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Abstract: In radiotherapy treatment planning, the absorbed doses are subject to executional and
preparational errors, which propagate to plan quality metrics. Accurately quantifying these un-
certainties is imperative for improved treatment outcomes. One approach, analytical probabilistic
modeling (APM), presents a highly computationally efficient method. This study evaluates the
empirical distribution of dose–volume histogram points (a typical plan metric) derived from Monte
Carlo sampling to quantify the accuracy of modeling uncertainties under different distribution as-
sumptions, including Gaussian, log-normal, four-parameter beta, gamma, and Gumbel distributions.
Since APM necessitates the bivariate cumulative distribution functions, this investigation also delves
into approximations using a Gaussian or an Ali–Mikhail–Haq Copula. The evaluations are performed
in a one-dimensional simulated geometry and on patient data for a lung case. Our findings suggest
that employing a beta distribution offers improved modeling accuracy compared to a normal dis-
tribution. Moreover, the multivariate Gaussian model outperforms the Copula models in patient
data. This investigation highlights the significance of appropriate statistical distribution selection in
advancing the accuracy of uncertainty modeling in radiotherapy treatment planning, extending an
understanding of the analytical probabilistic modeling capacities in this crucial medical domain.

Keywords: dose; analytical; distribution; copulas; radiation; optimization

1. Introduction

In radiotherapy, accurate modeling of uncertainties in dose is essential for attain-
ing high-quality, robust treatment plans. This work explores different distributions to
analytically model the most relevant dose-distribution plan-metric in radiotherapy treat-
ment plans.

Radiotherapy is a cornerstone of cancer treatment, with nearly two-thirds of patients
with loco-regional tumors in Western countries undergoing radiotherapy [1]. Over recent
decades, the field has seen rapid advancements including substantial improvements in
radiation delivery precision [1], and the incorporation of innovative technologies like
heavy-ion beams [2].

In radiotherapy treatment planning, simulation and optimization are conducted on
patient imaging data to delineate an optimal treatment plan. This plan establishes the
geometrical and physical parameters of the radiation beam(s) to ensure a uniform pre-
scribed radiation dose within the target volume while minimizing the dose absorbed by
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surrounding healthy tissues [3]. The absorbed dose, characterized as the absorbed energy
per unit mass deposited by ionizing radiation, is measured in grays (Gy) [4].

A paramount challenge in this domain arises from executional and preparational
uncertainties impacting the absorbed dose. Traditional approaches to account for these
uncertainties include the incorporation of margins by enlarging the target volume based on
probabilistic recipes derived from population estimates [5], or personalized quantification
through explicit error scenarios [6]. These error scenarios are either determined as worst-
case estimates for robust optimization [7,8], or derived from random sampling using
probability distributions to parameterize the uncertainty model (e.g., [9]).

These methodologies, however, are constrained by both the inherent limitations of
the underlying uncertainty model and the computational cost of simulations. A notable
drawback is the implicit nature of the mathematical transformation from input (uncertainty
model) to output (probability distribution over dose or plan metrics), which obscures an
explicit understanding and estimation of the resultant probability distributions [10]. This
opacity has led to a scarcity of precise estimations and parameterizations of probability
distributions over plan metrics [10–13]. Thus, an exploration into more accurate and
computationally efficient statistical frameworks could significantly enhance the analysis of
patient data and potentially lead to more reliable and optimized treatment plans.

An alternative approach to circumvent the limitations of conventional methods is
to employ an analytical methodology to propagate dose uncertainties. The foundational
method employed in this work is termed analytical probabilistic modeling (APM) [14].
Distinct from sampling-based strategies, APM encapsulates a probabilistic dose calculation
algorithm, furnishing closed-form expressions for the moments of the resultant probability
density of absorbed dose, contingent on assorted assumptions embedded in the input un-
certainty model [10,15–17]. This approach markedly enhances computational efficiency by
leveraging the analytical formulation for both uncertainty quantification and probabilistic
optimization. Although the runtimes are highly dependent on the used hardware (CPU or
GPU, number or cores, etc.) and effort in computational optimization, uncertainty propaga-
tion with APM can be performed in seconds to minutes, while uncertainty propagation
with Monte Carlo sampling would take minutes to hours and suffer from statistical noise
(for detailed runtimes of various approaches, see [10,11,18,19]).

A quintessential plan metric in this domain is the dose–volume histogram (DVH) [20].
A DVH condenses the information from the three-dimensional dose distribution into a
cumulative histogram: For a specified volume, such as an organ at risk or the clinical target
volume, the DVH denotes the fraction of the volume of interest that has received a dose
value d̂ or less. This is a cumulative summation of the nominal dose d over the voxels in V.
The nominal DVH point, DVH(d̂; d), is computed as

DVH(d̂; d) =
1
V ∑

i∈V
Θ(di − d̂), (1)

where Θ symbolizes the Heaviside step function (e.g., [13]). In essence, only the voxels
that have received a nominal dose di ≥ d̂ contribute with a weight of 1/V to the sum. It is
axiomatic that 0 ≤ DVH(d̂; d) ≤ 1 as the DVH points represent a fraction.

