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Abstract: This paper addresses the optimal sizing of Hybrid Renewable Energy Systems (HRESs),
encompassing wind, solar, and battery systems, with the aim of delivering reliable performance at a
reasonable cost. The focus is on mitigating unscheduled outages on the national grid in Iraq. The pro-
posed On–off-grid HRES method is implemented using MATLAB and relies on an iterative technique
to achieve multi-objectives, balancing reliability and economic constraints. The optimal HRES config-
uration is determined by evaluating various scenarios related to energy flow management, electricity
prices, and land cover effects. Consumer requirements regarding cost and reliability are factored
into a 2D optimization process. A battery model is developed to capture the dynamic exchange of
energy among different renewable sources, battery storage, and energy demands. A detailed case
study across fifteen locations in Iraq, including water, desert, and urban areas, revealed that local
wind speed significantly affects the feasibility and efficiency of the HRES. Locations with higher
wind speeds, such as the Haditha lake region (payback period: 7.8 years), benefit more than urban
areas (Haditha city: payback period: 12.4 years). This study also found that not utilizing the battery,
particularly during periods of high electricity prices (e.g., 2015), significantly impacts the HRES
performance. In the Haditha water area, for instance, this technique reduced the payback period
from 20.1 to 7.8 years by reducing the frequency of charging and discharging cycles and subsequently
mitigating the need for battery replacement.

Keywords: battery; electric power; hybrid system; optimization; renewable energy; solar energy;
wind energy

1. Introduction

Amidst pressing global electricity demands and its shortfall in residential supply in
many countries, we target solutions. Focusing on Iraq’s energy systems—thermal, photo-
voltaic (PV) panels, and wind— our study primarily examines the electricity generation
potential of renewables. We center our efforts on PV panels and wind turbines, vital for
Iraq’s energy crisis and renewable energy goals [1,2]. In regions facing extreme climatic
conditions, such as Iraq, this energy crisis becomes even more pronounced [3,4]. Iraq
serves as a pertinent case study, grappling with heightened energy requirements for both
cooling during summers and heating throughout winters. Notably, a substantial energy
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demand–supply gap has persisted over the past decade (2010–2020) [5]. This disparity
underscores the imperative for the integration of renewable energy resources, even within
oil-rich nations. Against the backdrop of the prevailing energy crisis and escalating envi-
ronmental degradation on a global scale, the expedited development of renewable energy
sources like solar and wind is of paramount importance [6].

Hybrid Renewable Energy Systems (HRESs), harnessing solar, wind, and energy stor-
age technologies, emerge as a promising avenue for electricity generation [3,4]. Notably
viable from both an economic and functional standpoint, these systems hold promise for
present and future application within on-grid and off-grid scenarios [7]. However, a sharp
contrast exists between traditional energy sources and the intermittent, unpredictable, and
uncertain nature of wind and solar energies. This inherent intermittency and unpredictabil-
ity give rise to profound reliability concerns, impacting the operational and design aspects
of such systems [8]. As a strategic countermeasure, the deployment of Hybrid Renewable
Energy Systems (HRESs) gains traction, particularly when bolstered by efficient energy
storage solutions [9–11].

Several optimization techniques have demonstrated their adaptability in configur-
ing optimal systems, ensuring a balance between energy production and demand while
minimizing costs [12]. However, a crucial aspect of this optimization process is to define
the cost and reliability parameters of Hybrid Renewable Energy Systems (HRESs) as sys-
tem components and storage capacities are determined [7]. Existing literature analysis
reveals a multitude of optimization techniques proposed for sizing and assessing the fea-
sibility of HRES, often incorporating various combinations of renewable sources. These
methods encompass linear programming, graphical construction techniques, and iterative
approaches [13].

Comprehensive surveys elucidate that achieving the optimal design of HRES in-
volves the dual objectives of minimizing electricity generation costs while fulfilling
energy demand and mitigating emissions [14–16]. This design optimization encom-
passes both on-grid and off-grid operational modes [6]. Seeling-Hochmuth underscores
the optimization of HRES through cost minimization while adhering to loss of power
supply (LPS) and emission constraints [17]. Similarly, Yang et al. employ a Genetic Algo-
rithm (GA) to ascertain the optimal sizing of an HRES by simultaneously minimizing
the annualized cost of energy (ACOE) and LPS constraints [18]. Bapat et al. advocate for
determining the optimal size of a solar-bio-battery-diesel HRES by minimizing ACOE
and fulfilling load requirements [19].

