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Abstract: Lindera benzoin is a dioecious understory shrub native to eastern North America. Northern
spicebush is a beautiful shrub with a natural round shrub shape, golden-yellow fall foliage, attractive
bright red drupes, and precocious yellow flowers in early spring; however, its market value as an
ornamental value has been overlooked. To improve the ornamental values of this under-cultivated
nursery crop, breeding for a better compact form, larger leaves, enlarged flower clusters and fruit, and
increased stress tolerances could all be beneficial. Polyploidy manipulation is a valuable method to
improve such traits for many ornamental plants. This study established the genome doubling method
by oryzalin-infused solid agar treatment on young northern spicebush seedlings. The seedlings of
two wild populations in North Carolina were collected and used. A total of 288 seedlings were
treated with solid agar containing 150 µM oryzalin for 24, 72, and 120 h. The results were sporadic in
their survival ratios and tetraploid conversion ratios between different treatments; however, a total of
16 tetraploid L. benzoin plants were produced in this study. The 24-h treatment showed the optimal
result, with 7.1% of total treated seedlings or 15.2% of surviving seedlings converted into tetraploids.
Tetraploid plants had visible differences in leaf morphology, a statistically significant enlarged
stomata size, and reduced stomatal density compared to diploid plants. This research provides ploidy
manipulation information for all future breeding processes of L. benzoin and related species.

Keywords: ploidy manipulation; polyploidy; autotetraploid; hybrid barrier; cytogenetics;
autotetraploidization; native nursery crop; medicinal plant

1. Introduction

Lindera spp. are of the Lauraceae family, comprising 55 genera and over 2000 species
that often have aromatic, medicinal, nutritional qualities, and essential oil contents (Azhar
and Salleh, 2020). Approximately 100 Lindera species are distributed between tropical
and temperate regions in Asia and North America [1]. Northern spicebush, L. benzoin,
has a broad native range and environmental adaptability. The native range of northern
spicebush extends across the east coast of North America and is distributed from Maine
and Ontario to Florida and west to Texas and Kansas [2]. In the wild, northern spicebush
can be found in “stream margins or alluvial woods and on basic rock” [3]. Northern
spicebush’s natural habitats consist of stream sides, low moist woodlands, valley bottoms,
drainage areas in wooded hillsides, and at the base of cliffs and bluffs [4]. The naturally
high adaptability in various environments implies the potential of the northern spicebush
to be an easy-to-cultivate landscape plant used in a wide range of conditions.

Lindera benzoin, a northern spicebush, has exceptional potential in gardens and land-
scapes because of its ornamental value [5]. Northern spicebush is a dioecious or polyg-
amodioecious understory shrub with axillary umbellate clusters of fragrant yellow flowers
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that appear from March to April and glossy, bright-red, spicy drupes that are present
from August to September in North Carolina [3]. The plant grows upright at first and then
horizontally, resulting in a dense, round, oval outline [6]. Lindera benzoin has thin, glabrous,
deciduous leaves that are sparsely pubescent on the abaxial surface [5]. The alternate-simple
leaves that are light green in summer and gold-yellow in fall also contribute to the northern
spicebush’s ornamental value [6]. In a suitability survey of Northeastern U.S. native shrubs
as replacements for invasive plants by the uniformity of shape and density of foliage,
Lindera benzoin scored the second highest in aesthetic quality among eight shrub species [6].

In addition to ornamental and landscaping values, northern spicebush is also noticed
as a functional crop because of its culinary [7] and potential medicinal qualities [8]. Multi-
ple native American nations have a long history of using northern spicebush for multiple
purposes, including using it as a tonic, miscellaneous remedy, gynecological aid, sexually
transmitted disease aid, respiratory disease aid, antirheumatic aid, and dermatological
aid [8–11]. The active compounds for the potential medicinal effect are relatively unknown;
however, 39 components were identified in the essential oil extracted from the leaves, twigs,
and fruits of Lindera benzoin [7]. Several bioactive compounds were extracted from this
plant, including y-lactones (isolinderanolide, isolinderenolide, and linderanolide), obtusi-
lactones (isoobtusilactone A, obtusilactone A, isoobtusilactone, and obtusilactone), and
(6Z,9Z,12Z)-pentadecatrien-2-one, (6Z,9Z)-pentadecadien-2-one, and (+)-(Z)-nerolidol [12].
Some compounds from a related species, L. obtusiloba, are notable for their therapeutic
potential of antioxidative and pharmacological properties, which were also found in north-
ern spicebush [13]. Three bisabolene sesquiterpenes isolated from L. benzoin leaves were
observed to reduce the pro-inflammatory prostaglandin E2 formation in A549 cells [14].
At least 341 constituents, including sesquiterpenoids, alkaloids, butanolides, lucidones,
flavonoids, and phenylpropanoids, were discovered in Lindera plants, and many of them
have shown their potential in anticancer, antinociceptive, antiarthritic, and antinocicep-
tive [15]. Although many historical usages, phytochemistry, and in vitro research indicated
the medicinal potential of Lindera, more research in animal models and at the clinical level
is needed.