Past research [13] illustrated how APM could be used to analytically compute the
moments of DVH points, i.e., the volume fraction enveloped at least with a specific dose
d̂. In this investigation, a multivariate normal distribution of the dose over the voxels
was presupposed. However, a closer inspection reveals that this Gaussian model may be
physically contentious, given the volume fraction’s intrinsic constraint to positive values.
Despite this, the Gaussian model was evaluated with patient data, and comparison to
Monte Carlo sampling showed satisfactory results [13].

In this work, our objective is to investigate potentially more adept choices of prob-
ability distributions to model dose and DVH points under uncertainty. We perform an
evaluation of a variety of positive continuous distributions as the marginal probability
density function of the dose over a voxel, juxtaposing them with the empirical distribution
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derived from Monte Carlo sampling. To encapsulate the spatial correlation in dose, we
opt for Gaussian and Ali–Mikhail–Haq Copulas [21,22], as they are a suitable framework
to amalgamate different marginal distributions over individual voxels. Our examination
of dose-distribution assumptions bifurcates into two scenarios: (a) on simulated DVHs
engendered using a one-dimensional prototype constructed atop an open-source “APM
toolbox” [23], and (b) on patient data for a lung case subjected to proton therapy.

2. Materials and Methods

In this section, we introduce the mathematical formulation of APM, accentuating the
computation of the first two moments of DVHs under APM. This includes the introduction
of the probability distributions and Copulas alongside a narrative of the quantitative analysis.

2.1. Analytical Probabilistic Modeling for Radiotherapy Treatment Planning

Analytical probabilistic modeling (APM) for radiotherapy treatment emerged in the
medical physics community through the work of Bangert et al. [14], and has since evolved
through subsequent refinements aimed at enhancing computational performance [10],
adapting to biological-ion planning [24], accommodating varying radiotherapy sched-
ules [16], and extending to encapsulate uncertainty in plan quality metrics [13]. Central to
the APM approach is the reconfiguration of radiotherapy treatment planning algorithms to
enable a closed-form propagation of uncertainties. This transpires through the calculation
of moments of the resultant probability distribution, employing the “law of the unconscious
statistician” [14,25] as the mechanism for computing the expectation value of a function
concerning a random variable. In this section, we provide a brief overview of the APM
concept as it pertains to this work.

In depicting dose deposition through analytical probabilistic modeling (APM), we
divide the patient into V voxels, serving as 3D pixels. To modulate the intensity of a
radiation beam, it is itself discretized into B beamlets composing the radiation field. For a
given beamlet intensity vector w ∈ RB

+, the dose distribution can be represented as a vector
d ∈ RV

+ and computed via the linear transformation d = Dw with a dose–influence matrix
D ∈ RV×B

+ containing the individual, normalized beamlet dose distributions.
When taking into account uncertainties such as positional shifts of the patient, we can

represent these uncertainties as a random vector ∆ ∈ RB, whose realizations form a single
fraction treatment scenario. Then, our dose–influence matrix D becomes a random variable
depending on ∆, propagating the uncertainties further to the dose vector d. APM now
assumes ∆ to follow a multivariate normal distribution and derives closed-form expressions
for computing the elements Dij of the matrix D. Since these expressions can be integrated
against the Gaussian PDF over ∆, one can compute moments such as the expected value
E[Dij] and covariances Cov[Dij, Dkl ] of matrix elements in closed-form as well.

Consequently, APM does not propagate the entire probability distribution, but accu-
rately captures its propagated moments, which is beneficial for radiotherapy treatment
planning [10,14]. The computational complexity of APM on patient cases, however, restricts
it to only the computation of the first and second moments. Thus, any further attempts
to propagate uncertainties to quality metrics reliant on the dose d are confined to the
accuracy and appropriateness of the selected matched distribution over d, given the first
and second moments.

To understand the relevance of the dose–influence matrix D it needs to be added that
in any treatment planning system the values of the beamlet intensity vector w are optimized
so that the dose meets the requirements of the treatment plan. A common, simple objective
function could be formulated as penalized least squares to a prescribed dose d∗ [14],

f (w) = (d(w)− d∗)T P (d(w)− d∗) (2)

where d is the nominal dose, and P = diag(p1, . . . , pV) is a diagonal matrix with user-chosen
penalties for each voxel. Larger penalty values can be set in voxels closer to, or inside,
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organs at risk. A minimizer adjusts the beamlet intensity vector w, recomputes the dose
vector d(w) (using the dose–influence matrix), and reevaluates the objective function f (w)
until it reaches a minimum. The dose–influence matrix then allows for fast computation
of the dose vector d(w) during optimization, and with APM can also be translated to
probabilistic formulations optimizing the expected value of the objective [10,14,16].

2.2. Analytical Probabilistic Modeling of Dose–Volume Histograms

We summarize here only the main results of APM applied to the computation of
dose–volume histograms relevant to this work. The full derivation can be found in
Wahl et al. [13].

Assuming a given distribution of the dose, the expected value of a DVH point can be
computed as [13]

E
[
DVH(d̂; d)

]
=

1
V ∑

i∈V

[
1 − Fdi

(d̂)
]
, (3)

where Fdi
is the marginal CDF of the dose at voxel i.