In assessing reliability, studies differentiating between on-grid and off-grid sys-
tems often employ Grid Power Availability Probability (GPAP) and Loss of Power
Supply Probability (LPSP) as constraints, respectively [7,13,20,21]. In a broader context,
much of the aforementioned research has aimed to discern optimal Hybrid Renewable
Energy System (HRES) designs that cater to singular objectives within a framework
of numerous constraints. The efficacy of multi-objective evolutionary algorithms has
spurred interest in HRES design through multi-objective optimization. These objec-
tives commonly encompass minimizing costs, reducing emissions or fuel consumption,
enhancing reliability, and prioritizing renewables over conventional generators [6].
In [22], an iterative optimization method has been introduced, aiming at lowering the
Levelized Cost of Energy (LCE) by modifying the Deficiency of Power Supply Prob-
ability (DPSP). Similarly, the utilization of Loss of Power Supply Probability (LPSP)
has been incorporated by [23], enhancing a techno-economic algorithm proficient in
determining the HRES size that ensures dependable supply at minimal expense. In [24],
an iterative Pareto fuzzy approach is used to optimize HRES size by simultaneously
minimizing system costs, maximizing reliability, and curtailing surplus power for
potential hydrogen extraction.

To address diverse gaps and objectives in the literature, following [21,25], the Multi-
Objective Genetic Algorithm (MOGA) is used in optimizing diesel/wind systems with
aims to curtail emissions and fuel expenses. Furthermore, the Strength Pareto Evolutionary



Clean Technol. 2024, 6 604

Algorithm (SPEA) is utilized to optimize HRES size and power management as suggested
in [26–28]. In a parallel vein, the Non-Dominated Sorting Genetic Algorithm (NSGA) is
harnessed to diminish greenhouse gas emissions and system costs [29,30]. Notably, software
tools like HOMER, tailored for HRES design, offer single-objective optimization focused
on minimizing lifetime system costs, employing an enumeration method to establish the
optimal configuration [6].

In our analysis, a new approach is proposed to address the issue of frequent and
unscheduled outages of the national grid for several hours per day, which has been
common in Iraq in recent years [31]. We developed a novel On–off-grid Optimal-Hybrid
Renewable Energy System (On–off-grid Op-HRES) by integrating both off-grid and
on-grid components.

This study presents a novel and comprehensive investigation of renewable energy
potential across diverse locations in Iraq. We employ advanced optimization techniques
to analyze data from these locations, providing a deeper understanding than previously
conducted studies within the country [32–35]. To our knowledge, no prior study has
undertaken such a detailed and geographically diverse analysis coupled with advanced
optimization methodologies. This work fills a critical gap in the existing knowledge base
and provides valuable insights for policymakers and stakeholders aiming to optimize Iraq’s
renewable energy transition.

This unique design, implemented using MATLAB R2018a, ensures optimal con-
figuration. Our novelty also lies in the effective adaptation of this system to address
Iraq’s specific conditions and weather patterns through strategic arrangements and
designs. The optimization technique used an iterative method based on a multi-objective
approach to enhance energy supply reliability, minimize electricity generation costs, and
maximize the utilization of renewable energy sources. The effectiveness of the proposed
approach is assessed through simulation and analysis of the results obtained for the
different scenarios.

In Section 2, we describe the hybrid system and modelling components, including
load profile, wind power generation model, photovoltaic generation model, and battery
model. Moving to Section 3, we explain the energy flow management and optimization
principles, including different scenarios of flow management. In Section 4, we share our
main discoveries, highlighting the system’s economic effects to improve electricity costs.
Then, in Section 5, we compare our system with the Homer model. Lastly, in Section 6, we
provide a summary of our findings, discuss the implications of those findings, and consider
potential directions for further study.