Environmental resilience, low pest pressure, and stabilization contribute to the north-
ern spicebush’s potential in environment-friendly gardens and landscapes [16]. It has an
open form as an understory shrub; northern spicebush can grow from full sun to shady
spots; however, in full sun, it takes a more compact, dense form [17]. Spicebush leaves
are among the first to emerge in the spring or late winter compared to other plants, which
implies that they can be one of the few food sources for many animals in late winter [16].
Ecologically, the leaves and seeds of L. benzoin are a food source for more than 20 species
of animals, including birds, rabbits, raccoons, and opossums [18]. In addition, the north-
ern spicebush is an essential larval host of the spicebush swallowtail, Papilio troilus, and
the eastern tiger swallowtail, Papilio glaucus [5]. Biochemical defenses within the leaves
often deter deer, contributing to their proliferation, even in populated areas [18]. Their
strong, wet-tolerant root system is also believed to prevent soil erosion around streams and
rivers [16]. Although northern spicebush was reported to be susceptible to white-tailed
deer (Odocoileus virginianus) damage, fast recovery ability was also reported [6]. As a
U.S. native plant with various ecosystem importances, wide light adaptability, and low
significant disease issues, L. benzoin is excellent for U.S. landscaping and gardens. These
characteristics are conducive to this plant’s widespread use in different spots, and it has a
unique niche in the landscaping market.

Polyploid manipulation is a widely used tool in ornamental plant and medicinal plant
breeding. Increasing ploidy frequently results in morphological changes such as “thicker,
darker-colored leaves; larger, longer-lasting flowers and thicker petals; enhanced vigor;
improved tolerances to environmental stresses, pests, and pathogens; increased metabolite
production” [19]. In many ornamental plants, larger flower size was reported to correlate
to higher ploidy levels, including Hibiscus [20,21], hybrid Euphorbia [22], Lagerstroemia
indica [23], and Impatiens spp. [24]. Compared to its diploid clone, which has a more
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compact habit, larger leaves were also found in tetraploid plants, ex. Hibiscus acetosella [25],
chinese privet, Ligustrum sinense [26], and Rhododendron [27]. Thicker and darker foliage was
also a common trait of induced polyploid plants, for example, Lagerstroemia indica [23,28],
petunia [29], and Taraxacum kok-saghyz [30]. Enlarged flowers were also frequently reported
in polyploidy induction research, including Cyclamen [31], Plectranthus × hybrida [32], and
Hibiscus × hybrida [21]. Fruit size changed through ploidy manipulation is rarely discussed
in ornamental plants; however, enlarged fruit at higher ploidy was reported in many fruit
crops, ex, Malus × domestica [33], Actinidia arguta [34], and Olea europaea [35]. For medicinal
plants, increased ploidy commonly results in an increased concentration or yield of active
compounds. For example, in hemp (Cannabis sativa), higher ploidy levels and cannabinoid
(CBG) concentrations in their inflorescences are correlated [36]. Moreover, tetraploid
Chinese sage (Salvia miltiorrhiza) has a higher biomass and dihydrotanshinone I yield than
the diploids [37]. Overall, polyploid manipulation is a valuable tool for ornamental and
medicinal plants for cultivar improvements.