Furthermore, the variance in a DVH point can be computed as [13]

Var[DVH(d̂; d)] = E
[
DVH(d̂; d)2

]
− E

[
DVH(d̂; d)

]2
,

=
1

V2 ∑
il∈V

[
1 − Fdil

(d̂, d̂)
]
−

{
1
V ∑

i∈V

[
1 − Fdi

(d̂)
]}2

, (4)

where the first term represents the second moment of a DVH point, with Fdil
being the

marginal bivariate CDF of the dose at voxels i and l.
An alternative approach for calculating the moments of DVH points, instead of using

APM, is to generate Monte Carlo simulations of d. This method involves sampling the
uncertainty vector ∆ ns times from a Gaussian distribution. For each sample s, the nominal
dose vector ds is computed as the product Dsw, where Ds is the dose–influence matrix
specific to sample s. Through this Monte Carlo technique, the expected value of a DVH
point is estimated using the sample mean, while the variance is determined from the sample
variance. However, this approach can be computationally intensive, especially for large
numbers of voxels and beamlets. In our study, we utilize this Monte Carlo method as a
reference for comparison against the APM-derived moments of the DVH points.

2.3. Probability Distribution Models

As highlighted in Section 1, previous studies using APM conceptualized the dose dis-
tribution as a multivariate Gaussian [13], denoted by d ∼ N (µ, Σ). Theoretically, adopting
a Gaussian model for dose distribution is somewhat challenging to justify, considering
already the simple fact that dose values should be confined to R+, whereas a Gaussian
distribution encompasses the entire real lineR. Nevertheless, empirical evidence, as demon-
strated in Wahl et al. [13], has shown that the Gaussian model is sufficiently accurate for the
practical computation of probabilistic DVHs. In our current research, we aim to investigate
alternative models for dose distribution to enhance our understanding and improve the
accuracy of dose-distribution modeling.

In the computation of the expectation value of DVH points, Equation (3) necessitates a
model for the marginal univariate CDFs. To this end, we examine various distribution types,
including Gaussian, log-normal, four-parameter beta, gamma, and Gumbel distributions.
The PDFs under consideration are continuous, which is a prerequisite for using them as the
marginal PDFs of Copulas. As the common choice, the Gaussian normal distribution serves
as the benchmark. The Gumbel distribution, as an extreme-value distribution, is tested due
to its ability to model skewness in combination with a one-sided tail, possibly representing
few extreme high dose values. Since those distributions have real support, the gamma and
log-normal distributions could provide alternatives supported only on the positive real line
R+. Finally, the four-parameter beta distribution is chosen for its versatility. The selected
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distributions, thus, allow the influence of the support of the distribution in modeling the
dose to be evaluated, challenging the Gaussian assumption.

Moreover, for calculating the variance in DVH points, Equation (4) requires analytical
expressions for bivariate CDFs. In addressing this, we employ Copulas [22] to construct
bivariate CDFs by merging different marginal PDFs. Consider the dose in voxel i, denoted
as di, with its marginal CDF Fdi

, and similarly, the dose in voxel l, dl , with its marginal CDF
Fdl

. We generate uniformly distributed random variables ui and ul through the probability
integral transform:

ui = Fdi
(di),

ul = Fdl
(dl).

(5)

Subsequently, the bivariate CDF is constructed using the Copula Cθ :

Fil(di, dl) = Cθ(ui, ul), (6)

where θ represents the Copula parameter, selected to match the correlation coefficient
between di and dl . Our exploration includes two types of coupling functions Cθ : the
Gaussian and the Ali–Mikhail–Haq [21] Copulas. The Gaussian Copula is defined as

CGauss
θ (ui, ul) = Φθ(Φ−1(ui), Φ−1(ul)), (7)

where Φ−1 is the inverse CDF of a standard normal distribution, and Φθ is the bivariate
CDF of a normal distribution with a mean vector of zero and covariance matrix with
elements Σ11 = Σ22 = 1 and Σ12 = Σ21 = θ. Notably, setting θ to the correlation coefficient
between di and dl renders the Gaussian Copula with Gaussian marginals equivalent to the
bivariate CDF of a (multivariate) Gaussian distribution.

The Ali–Mikhail–Haq Copula, a member of the Archimedean Copula family, is defined
as follows [21]:

CAMH
θ (ui, ul) =

ui ul
1 − θ(1 − ui)(1 − ul)

. (8)

Our selection of these two Copula models is motivated by their clear relationship
between the Copula parameter θ and the correlation between di and dl . It is noteworthy
that in both models, when the correlation coefficient equals zero, the equation simplifies to
C0(ui, ul) = ui ul , which aligns with the expected behavior of independent variables.

Finally, we explore the use of beta distributions for modeling Monte Carlo-sampled
distributions of DVH points, and compare them with the Gaussian distributions. The ra-
tionale for considering a beta distribution is compelling: let us focus on a DVH point at
a specific dose d∗. For a voxel within a VOI, if its dose d is greater than or equal to d∗ (or
less than d∗), it is counted towards (or excluded from) the computation of the respective
relative volume. This scenario can be likened to a success (or a failure) in a Bernoulli exper-
iment. Ideally, if DVH points were independent, such a setup would naturally align with a
Bernoulli process, making the beta distribution an ideal fit since it represents the proba-
bility distribution of success in this context. However, in practical terms, the voxel-based
Bernoulli experiments tend to be interdependent.

