 
the binder itself turn into pale yellow, showing differences in the vibrational spectrum as 
compared to the raw binder, as discussed before. UV light also affected the canvas; in fact, 
its Raman spectrum presented variations in peaks’ intensities as compared to the non-
degraded sample. However, in this short period, no compositional change in the inorganic 
pigments spread on the canvas were detected, although the reflectance spectra registered 
a small blue-shift trend in the C samples (Figure 6g) and a small red shift in the S samples 
(Figure 6h), better evidenced by the corresponding first derivative spectra reported in the 
insets. 

To summarize the overall color variation caused by UV exposure in each step, we 
compared all the variation in the CIE coordinates and the total difference ΔE in Table 2. 
The weight of oil canvas degradation is predominant, since the total variation ΔE assumes 
a value of 15.9. Single pigments present a maximum variation ΔE for sample C, which 
takes on the value of 6.2 after only 56 h of UV exposure. In this regard, the results allow 
us to confirm the provisional protective role of oil for sample C, which reacts with the 
environment in a reduced way, concluding with a total variation ΔE of only 3.5 after 20 
days. We can assume that, after this primary protective action, a progressive degradation 
of the oil leads to its vulnerability to the environment, as suggested by the literature. 

Table 2. Color differences between the aged and non-aged samples. 

Sample ΔL Δa Δb ΔE 
C-UV-56h 5.9 −2.21 2 6.2 
S-UV-56h 1.6 −1 1.4 2.4 

Figure 6. (a) CIE coordinates of the mock-ups before and after UV exposure; (b) pictures of these
mock-ups; (c) reflectance spectra of the oil at different days of UV exposure; (d) Raman spectra of raw
and irradiated canvas; (e) Raman spectra of yellow pigment spread on the canvas at 0 and 5 days of
exposure; (f) Raman spectra of orange pigment spread on the canvas at 0 and 5 days of exposure;
(g) reflectance spectra of irradiated C sample on canvas and relative first derivative; (h) reflectance
spectra of irradiated S sample on canvas and relative first derivative.

NIR–Raman spectra of these mock-ups were collected after 5 days of UV lamp expo-
sure in order to identify structural modification caused by the exposure. The degradation
of the mock-ups is visible in Figure 6d: the canvas and the oil (as described before) showed
alteration in the intensity of some bands, but no additive compound was detected.

In addition, after a further 16 days of air exposure, Raman spectra on the same mock-
ups did not evidence any degradation related to the formation of sulfates in both pigments
(Figure 6e,f). We then performed a longer UV irradiation (15 days) and collected the
Raman spectra (not reported for sake of clarity). Even in these samples, no additive sulfate
compounds were detected. The reported results seem to suggest that the oil acts as a
protective film avoiding the direct contact of the pigment with the atmosphere and with the
light, generating a slowdown in the degradation of the pigment. Indeed, for up to 5 days
of irradiation of the binder, no degradation is observed, and only for larger exposure did
the binder itself turn into pale yellow, showing differences in the vibrational spectrum
as compared to the raw binder, as discussed before. UV light also affected the canvas;
in fact, its Raman spectrum presented variations in peaks’ intensities as compared to the
non-degraded sample. However, in this short period, no compositional change in the
inorganic pigments spread on the canvas were detected, although the reflectance spectra
registered a small blue-shift trend in the C samples (Figure 6g) and a small red shift in



Heritage 2024, 7 2440

the S samples (Figure 6h), better evidenced by the corresponding first derivative spectra
reported in the insets.

To summarize the overall color variation caused by UV exposure in each step, we
compared all the variation in the CIE coordinates and the total difference ∆E in Table 2.
The weight of oil canvas degradation is predominant, since the total variation ∆E assumes
a value of 15.9. Single pigments present a maximum variation ∆E for sample C, which
takes on the value of 6.2 after only 56 h of UV exposure. In this regard, the results allow
us to confirm the provisional protective role of oil for sample C, which reacts with the
environment in a reduced way, concluding with a total variation ∆E of only 3.5 after 20 days.
We can assume that, after this primary protective action, a progressive degradation of the
oil leads to its vulnerability to the environment, as suggested by the literature.

Table 2. Color differences between the aged and non-aged samples.

Sample ∆L ∆a ∆b ∆E

C-UV-56h 5.9 −2.21 2 6.2

S-UV-56h 1.6 −1 1.4 2.4

Oil-canvas-20d −1.7 −2.84 15.59 15.9

C-canvas-20d −3.1 1.71 −0.2 3.5

S-canvas-20d −5.5 8.8 25.1 27.2

However, the same feature cannot be confirmed in sample S, where the mixture of oil
with pigments brings about the opposite effect: a variation of 27.2 with respect to 2.4 of the
sole S pigment, mainly due to oil yellowing.

4. Conclusions

In this work, we tried to understand in detail the process of the degradation of Cd
yellow in painting, whose phenomena of surface alteration are well known.

The utilization of 3D fluorescence mapping allowed for the visualization of the vari-
ations in the samples before and after UV irradiation. This technique provided valuable
insights into the behavior of both the pigment and the oil binder when exposed to UV
radiation. The appearance of high and low points in fluorescence intensity showed how the
samples changed over time. High points meant new pigments appeared, while low points
indicated oil breakdown. The variations in the fluorescence intensity over time suggested a
complex degradation process involving multiple stages and mechanisms.

Raman spectroscopy provided chemical specificity and allowed for the identification
of specific degradation products within the samples. By monitoring the intensity of bands
corresponding to sulfate formation and pigment-related vibrations, changes in the chemical
composition of the samples could be tracked over time. The observed increase in sulfate
formation bands during periods of oil degradation suggested a concomitant degradation
of the pigment, highlighting the interconnected nature of the degradation processes.

The observed variations in fluorescence intensity and Raman band intensities sug-
gested a stratigraphic degradation process, wherein different layers within the samples
were sequentially affected by UV irradiation. The degradation of the oil binder appeared
to precede or coincide with the degradation of the pigment, indicating a hierarchical
degradation sequence within the samples.

The differential response of the samples to UV irradiation at 250 nm and 365 nm
further underscored the complexity of the degradation process. While both wavelengths
induced degradation, the observed variations in the timing and extent of degradation
suggested wavelength-specific effects on the degradation mechanisms and kinetics. This
finding has implications for understanding and predicting the degradation behavior of
cultural heritage materials under different environmental conditions.
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We simulated the action of time with the use of UV light exposure, and with different
analytical and optical techniques, we studied the degradation process of mock-ups of oil
and pigments on canvas paintings. The investigation is also supplied with the study of
the interaction between UV light and the binder or canvas support, taken singularly or
combined with the pigments. The color variation was even revealed in linseed oil and
canvas with no pigments exposed to UV light, while the formation of sulfate phase in the
combined systems is not observed. This condition suggests a complex color change due to
the single variation in canvas, oil, and pigments.

In conclusion, our comprehensive investigation sheds light on the intricate degrada-
tion processes of Cd yellow in paintings, revealing the sequential impact of UV irradiation
on both pigment and binder layers. The observed complexities in degradation mecha-
nisms and wavelength-specific effects highlight the multifaceted nature of cultural heritage
preservation and underscore the importance of customized conservation strategies.
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//www.mdpi.com/article/10.3390/heritage7050115/s1. Figure S1: PL of pure C and S pigments;
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