Oryzalin is a commonly used mitotic inhibitor for polyploidy induction. Oryzalin, a
dinitroaniline herbicide, has had higher success rates in polyploid induction than colchicine
for many crops [38,39]. For example, in Hibiscus acetosella, polyploid induction research and
colchicine treatment on seeds showed no success in polyploid induction, while successful
polyploid plants were received from the use of a 100 to 150 µM oryzalin treatment [40].
Several types of research showed that the highest concentration of oryzalin treatment gave
optimal results in polyploidization. For example, in an in vivo oryzalin treatment on com-
mon cherry laurel, Prunus laurocerasus, a higher concentration (about 150 µM) showed the
best tetraploid conversion ratio compared to all lower oryzalin concentration treatments,
and, notably, the duration of the treatment is crucial to the survival ratio and tetraploid con-
versation ratio [41]. Other research works on Hydrangea serrata indicated that the polyploid
induction ratio was significantly correlated with the treatment’s longer duration; however,
the survival rate was unrelated to the duration [42]. Although the result can vary between
species and tissue types, higher concentrations and the appropriate treatment duration of
oryzalin treatment generally gave positive results in plant polyploid inductions.

This research aims to establish a protocol for the autopolyploidy induction of L. benzoin
and create tetraploid L. benzoin plants for breeding purposes. With a limited seed number,
three treatment periods of 24, 72, and 120 h with a high oryzalin (150 µM) solid agar
treatment were tested in this research. The seedling survival ratio and tetraploid converting
ratios were measured. The morphologies of the leaves and stomata of tetraploid and
diploid plants were compared.

2. Materials and Methods
2.1. Plant Materials

Seeds from two wild locations of L. benzoin were collected in fall 2022. Accession C2022-
005 was collected from William B. Umstead State Park, NC, USA (35.844337, −78.726215).
Accession C2022-008 was collected from the Morgan Creek trail (35.896322, −79.065192),
about 2.7 km west of the North Carolina Botanical Garden in Cabarrus County, NC, USA.
Seeds were manually extracted from the fruit and stratified in moistened perlite at 4 ◦C
for six months. Seeds were sowed, and plants were grown in a greenhouse maintained at
21 ◦C at the Horticultural Science Field Lab, Raleigh, NC (35◦47′28.9′′ N 78◦41′53.6′′ W) in
February 2023 and grown in natural light conditions within a range of 25 ◦C maximum and
18.3 ◦C minimum temperatures. Approximately 100 seeds were sowed in 20′′ × 14′′ × 4′′

Kadon Heavy Duty Plastic Vented Trays (Kadon Corp, Dayton, OH, USA) with a Sungro
potting mix (Seba Beach, AB, Canada). For each accession, three trays were used. Trays
were manually irrigated to keep them constantly moist until germination and ready for the
treatment of the mitotic inhibitor (oryzalin).

Seeds were germinated about 2 to 11 weeks after sowing. Some seeds germinated
sporadically, and most germinated in 7 weeks. For a more straightforward operation, only
seedlings that germinated 3 to 7 weeks after sowing and grew to a treatable size (1–2.5 cm,
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Figure 1a) were treated with oryzalin solid agar. A total of 288 seedlings were ready for
chemical treatment, including 121 seedlings of C2022-008 and 167 seedlings of C2022-005
(Table 1). After mitotic inhibitor treatments, plants stayed in the same greenhouse for
six months until all flow cytometry examinations, stomata measurements, and morphology
observation were finished.
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Figure 1. Oryzalin solid agar treatment with different durations on Lindera benzoin seedlings: (a) A
3-day seedling that reaches the size ready for the treatment; (b) the 150 µmol oryzalin solid agar
treatment on a seedling; (c) a C2023-008 seedling 19 days after a 72-h treatment; seedling showed two
leaves with abnormal morphology and two new normal-looking leaves. Scale bar = 1 cm.

Table 1. Result of 150 µmol oryzalin solid agar treatment with different durations on Lindera benzoin
seedlings.

Accession Duration
(H)

Treated
Plants # Survival Diploid # Mixoploid

#
Tetraploid

#

C2023-008 24 41 17 6 6 5
72 40 28 16 8 4
120 40 14 5 6 3

C2023-005 24 58 29 19 8 2
72 56 27 18 7 2
120 53 26 20 6 0

Total 24 99 46a * 25a * 14a * 7a *
72 96 55b 34a 15a 6a
120 93 40a 25a 12a 3a

# = Number. H = Hours. * Significant difference detected by logistic general linear model analysis with 95%
confidence.

2.2. Seedling Solid Agar Treatment

The 0.5% agar solution was prepared for the solid agar seedling treatment and then
microwaved to boil before cooling. Once the agar solution cooled to ~50 ◦C, oryzalin
(Surflan A.S.®, Southern Agricultural Products, Palmetto, FL, USA) was added to make it a
150 µmol oryzalin solution. The solution was then filled into dark brown 1.7 mL microtubes
before cooling down and placed in a rack in a 4 ◦C refrigerator to allow the gel to be fully
set and stored. The microtube lid was removed right before being applied to the seedling.
Tubes were carefully approached onto the cryptocotylar hypogeal seedling to have the
apical meristem inserted into the solid agar (Figure 1b). Each seedling was evenly assigned
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to the three groups of the three treatment durations: 24, 72, and 120 h. After the treatment,
the microtube was carefully removed using plants.