2.4. Testing of the Models

Our initial evaluation of various dose-distribution assumptions is conducted using
simulated DVHs on a one-dimensional prototype. This prototype is developed using the
open-source “APM toolbox” [23], which facilitates the creation of simple, low-dimensional
geometrical configurations for experimental purposes. The prototype’s analyzed volume
extends from −50 mm to 50 mm. It includes a cancerous volume of interest (VOI) spanning
from −20 mm to 20 mm, and a healthy VOI extending from 20 mm to 40 mm. The setup
consists of 100 voxels, equating to one voxel per millimeter. A prescribed dose of 1 Gy is
administered to the target VOI. In our analysis, we specifically consider the scenario where
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uncertainties in the pencil-beam positions are perfectly correlated, representing a realistic
approximation for solid translations of the patient.

In the subsequent phase of our study, we assess the proposed models using a patient
lung case treated with proton therapy. To streamline our analysis, namely, to minimize com-
putation time and simplify the geometry, we employ a single anterior beam with a gantry
angle of 0◦. This approach is based on previously established reference dose distributions
and corresponding error scenarios detailed in Wahl et al. [26]. These reference data were
computed using the open-source radiation treatment planning software matRad [24], which
allows for a comprehensive and precise evaluation within the context of proton therapy.

For the patient lung case, we additionally introduce and analyze an extra model,
termed the “resampled Gaussian”. This model is derived by generating 100 random
multivariate Gaussian samples of the dose, using the mean and standard deviation extracted
from the Monte Carlo samples. This inclusion allows for a comprehensive comparison
of the models, assessing their ability to replicate the statistical properties observed in the
sampled data.

In both simulated scenarios and actual data assessments, we evaluate the accuracy of
the dose uncertainty models by comparing them against Monte Carlo samples. The efficacy
of the various marginal distributions in accurately representing the sampled marginal
histograms is examined using Pearson’s chi-square goodness-of-fit test. The test statistic is
built as

χ2 = ∑
j

(
sj − mj

)2

mj
, (9)

where j runs over the histogram bins, sj represents the sampled value of the histogram
bin, and mj represents the modeled value. The test statistic follows approximately a
χ2 distribution when the number of entries is large [27]. While the chi-square test is a
binned approach, and thus, has certain limitations, we opt for it due to the distribution
independence of its test-statistic, unlike other unbinned goodness-of-fit tests such as the
Kolmogorov–Smirnov or Anderson–Darling tests. Additionally, we assess the overall
impact on the DVHs by comparing the mean and standard deviation of the DVH points
derived from the Monte Carlo samples with those obtained using different uncertainty
models (calculated via Equation (3) and Equation (4), respectively).

3. Results

As detailed in Section 2.4, we evaluate the dose uncertainty models and their impact
on dose–volume histograms; first, in the artificial one-dimensional scenario, and then, on a
patient lung case.

3.1. Artificial One-Dimensional Case

Figure 1 illustrates the one-dimensional artificial geometry with two one-dimensional
dose distributions for a conventionally optimized plan and a plan optimized to be robust
against uncertainties. We employed a perfectly correlated, multivariate Gaussian model to
represent the uncertainty in the beamlet coordinates.

The illustration reveals that probabilistic optimization more effectively encompasses
the target VOI, albeit at the cost of increased dose in the healthy VOI. Notably, in the
transitional region between the VOIs, the expected dose value is lower than the nominal
dose for both optimization methods. This outcome underscores the robustness of the proba-
bilistic optimization approach, demonstrating how accurately accounting for uncertainties
is crucial in enhancing the quality of the treatment plan.
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Figure 1. Artificial one-dimensional lateral geometry. The cancerous target VOI is shaded in blue
while the healthy VOI is in red. Solid lines represent probabilistically optimized values, while dashed
lines represent conventionally optimized values. In blue, we can find the nominal dose, in red the
expected dose, and in yellow the standard deviation of the dose.

To determine the most suitable probability distribution for the marginal PDFs of
the dose, we generated 1000 Monte Carlo samples for each voxel’s dose. Figure 2 dis-
plays the dose distributions at three distinct locations: (a) near the center of the target
VOI (x = 4.5 mm), (b) at the midpoint of the healthy VOI (x = 25.8 mm), and (c) out-
side both VOIs (x = 31.8 mm). For each scenario, Gaussian, log-normal, four-parameter
beta, gamma, and Gumbel distributions are also plotted. The parameters of these dis-
tributions are not fitted; instead, they are determined using the method of moments to
align the mean µ and standard deviation σ with those of the dose at the respective voxel.
Specifically, for the Gumbel distribution, the method of moments derivation is detailed
in Mahdi and Cenac [28]. The minimum and maximum values for the four-parameter beta
distribution are set to max(0, µ − 1.25 σ) and µ + 1.25 σ, respectively, within the target VOI,
and to 0 and max(1, µ + 1.25 σ) outside the target VOI and in its outermost 20%.

(a) (b)
Figure 2. Histogram of Monte Carlo samples of the dose, and different marginal dose PDF models,
for a voxel in (a) the center of the target VOI, and (b) in the center of the healthy VOI. In (a), the
Gaussian, log-Gaussian, and gamma distributions overlap almost completely, such that a visual
distinction is not possible.