2. Description of Hybrid System and Modelling Components

To design a flexible, reliable, and economical On–off-grid Op-HRES, a combination of
different sizes of wind turbines, solar systems, lithium-ion batteries, and DC-AC inverters
were considered. Various possible combinations of these components were evaluated
as presented in Figure 1 [36]. The Hybrid Renewable Energy System (HRES) connects
wind turbines, solar systems, and lithium-ion batteries to the DC bus, minimizing power
fluctuations and improving voltage stability [37–39]. An inverter integrates the AC load
demand and grid with the HRES’s DC bus. The control circuit manages energy flow
between the grid, renewables, and demand. Excess energy is managed by a dump load,
and a diesel generator serves as a backup when renewable energy sources and battery
storage are insufficient, or the grid connection is unavailable. This system combines clean,
renewable energy sources with battery storage and a backup generator for a reliable and
sustainable power supply.
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Equation (1) enables the determination of the appropriate DC-AC inverter size (Sinv) to
meet the maximum power demand in the AC bus. This is calculated based on the combined
sizes of the PV system (SPV), wind turbine (SWT), and the maximum battery discharge
power (Pmax.dis), as [36]:

Sinv = SPV + SWT + Pmax.dis. (1)

Furthermore, to optimize the configuration size (CSZ) of the wind turbine, various sizes
ranging from 2 kW to 30 kW were considered. The wind turbines selected for this study were
from SENWEI Energy Technology Inc and included the following sizes: 2 kW, 5 kW, 10 kW,
and 20 kW [40]. Additionally, 29 configurations of solar systems were evaluated, with sizes
ranging from 1.56 kW to 30.16 kW, using Polycrystalline 60 cell 260 W solar modules. Finally,
a lithium-ion storage unit with a capacity of 2.4 kWh was utilized to create different battery
sizes, as shown in Table 1.

Table 1. The characteristics of the 2.4 kWh lithium-ion storage unit (SoFar E3000SP) [41].

Total of energy for 1 unit 2.4 kWh
Nominal battery voltage 48 V
Battery voltage range Discharge 40 V–Charge 60 V
Battery capacity 50 Ah
Max. charging current 26 A
Max. discharging current 26 A
Depth of discharge: DOD 0–90%
Max. Charge–discharge power 1.25 kW
Max. C-rate 2C
Life cycle 4500
Max. charging efficiency 94.5%
Max. discharging efficiency 94%

2.1. Load Profile

Accurate energy consumption data are critical for optimization, with 8760 h of data
being the standard requirement [13,20,42]. To this end, the Efergy Engage hub kit, an online
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wireless home electricity monitor, was installed in two Iraqi houses, Baghdad house (BG)
and Karbala house (KR), to record hourly energy consumption online [43], as depicted
in Figures 2 and 3. In addition, Iraq has implemented the Increasing Block Tariffs (IBTs)
pricing policy over the past decades setting the price of electricity from the national grid as
described in detail in [36]. Upon initial examination, we can observe significant spikes in
hourly energy consumption from the national grid during hot summer months, primarily
attributed to the usage of cooling devices, as depicted in Figures 2 and 3. Conversely,
during winter, as shown in Figure 3, energy consumption rises due to the utilization of
electric heating devices, while other heating sources are utilized in Figure 2.
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Figure 3. KR energy consumption for 8760 h in 2018. On-grid demand was supplied from the national
grid (blue line), and energy consumption during outage hours (off-grid) was covered by a local
generator (orange line).

In Figure 2, we also note that hourly consumption from the generator remains relatively
stable, hovering below 5 kWh, owing to the procurement of electricity from the local
generator at a high cost. However, there is an evident uptick in electricity usage in Figure 3
when disconnected from the national grid, attributed to reliance on a large home generator
(40 kWh) without limitations or restrictions, unlike the scenario depicted in Figure 2. This
flexibility enables the system to meet high load demands effectively.

2.2. Wind Power Generation Model

This research paper utilizes a wind power generation model to estimate hourly power
production from a wind turbine. The estimation is based on the hourly wind speed data
for the year 2014. To derive the wind speed data, a developed downscaling model (DSM)
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is employed as described in reference [36]. The DSM improves the accuracy of power
production estimation by providing more precise and localized wind speed estimates for
the turbine.