Seedlings recovered in the Kadon Heavy Duty Plastic Vented Trays until two normal
morphologic leaves were grown. Lateral shoots from non-treated parts of the plant were
constantly checked and removed to ensure that only shoots from the treated meristem were
kept. Most seedlings stopped growing until 1–2 weeks after the treatment when new leaves
began to grow. The first few new leaves were usually abnormally shaped, being wrinkled
and uneven in color, after which the plant started to grow normal-shaped leaves. Some
seedlings died immediately after the treatment or stopped growing up to six months before
death. Only seedlings that produced leaves four months after the treatment were defined
as surviving plants.

2.3. Flow Cytometry

Flow cytometry (Quantum P Ploidy Analyzer, QuantaCyte, Mullica Hill, NJ, USA)
was used to investigate the ploidies of surviving plants. Ploidy tests were conducted on
two young, normal-looking leaves from each seedling. For each leaf sample, 1 cm2 of
tissue was chopped using a razor in 150 µL of nuclei extraction buffer (Cystain Ultraviolet
Precise P Nuclei Extraction Buffer; Sysmex, Görlitz, Germany) in a 60 mm diameter petri
dish. Then, 600 µL of stain buffer (Cystain Ultraviolet Precise P Staining Buffer; Sysmex,
Görlitz, Germany) was added. The Petri dish was gently shaken to fully mix the buffer and
sample before the chopped samples were filtered using a 50 µm green gauge filter (Celltrics,
Sysmex America Inc., Lincolnshire, IL, USA). The filtered sample was then collected in a
3.5 mL plastic tube (Sarstedt Ag & Co., Nümbrecht, Germany).

Nuclei were then analyzed using the flow cytometer. Each seedling was analyzed
twice using new tissue to confirm the observed ploidy. Diploid L. benzoin plant material was
used for reference standard set peak placement (Figure 2). Two samples of each seedling
were run independently, and the placement of the peaks determined their putative ploidy.
When both leaf samples of a seedling were tested as tetraploid, the seedling was then
defined as tetraploid. When at least one leaf sample showed a mixoploid or its two samples
showed inconsistent results, the seedling was then defined as a tetraploid mixoploid. When
both leaf samples of a seedling were tested as diploid, the seedling was defined as diploid.
Each tetraploid plant was transplanted into a 1-gallon pot, and their ploidies were re-
tested two months after the first test; plants that remained tetraploid were then defined as
stable tetraploids.

2.4. Stomatal Density Size and Measurement and Visual Morphology

Stomatal size and density measurements were made six months after treatment,
comparing a diploid and a stable tetraploid plant. A Zeiss Axio imager A2 compound
light microscope (Carl Zeiss Microscopy GmbH, Jenna, Germany) was used to examine
the printed abaxial leaf surface for stomatal measurements. Impressions of the abaxial
leaf surface were made by applying nitrocellulose nail polish (Sally Hansen® Hard As
Nails® Xtreme wear® Nail Color Invisible, New York City, NY, USA), letting it dry for
approximately 5–10 min, peeling the resulting impression off with transparent tape, and
mounting the impression to a microscope slide for imaging with the tape. Imaging was
performed with AxioVision software for stomatal density measurements. The length and
width of about 40 stomata of each sample were measured. An independent two-tail unequal
variance t-test compared the average stomatal length and width.

Stomata density was calculated by counting the number of stomata in six randomly
placed frames captured at 40× magnification (0.7821 nm2 in each frame) taken using
ZEN PRO (Carl Zeiss Microscopy GmbH, Jenna, Germany). Stomata number/frame
area = stomata density (n/nm2), the average density of diploid and tetraploid plants, was
compared using an independent two-tail t-test.
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Figure 2. Flow cytometry, stomata, and leave morphology of a control diploid and a stable tetraploid
Lindera benzoin plant: (a,b) flow cytometry results of diploid (a) and tetraploid (b) sample; (c,d) leave
epidermis images of a diploid (c) and a tetraploid (d) plant. Scale bars = 20 µm; (e) Leave morphology
of a diploid (left) and tetraploid (right) plant. Scale bar = 1 cm.