Figure 2a,b suggests that the four-parameter beta distribution better reflects the sam-
pled dose histograms in the healthy VOI (c.f. Figure 2b). The performance of all distri-
butions in the target VOI is nevertheless poor. It should be noted that for the majority
of voxels, most distributions fail to pass a chi-square goodness-of-fit test, even at the 1 σ
significance level. The goodness-of-fit results can be found in more detail in Appendix A.1.
The dose distribution, particularly at the center of the target VOI, exhibits a tri-modal
nature, making it challenging to accurately model with two-parameter distributions, in-
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cluding the four-parameter beta distribution, which can only adapt to certain bi-modal
distributions. This behavior is a consequence of assuming perfect correlation between
beamlets. In scenarios with uncorrelated beamlets, the dose distributions at the center of
the target VOI tend to resemble Gaussian distributions more closely.

The patterns observed in Figure 2 are indicative of a broader trend across the analyzed
volume. Specifically, within the central span of the analyzed volume, [−40 mm, 40 mm],
most distributions fail to fit the sampled histograms, but the four-parameter beta distribu-
tion provides a more reasonable approximation of the dose distribution, specially in the
healthy region. While it is not invariably the case, this distribution frequently emerges as
the one minimizing the chi-square value within this central region (even if the latter is still
considerably sub-optimal).

3.2. Patient Lung Case

Figure 3 shows a computer tomography scan of a publicly available lung cancer
case from The Cancer Imaging Archive (TCIA), with the purple contoured internal target
volume (ITV) representing the target VOI and the esophagus being a healthy VOI in green.
The deposited dose is also depicted in color scale.

Figure 3. Computer tomography of the lung case used in this work. The internal target volume is
marked in purple and the esophagus in green. The deposited dose is shown in color scale.

For the patient case, uncertainties in the positions of the beamlets were randomly
sampled to generate 100 Monte Carlo samples of the dose at each voxel, as outlined
in Wahl et al. [26]. Consequently, Figure 4 illustrates the sampled and modeled dose distri-
butions for a voxel within the ITV (shown in Figure 4a) and for a voxel inside the esophagus
(depicted in Figure 4b). The parameters of the distributions are determined not through
fitting but by applying the method of moments to the sample mean and variance. For pa-
tient data, the bounds of the four-parameter beta distribution are set to max(0, µ − 3 σ) and
µ + 3 σ, with µ representing the mean and σ the standard deviation of the dose distribution
at the respective voxel.

Similar to the artificial case, we calculate the chi-square statistic for each distribution
at every voxel. Although no distribution distinctly outperforms others in terms of fit, we
observe the same tendency as in the one-dimensional case, i.e., the four-parameter beta
distribution is mostly favored, in particular in the healthy VOI. Moreover, akin to the
simulation results, the majority of distributions fail to pass the chi-square goodness-of-fit
test at a 1 σ significance level for most voxels. Although the goodness-of-fit results are
considerably better than for the artificial case, there is still no distribution that fully captures
the sampled data, as detailed in Appendix A.2. Despite this, we construct a “mix” of the
most suitable marginal PDFs, selecting from the set that minimizes the chi-square test
statistic at each voxel.
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(a) (b)
Figure 4. Histogram of Monte Carlo samples of the dose, and different marginal dose PDF models,
for a voxel in (a) the ITV, and (b) the esophagus. In (a), the Gaussian, log-Gaussian, and gamma
distributions overlap almost completely, such that a visual distinction is not possible.

In order to evaluate and compare the efficacy of all the different models we tested,
Figure 5 presents the absolute values (top panels) and differences to the Monte Carlo
sampled values (bottom panels) in both the mean and standard deviation of the DVH
points (i.e., volume fractions) as computed under each model (using Equation (3) and
Equation (4) respectively).
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(d)
Figure 5. Comparison of the performance against Monte Carlo sampling of the different models.
(a) Absolute values of the mean DVH points (top) and difference to sample mean (bottom) in the
ITV. (b) Same as (a) but for the esophagus. (c) Absolute values of the standard deviation of the
DVH points (top) and difference to sample standard deviation (bottom) in the ITV. (d) Same as (c)
but for the esophagus. The proposed models are Gaussian resampling, or a Copula (Gaussian or
Ali–Mikhail–Haq) in combination with Gaussian, log-normal, four-parameter beta, gamma, Gumbel,
or a “mix” of the best-fitting marginal PDFs (see text for details).

The analysis presented in Figure 5a,b highlights that the Gaussian, gamma, and four-
parameter beta distributions exhibit the smallest biases, within a range of ±5 % vol. Sim-
ilarly, the resampled Gaussian model also demonstrates a minimal bias, falling within
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the same ±5 % vol. range. Notably, the most significant biases are observed in regions
proximal to the prescribed dose value. An important observation from these results is
the insensitivity of the outcomes to the choice of Copula model. This can be attributed to
the fact that in the calculation of the DVH mean, as referenced in Equation (3), only the
univariate marginal CDFs are utilized, which elucidates why the Copula model selection
does not impact these results.

Figure 6 offers a comparative analysis between Gaussian and beta distribution models,
juxtaposed with the sampled distribution of DVH points. Specifically, in Figure 6a, at a dose
of 1.7 Gy for the ITV, the beta distribution clearly outperforms the Gaussian model in terms
of accuracy. On the other hand, Figure 6b, depicting a dose of 1.4 Gy for the esophagus,
illustrates that both Gaussian and beta distributions are viable models, albeit with some
limitations. Notably, neither model consistently passes the chi-square goodness-of-fit test
at the 1 σ significance level. This can be appreciated in more detail in Appendix A.2. Both
distributions particularly fail to reproduce the sampled distribution when the latter is
heavily one-sided (typically in the target volume). Furthermore, an interesting observation
is made for the DVH points of the ITV; the Gaussian model occasionally passes the chi-
square test, but the residuals exhibit a discernible pattern, indicating non-randomness. This
suggests that despite meeting the criteria of the goodness-of-fit test, the Gaussian model is
not a good representation in this context.