2.3. Photovoltaic Generation Model

The estimation of hourly PV power production takes into account two parameters:
wind speed (forced convection) and ambient temperature [36,44]. This evaluation is de-
veloped by incorporating the wind effect, which is not considered in the original Homer
model calculation [45]. The specifications of the solar panels used in the study can be found
in [36,46]. The annual optimum fixed tilted plane is provided by PVGIS [47], while the
typical hourly solar radiation levels (GHI, Gb and Gd) over one year for periods 2004, 2005,
and 2006 are derived from HelioClim-3 version 5 by SoDa [48]. The azimuth angle equals
0◦. Furthermore, hourly ambient temperature is provided by MERRA-2 RE-ANALYSIS for
2006 [49].

2.4. Battery Model

The maximum power charge and discharge of a battery (C-rate) is the cornerstone in
the battery modelling system to determine the amount of energy flow among the renewable
generators, battery, and demand, as shown in Figure 4. At the beginning, the total renewable
energy that can be generated by the HRES at the time step (t = 1 h) is calculated as [41].

ERE(t) = Epv(t) + Ew(t), (2)

where Epv(t) and Ew(t) are the energies produced by the PV system and the wind turbine.
The energy flow from the DC bus to the load (Eload(t)) in the AC bus is limited by the
inverter efficiency (ηinv), whereas D(t) (Figure 4) represents equivalent DC demand
corresponding to the inverter input, determined as follows:

D(t) =
Eload(t)

ηinv
. (3)
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The energy flow when ERE(t) > D(t) is determined as follows [41]:

EEx(t) = ERE(t)− D(t), (4)

where the energy flow for ERE(t) < D(t) is defined as the energy need, as follows:

Eneed(t) = max(0, (D(t)− ERE(t))). (5)

If EEx(t) > 0 in Equation (4), the energy flow (Pcharge(t)) between renewables and
battery must be estimated to determine the state of storage capacity, Cbat(t). The Pcharge(t)
calculation depends on the state of storage capacity at a previous time step (Cbat(t − 1)),
such that the following applies:

Pcharge(t) = min
[
(ERE(t)− D(t)),

(
Cbat max − Cbat(t − 1).(1 − σ)

ηbc . ∆t

)
, PMax.charge

]
. (6)

The self-discharge rate (1 − σ), the maximum storage capacity (Cbat max), battery
charge efficiency (ηbc), and the maximum power charge

(
PMax.charge

)
(Figure 4) that

controls the maximum amount of energy supplied to the battery are based on the C-rate of
a battery.

According to the power charging from Equation (6), it is possible to calculate the
battery capacity at the time step (t) based on the previous state of battery capacity
(Cbat(t − 1)) and self-discharge rate (1 − σ) as follows:

Cbat(t) = Cbat(t − 1).(1 − σ) + Pcharge(t).ηbc . ∆t. (7)

If Eneed(t) > 0 in Equation (5), the storage system should cover the energy demand,
and the energy flow between battery and demand must be determined based on new
parameters like minimum storage capacity (Cbat min) and battery discharge efficiency (ηbd).
Furthermore, the maximum power discharge

(
PMax.discharge

)
determines the maximum

amount of energy that can be discharged from the battery, calculated as follows:

Pdischarge(t) = min
[
(D(t)− ERE(t)),

(
max

(
0,
(
(Cbat(t − 1).(1 − σ)− Cbat min).ηbd

∆t

)))
, PMax.discharge

]
. (8)

According to the
(

Pdischarge(t)
)

, it is possible to calculate the battery capacity
as follows:

Cbat(t) = Cbat(t − 1).(1 − σ)−
Pdischarge(t)

ηbd
. ∆t. (9)

When EEx(t) = 0, Cbat(t) will depend only on (Cbat(t − 1)) and (1 − σ), reducing
Equation (9) to the following:

Cbat(t) = Cbat(t − 1) (1 − σ). (10)

Pcharge(t).ηbc is the required amount of energy to charge battery, while
( Pdischarge(t)

ηbd

)
represents the amount of energy that can be discharged from inside the battery. The
above methodology of energy flow among renewables, battery, and demand is developed
according to [20,42,50–52]. Since the lithium-ion battery (SoFar ME3000SP) is the storage
system in this work, the values and definitions of parameters that related to battery are
as follows:

• The self-discharge rate σ = 0.0013 per day, and σ = 5.5 × 10−5 per hour based on 4%
per month [53].