3. Results
3.1. Seedling Solid Agar Treatment

A total of 288 seedlings were germinated in the treatment window; the result is listed
in Table 1. For the C2023-008 seedling population, 41, 40, and 40 seedlings were treated
in the 150 µmol oryzalin gel for 24, 72, and 120-h treatments. As a result, 17, 28, and
14 seedlings survived, and 5, 4, and 3 seedlings were then tested tetraploid. For the C2023-
005 seedling population, 58, 56, and 53 seedlings were treated in the 150 µmol oryzalin gel
for 24, 72, and 120-h treatments. As a result, 19, 18, and 20 seedlings survived, and 2, 2,
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and 0 seedlings were then tested as tetraploid. In summary, 99, 96, and 93 seedlings were
treated; 46, 55, and 50 seedlings survived, and 7, 6, and 3 were tested as tetraploid plants.
The survival ratio of those treatments was expected to be negatively related to the treatment
hours; however, the results showed that the 72-h treatment showed a significantly higher
survival ratio than the other two treatments in the logistic (binomial) general linear model
(p-value < 0.01). The tetraploid conversion ratio of tested seedlings was 7.1%, 6.2%, and
3.2% after the 24, 72, and 120-h treatments, respectively. The tetraploid conversion ratio
of surviving seedlings was 15.2%, 10.5%, and 7.5% after the 24, 72, and 120-h treatments,
respectively. No statistically significant difference in the conversion ratios between the
three treatments was detected.

3.2. Stomata Size, Density, and Leaf Morphology

Stomata size was represented by the length and width of the 44 and 42 stomata of a
standard diploid and a stable tetraploid plant, respectively. The average stomata lengths
of the diploid and tetraploid plants were 18.14 µm and 29.13 µm, which was significantly
different (p < 0.01). The average stomata width of the diploid and tetraploid plants was
18.97 µm and 24.19 µm, which was significantly different (p < 0.01). Stomata density was
measured at 300.44 and 123.59 stomata/nm2, which was significantly different (p < 0.01).
The results are listed in Table 2. The stomata images are presented in Figure 2.

Table 2. Stomata sizes and density of diploid and tetraploid Lindera benzoin L.

n Length (µm) SD Width (µm) SD n Density (per nm2) SD

2x 44 18.14 1.76 18.97 2.67 6 300.44 28.87
4x 42 29.13 2.50 24.19 2.22 6 123.59 19.25

p-value * 7.65 × 10−36 1.21 × 10−15 7.41 × 10−7

* t-test, Two-tailed unequal variance t-test, SD = standard deviation.

The diploid and tetraploid leaf morphology showed visible differences (Figure 2e).
Typical diploid Lindera benzoin leaves are simple elliptic, oblong, to obovate shapes with
acuminate tips and cuneate bases to rounded bases. In contrast, the leaves of tetraploid
Lindera benzoin showed elliptic leaning to oblong shape with cuspidate tips and cuneate to
rounded bases. Generally, the darker leaf color of tetraploid compared to diploid leaves
was primarily observed; however, a more definite measurement is needed to confirm.

4. Discussion

In this study, the 150 µM oryzalin solid agar treatment with three durations was tested,
and sixteen tetraploid plants were recovered. The survival ratios of 24-h and 72-h treatments
are 46% and 55%, not far from 50%. In contrast, the survival ratios of the 120-h treatment
are statistically reduced compared to the other two durations. From our result, seven and
six tetraploid plants were received from the 24-h and 72-h treatments, and only three were
received from the 120-h treatment. Although the tetraploid conversion ratios, 7%, 6.3%,
and 3.2% for the 24, 72, and 120-h treated seedlings, are not statistically or significantly
different among the three durations, the tetraploid conversion ratios of the 24-h and 72-h
treatments are more than double the 120-h treatment. In most mutation breeding processes,
a 50% lethal dose (LD50) is usually assumed to be optimal [43]. Our result is similar to the
assumption that the 24-h and 72-h treatments had about a 50% lethality ratio and gave the
most tetraploid plants (7% of all treated seedlings) after the treatment. Here, we simply
recommend the 24-h 150 µM oryzalin solid agar treatment as the optimal treatment for the
tetraploidization protocol for L. benzoin, and it could have application in relative species.
To our knowledge, no genome doubling protocol for L. benzoin or Lindera spp. has been
published before this study.