(a) (b)
Figure 6. Sampled and modeled distributions of a DVH point (a) in the ITV, and (b) in the esophagus.
The tested models are a Gaussian and a beta distribution.

4. Discussion

The primary objective of this study was to explore realistic models describing cumula-
tive histograms arising as so-called DVHs in radiotherapy. We based our work on previous
approaches relying on APM [13,14], interpreting the computation of the DVH as a series of
Bernoulli experiments on uncertain dose values. With this interpretation, uni- and bivariate
CDFs are required for computation of mean and variance in the DVH bins.

The integration of Copulas in constructing bivariate CDFs offers the flexibility to fuse
different marginal PDFs. This approach is particularly beneficial in accurately representing
the joint distribution of voxels across various sections within a volume of interest (VOI),
potentially enhancing the precision (compared to the standard multivariate Gaussian [13])
and applicability of DVH models in medical physics.

Explicit modeling of uncertainty in (cumulative) histograms, including closed-form
propagation from the underlying data, seems to remain an exotic task. In the search for com-
parable approaches, only a few published works in other fields for specialized cases could
be identified. For example, Vermeesch [29] derives a frequentist and Bayesian approach to
quantify uncertainties in categorical histograms as well as histograms representing time
series—approaches which do not directly translate to this work. Supposedly it is often
straightforward to compute “error bars” by sampling from the underlying data, or the
histograms count realizations of an independent random variable, where Poisson noise
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may be directly assumed. In the context of radiotherapy, however, independence is not
given, and the creation of a treatment plan and corresponding uncertainty modeling may
be time-critical, raising the need for explicit models.

In our analysis of the one-dimensional artificial geometry, as well as of the patient
lung case, the four-parameter beta distribution could improve modeling of the uncertain
dose distribution across voxels within both the cancerous and healthy VOIs (more suc-
cessful in the latter). This distribution, unlike the Gaussian, is capable of capturing the
potentially multi-modal and skewed characteristics. However, no distribution was capable
of consistently passing a goodness-of-fit test at the 1 σ significance level (especially in the
artificial case). The ability of the four-parameter beta distribution to describe more complex,
skewed, often multi-modal dose distributions is noteworthy, but significant improvements
are still needed to appropriately model the dose distributions. Considering that in the liter-
ature the only tested distribution for the dose-distributions underlying DVH computation
are normal, triangular, or uniform distributions [13,30,31]—and thus, neither skewed nor
multi-modal—these results constitute a first step towards a more accurate description of
the dose distribution.

As a minor technical remark, the minimum and maximum values for the four-
parameter beta distribution were set based on the mean (µ) and standard deviation (σ) of
the voxel dose distribution. The selection of these bounds for the distribution’s support
was somewhat arbitrary and could be subjected to further scrutiny, yet we found that they
aptly represented the simulated dose distributions.

For the patient lung case, to determine the most effective mix of distributions—that
is, the combination of probability density functions (PDFs) that minimizes the chi-square
test statistic at each voxel—we employed a chi-square goodness-of-fit test. However, this
approach has its limitations. For instance, a distribution might exhibit a low chi-square
value but still have very non-random residuals, indicating that the distribution, despite
a favorable test statistic, may not be an accurate model. In other words, the process of
identifying the best mix could be further refined for greater accuracy. Nevertheless, similar
to our findings in the simulations, most tested distributions frequently failed the goodness-
of-fit test. We suggest that even with a more optimized approach to determining the best
mix, the overall impact on the results may not be substantial.

The application of Copulas allowed us to build the required bivariate CDFs from
different (continuous) correlated marginal PDFs. Despite Copulas being a highly versatile
approach, we found that the Copula models did not outperform the multivariate Gaussian
model (or, equivalently, the model of a Gaussian Copula with Gaussian marginal PDFs).
Specifically, the best mix of marginal PDFs combined with a Gaussian Copula did not
demonstrate any significant advantage over the multivariate Gaussian model in accurately
describing the DVH moments. DVHs derived from Gaussian resampling showed a similar
pattern to those from the multivariate Gaussian model, with minor discrepancies mainly
noted in the calculated standard deviation. The most effective models, exhibiting a bias
within ±5 % vol. of the Monte Carlo mean for the DVH mean values, include the resampled
Gaussian, and the Gaussian Copula with Gaussian, gamma, and four-parameter beta
marginals, all of which approximate the standard deviation within a ±10 % vol. range.
Notably, the most substantial deviations from the Monte Carlo-derived DVH mean or
standard deviation were observed at the prescribed dose level. Additionally, our findings
suggest that the Ali–Mikhail–Haq Copula tends to underperform relative to the Gaussian
Copula, particularly in terms of underestimating the standard deviation.

In terms of generalization, the investigation of a single case in this work does not allow
extrapolation to other cases. With the same irradiation setup and treatment site we may
expect similar results, but the effect of changes to beam arrangements, the input uncertainty
model, or anatomy cannot easily be predicted.