• ηinv is the inverter efficiency that converts the current from the DC to the AC = 98% [54].
• ηbc is the battery charge efficiency = 94.5% [41].
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• ηbd is the battery discharge efficiency = 94% [41].
• The calculation of maximum power charge and discharge of battery depends on the

Max. C-rate = 2C = 0.52084 [41] and the storage nominal capacity Cbat n.

At any time step, Cbat (t) should be Cbat min ≤ Cbat (t) ≤ Cbat max. The Cbat max for the
lithium-ion battery = 98% of the storage nominal capacity Cbat n, calculated as follows [53]:

Cbat max = 0.98 Cbat n, (11)

while the minimum storage capacity Cbat min of the lithium-ion battery is determined based
on DOD and Cbat n of the battery, expressed as follows [20]:

Cbat min = (1 − DOD) Cbat n, (12)

where DOD (%) represents the maximum depth of battery discharge. For ME3000SP, the
DOD = 90% [41].

3. Optimization Principles and Energy Flow Management
3.1. Optimization Algorithm

In the optimization process, the iterative technique is embedded using multi-objectives
of several scenarios to determine the most optimal HRES configuration. One strategy
is suggested to determine the optimum configuration that should meet the consumer
requirement based on economic and reliability constraints. The algorithm strategy is
called 2D. It is designed to be always reliable and to give priority to satisfying off-grid
demand according to the minimum LPSP based on the minimum LCE [42,55], while the
normalization used to deal with different units and scales is in the range of [0,1], calculated
as follows [56]:

Xnor (j) =
X (j)− Xmin
Xmax − Xmin

, (13)

where X(j) is the a set of the observed values, j is the number of configurations from
1–10,136, Xmin is the minimum values in X, and Xmax, is the maximum values in X. The
process of 2D optimization is based on the following algorithm:

• Calculate the LPSP and LCE for 10,136 configurations (j).
• Calculate the normalization for each of LPSP and LCE using Equation (13) for each j.
• Calculate the min-sum for a specific configuration regarded as the optimal configura-

tion Opticon f , expressed as follows:

Opticon f = min
[
∑10136

j=1 LPSPnor(j) + LCEnor(j)
]
, (14)

where LPSPnor and LCEnor represent the normalization of LPSP and LCE.

3.2. Hybrid Controller for Energy Flow Management

Since Iraq’s national grid suffers from outages and fluctuations in electricity supply,
designers must suggest solutions compatible with both supplies from private generators
and the grid itself. To address this challenge, we have suggested the following three
scenarios. Scenario A illustrates energy flow management during grid outages (off-grid),
while Scenario B illustrates energy flow management when electricity is supplied from the
national grid (on-grid) with discharging the battery as explained in Section 3.3. In addition,
Scenario C evaluates the connection to the grid without discharging the battery to extend
the lifespan of the battery and reduce the cost of HRES by reducing the replacement of the
batteries since the battery has limited cycles as explained in Section 3.4.

Scenario A for off-grid
The energy flow management (EFM) strategy for off-grid is described as follows:
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• Case 1. The total energy ERE(t) at the time step (t) should satisfy the D(t), while
the excess electricity EEx(t) is stored in the battery. If the EEx(t) > Pcharge(t), the
surplus electricity will go to the dump load as a wasted energy.

• Case 2. If ERE(t) < D(t), the energy deficit will be covered by discharging the battery.
• Case 3. If ERE(t) < D(t) and Cbat (t) = Cbat min or Eneed(t) > Pdischarge(t), the energy

deficit will be satisfied by an optional generator.

Scenario B for on-grid with discharging
The EFM strategy for on-grid is described as follows:

• Case 1. The total energy generated ERE(t) should satisfy the D(t), while the EEx(t)
is saved in the battery. If the Cbat (t) > Cbat max, the surplus electricity is exported to
the grid.