Several genome doubling protocols for woody plants used the 150 µM oryzalin treat-
ment. In sugi, Cryptomeria japonica, seedlings were sprayed with 150 µM oryzalin + 0.1%
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SilEnergy™ for 30 consecutive days, resulting in 32.8% of the treated seedlings being tested
as tetraploids [40]. Similar to our discovery, the 150 µM oryzalin treatment resulted in
tetraploid shoots in Cercis glabra [44] and C. yunnanensis [45]. In a Rhododendron research
work, 150 µM oryzalin resulted in the highest tetraploid conversion rate (of surviving
seedlings) compared to all other treatments [46]. For Escallonia rosea, the 50 µM oryzalin re-
sulted in a 33% tetraploid conversion ratio, which is higher than other tested treatments [47].
Similar results were reported in other woody plants like Acacia crassicarpa [48] and Dra-
caena [49]. In addition to the woody plants, a 150 µM oryzalin treatment was recommended
for doubling Hibiscus moscheutos [50]. Although the reactions of different mitotic inhibitors
and connections vary among different species and tissue types [49,51], a 150 µM oryzalin
treatment could be worth including in the first trial for woody plant genome doubling,
where plant material and resources are limited.

Genome doubling could enhance North Spicebush’s ornamental or aesthetic value
by enlarging leaf size, enhancing leaf color, creating a more compact form, larger fruit
size, and increasing environment adaptability and vigor. Tetraploid plants received in this
study primarily showed some morphological changes, including leaf shape change, less
stomata density, and a visibly darker leaf color. Increasing ploidy frequently brings an
enlarged leaf size and a more rounded plant shape [26,27,40,42,49,52]. Shorter internode or
more compact plant shapes are commonly observed [52]. However, in some cases, genome-
doubled plants show a similar internode length to their original ploidy plant [21,36,53],
and some even have longer internodes [42]. Ploidy’s impact on growth vigor can vary
in different situations. In hemp, Cannabis sativa, triploids show the most vigor, followed
by diploid and tetraploid [36]. Polyploidy manipulation has commonly been applied to
fruit size, enlarging breeding in Malus × domestica [33], Actinidia arguta [34], and Olea
europaea [35]; however, the impact of genome doubling on Lindera remains unknown. More
observations and research on the fruit size of tetraploid Lindera plants will be needed.
Reduced stomatal density could be found in many induced polyploid plants [39,54,55],
and there is an assumption that low stomatal density could be correlated with increased
drought tolerance [55,56]. However, better drought tolerance in higher ploidy of plants is
not necessarily correct. Some polyploid plants showed improved resistance to different
stress tolerances compared to their lower ploidy counterparts but reduced environmental
tolerance has also often been discovered [57]. For the tetraploid Lindera, changes in leaf and
stomata morphologies were reported; however, further observations are needed to know
how polyploids impact plant form, growth vigor, and environmental adaptabilities.

Native plants used in nurseries and landscaping can benefit the environment, and
the demand for native plants in the green industry has increased. Research showed that
native plant nurseries had higher bee species diversity than non-native plant gardens [58].
In addition, native plants were believed to have co-evolved in the local environment
and might be better resistant to local abiotic and biotic stresses, resulting in fewer inputs
(i.e., fertilizer, irrigation, and pesticides) than non-native species [59]. Demand for native
plants has increased in the U.S. nursery market [59–61]. In addition, some new laws could
even drive this trend; for example, a new NC law requires native plants to be used in
public landscapes, state parks, public roadsides, and local projects using state landscaping
funds [62]. However, the production of native plants as nursery crops has extra barriers
and challenges, including low seed/liner supply, limited production, slow propagation and
growth, and less aesthetic appeal than conventional nursery plants [60,63,64]. Breeding
native plants can help deal with the limits of the native plant market and production. Our
research used a polyploid manipulation breeding strategy to increase genetic diversity
and create novel traits of the northern spicebush. We hope this research will eventually
benefit the native plant industry. Further research on the propagation efficiency, adult plant
aesthetics, production cost, and general environmental adaptability will need to be tested
before recommending the tetraploid version of L. benzoin to the industry.
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