For example, the correlation between voxel doses is highly dependent on the cor-
relation assumptions on the input uncertainties (i.e., patient displacement, anatomical
variations, machine delivery uncertainty) [10,17]. In our simulations, we opted to model
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our uncertainty as patient shifts, which entails perfect correlation of all beamlets constitut-
ing a beam for irradiation. Future research may include additional sources of uncertainty,
resulting in more complex correlation patterns in the input uncertainty model. Here, our
approach may offer some guidance on how to represent the resulting voxel dose PDFs
and CDFs and directly propagating them through the DVH calculation. Further, the APM
approach allows for computation of higher moments [14], which would be beneficial to
determine the shape of the marginal PDFs or covariances more accurately. However, the in-
creased computational cost required for these calculations is currently the limiting factor
prohibiting such calculations.

In an attempt to accurately represent Monte Carlo-sampled distributions of DVH
points, we explored the use of the physically motivated beta distributions and compared
them with the standard assumption of Gaussian distributions. As expected, the voxel-
based Bernoulli experiments tended to be interdependent, which complicates the modeling
process and prevents the beta distribution from being an exact fit. Despite these challenges,
and the fact that the beta distribution does not consistently clear the bar of a goodness-
of-fit test at the 1 σ significance level, our observations indicate that it provides a better
description of the distribution of sampled DVH points compared to a Gaussian model. This
suggests that, while not perfect, the beta distribution offers a more nuanced and potentially
more accurate representation of DVH-point distributions in our analysis.

Finally, our findings suggest that while the four-parameter beta distribution may be
useful to model uncertainty in the dose distribution, their fits have not yet proven accurate
enough to be employed in practice. The tested Copula models, which in this work did
not outperform the bivariate Gaussian benchmark, still can constitute a straightforward
way to build bivariate CDFs under different marginal PDFs, allowing us to employ specific
features of the marginal probability densities in implicit modeling. For the future, consid-
ering more sources of input uncertainty and other anatomies or even in other scientific
field, our work may demonstrate various modeling tools for computation of cumulative
histograms from uncertain data. Another advantage, not explored in this work, is that the
analytical approach of modeling these uncertainties enables, for example, the computation
of derivatives. In the case of radiotherapy treatment planning, this could allow efficient
optimization of dose subject to a confidence interval for a DVH point, thus rendering
the treatment plan quantifiably robust (compare [32–34], who apply such methods using
empirical DVH uncertainty estimates).

Consequently, we consider the approach itself valuable for general investigations into
how uncertain data can be evaluated using probabilities in cumulative histograms.

5. Conclusions

Our study explored and compared various models for accurately describing DVH-
point distributions within the context of medical physics and radiation therapy planning.
While the four-parameter beta distribution showed a promising ability to capture the
complexities of dose distributions within VOIs, it faced challenges in consistently passing
goodness-of-fit tests (along with other tested models). The multivariate Gaussian model and
its equivalent, the Gaussian Copula with Gaussian marginal PDFs, although not consistently
outperforming the more complex Copula models, demonstrated reliable performance in
most scenarios. Notably, the beta distribution provided a closer approximation of the
Monte Carlo-sampled DVH points than the Gaussian, underscoring its potential utility
despite some limitations.

This work highlights the intricate interplay between dose-distribution characteristics
and the statistical models used to represent them, emphasizing the need for continued
research and development of more nuanced and robust models. In particular, a better
understanding of the influence that the inter-voxel correlation has in the dose distributions
is clearly needed. Such advancements are crucial in enhancing the accuracy and reliability
of DVH predictions, ultimately contributing to improved treatment planning and patient
outcomes in radiation therapy.
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Appendix A. Goodness-of-Fit Results

Appendix A.1. Artificial One-Dimensional Case

Figure A1 summarizes the results of the χ2 divided by the number of degrees of
freedom (χ2/ndf, also known as reduced χ2) computed from the χ2 goodness-of-fit test
of the different marginal dose PDF models on the histograms of Monte Carlo samples of
the dose for the artificial one-dimensional case. The values are presented as a box plot
with whiskers, where the box extends from the first quartile (Q1) to the third quartile (Q3)
of the data (black box), with the median marked as an orange line. The whiskers (black
lines with caps) extend to the farthest data point lying within 1.5 times the inter-quartile
range (IQR = Q3 − Q1) from the box. Points outside of the whiskers are represented
separately (circles). As a rule of thumb, a χ2/ndf value close to 1 corresponds to a good fit,
a larger (smaller) value indicates under- (over-)fitting, and a value well above 1 indicates
poor fitting. Figure A1a corresponds to all voxels in the target VOI, while Figure A1b
corresponds to all voxels in the healthy VOI. Figure A1a,b evidences how no model,
not even the conventionally used Gaussian, is capable of consistently and appropriately
modeling the sampled distributions, as the χ2/ndf values are well above 1. Although the
four-parameter beta distribution presents a median χ2/ndf closer to 1 (with respect to the
other models) in both the target VOI and specially in the healthy VOI, it is still a poorly
fitting model. For completeness, Table A1 shows the five characteristic values of the boxes
(Q1 − 1.5 IQR, Q1, median, Q3, Q3 + 1.5 IQR) for the five tested distributions (Gaussian,
log-Gaussian, four-parameter beta, gamma, and Gumbel) for both the target and healthy
VOIs in this artificial one-dimensional case.
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Figure A1. Box plot (see text for details) of the χ2/ndf of the goodness-of-fit test of marginal dose
PDF models on the histograms of Monte Carlo samples of the dose in the artificial one-dimensional
case. (a) Values for all voxels of the target VOI; (b) values for all voxels of the healthy VOI.

Table A1. One-dimensional artificial case: Q1 − 1.5 IQR, Q1, median, Q3, and Q3 + 1.5 IQR of the
distribution of χ2/ndf for the five tested distributions for the target and healthy VOIs. These values
correspond to those plotted in Figure A1.

Volume Distrib.
Q1 −

1.5 IQR Q1 Median Q3
Q3 +

1.5 IQR

Target Gauss 17.40 36.67 55.87 71.89 118.59
LogGauss 17.41 36.71 57.87 71.65 117.84
4-par Beta 16.24 31.92 51.19 75.92 113.13
Gamma 17.44 36.72 57.90 71.79 118.14
Gumbel 17.33 41.46 63.24 111.84 200.66

Healthy Gauss 13.09 24.66 70.34 149.15 268.53
LogGauss 11.13 15.07 32.02 51.36 65.03
4-par Beta 1.60 6.07 16.66 44.57 92.52
Gamma 2.63 8.62 18.67 49.72 69.82
Gumbel 16.26 38.67 158.45 328.18 350.33

Appendix A.2. Patient Lung Case

Figure A2 shows the box plot with whiskers of the χ2/ndf for the patient lung case
(analogous to Figure A1 for the artificial one-dimensional case). Figure A2a corresponds
to all voxels in the internal target volume, while Figure A2b corresponds to all voxels
in the esophagus (the healthy VOI). Similar to Figure A1, Figure A2a,b shows how the
tested models do not fully capture the distribution of the Monte Carlo samples of the
dose, as the χ2/ndf values are above 1. In this case, all χ2/ndf values are closer to 1
compared to Figure A1. Although no single distribution clearly outperforms the others,
the four-parameter beta distribution fits the sampled values better, particularly in the
healthy VOI, yet it does not fully capture the complexity of the sampled distributions.
The values presented in Figure A2 can be found in Table A2.
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Figure A2. Box plot (see text for details) of the χ2/ndf for the goodness-of-fit test of marginal
dose PDF models on the histograms of Monte Carlo samples of the dose in the patient lung case.
(a) Values for all voxels of the internal target volume, and (b) values for all voxels of the esophagus
(the healthy VOI).

Table A2. Patient lung case: Q1 − 1.5 IQR, Q1, median, Q3, and Q3 + 1.5 IQR of the distribution of
χ2/ndf for the five tested distributions, for the internal target volume and for the esophagus (healthy
VOI). These values correspond to those plotted in Figure A2.

Volume Distrib.
Q1 −

1.5 IQR Q1 Median Q3
Q3 +

1.5 IQR

Target Gauss 0.05 1.70 3.44 7.58 16.37
LogGauss 0.06 1.72 3.56 8.02 17.45
4-par Beta 0.09 1.48 2.63 4.76 9.67
Gamma 0.06 1.72 3.49 7.91 17.20
Gumbel 0.08 2.25 4.74 9.99 21.58

Healthy Gauss 0.10 1.65 4.07 9.43 21.04
LogGauss 0.08 1.47 2.84 5.79 12.01
4-par Beta 0.11 1.06 1.70 2.97 5.78
Gamma 0.06 1.11 2.36 6.14 13.66
Gumbel 0.25 2.74 7.65 12.46 26.30

Finally, Figure A3 shows box plots with whiskers of the χ2/ndf values corresponding
to the goodness-of-fit test of the Gaussian and beta distributions to the sampled DVH points
for the patient lung case. The plotted values are also summarized in Table A3. In this case,
the goodness-of-fit results are generally better. The beta distribution performs better than
the Gaussian in the target volume, while in the healthy volume the performance is similar
in terms of this goodness-of-fit test: the median values are both close to 1, and the Gaussian
presents a larger upper tail, while the beta presents a larger lower tail. Nevertheless,
because the Gaussian distribution presents structured, non-random residuals, the beta
distribution is overall more appropriate in both the healthy and target VOIs.
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Figure A3. Box plot (see text for details) of the χ2/ndf for the goodness-of-fit test of of the Gaussian
and beta distributions to the sampled DVH points in the patient lung case. (a) Values for all voxels of
the internal target volume, and (b) values for all voxels of the esophagus (the healthy VOI).

Table A3. Patient lung case: Q1 − 1.5 IQR, Q1, median, Q3, and Q3 + 1.5 IQR of the distribution of
χ2/ndf for the beta and Gaussian distributions, for the internal target volume and for the esophagus
(healthy VOI). These values correspond to those plotted in Figure A3.

Volume Distrib.
Q1 −

1.5 IQR Q1 Median Q3
Q3 +

1.5 IQR

Target Gauss 0.74 2.50 5.15 16.88 20.55
Beta 0.35 1.14 1.67 2.65 3.85

Healthy Gauss 0.39 0.77 0.97 2.02 3.41
Beta 0.00 0.87 1.07 1.67 2.66
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