• Case 2. Same process as in Case 2 in Scenario A for off-grid.
• Case 3. If we have the same conditions in Case 3 in Scenario A for off-grid, the demand

will be satisfied by purchasing electricity from the grid based on IBT prices to satisfy
the demand.

Scenario C for on-grid without discharging

• Case 1. The same process in Case 1 in Scenario A for on-grid.
• Case 2. When ERE(t) < D(t) and (Cbat (t) ̸= Cbat min) or (Cbat (t) = Cbat min), the

energy deficit will be satisfied by purchasing electricity from the grid based on the IBT
prices. The stored energy in the battery will be kept to the next job in the off-grid mode.

3.3. On–off-Grid System with Discharging

The approach of combining on-grid and off-grid systems is created by using a MAT-
LAB script (On–off-grid Op-HRES) based on Scenario A for off-grid and Scenario B for
on-grid, while discharging the battery based on 2017 or 2015 IBT prices, as illustrated in
Figure 5a.

Firstly, one year of hourly on–off-grid demand data, hourly wind speed data at 2 m,
12 m, 15 m, 18 m, and 20 m, hourly ambient temperature and hourly solar radiation (GHI,
Gb, Gd) are prepared according to site coordinates. Secondly, solar power production
for the Polycrystalline 260 W system is calculated for different sizes of the solar system.
Power production of the selected sizes of wind turbines according to typical hub heights
is calculated. Then, technical information, which is related to the battery, and financial
information, such as the cost of renewables’ components and IBT prices, are calculated.

The optimization process starts from the first configuration and continues until the last
configuration number 10,136, while the simulation starts from t = 1 h and ends at t = 8760 h
for each configuration by calculating the ERE(t) in Equation (2). The important step in the
simulation is the decision that must be taken by On–off-grid Op-HRES according to the
on-grid demand condition. If Don−grid(t) = 0, the code will run the configuration through
the off-grid based on Scenario A off-grid, while if Don−grid(t) ̸= 0, the code will run
through the on-grid according to Scenario B on-grid with discharging.

According to Case 1 in Scenario A off-grid, the HRES should satisfy the Do f f−grid(t).
If EEx(t) = 0 in Equation (4), the Cbat(t) should be estimated by Equation (10). If
EEx(t) > 0 in Equation (4), the battery should be charged using Equations (6) and (7).
If EEx(t) > Pcharg(t), the surplus electricity will be sent to the dump load as follows:

EWE(t) = EEx(t).∆t − Pcharge(t). (15)

According to Case 2 when Eneed(t) > 0 in Equation (5), the demand should be satisfied
by discharging the battery according to Equations (8) and (9). According to Case 3, when
Eneed(t) > Pdischarg(t) or (Cbat (t) = Cbat min), the required electricity to cover the demand
will be supplied by the generator as follows:

EDG(t) = Eneed(t).∆t − Pdischarge(t), (16)
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where EDG(t) is the energy from the diesel generator DG. The deficit energy will be
determined as LPS at time step t, i.e., LPS(t) = EDG(t), while LPS(t) = 0 when EEx(t) ≥ 0
and during the charging and discharging processes. At this point, the simulation will move
to the next step (t + 1) and check if the on-grid demand is still zero or if there is supply from
the grid. If Don−grid(t) ̸= 0, the MATLAB script will run the HRES through the on-grid
process according to Scenario A for on-grid with discharging the battery.
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Figure 5. Flowchart of the optimization process for the On–off-grid Op-HRES with battery discharging
in the case of on-grid depicted by the dotted red box in (a), while the red box in (b) represents the
flowchart of the non-discharging process.

According to Case 1 in Scenario B for on-grid, Don−grid(t) should be satisfied. If
EEx(t) = 0 in Equation (9), the battery capacity Cbat(t) should be estimated according to
Equation (10). If EEx(t) > 0, the battery should be charged using Equations (6) and (7). If
EEx(t) > Pcharg(t), the surplus electricity will be sent to the grid, expressed as follows:

ESP(t) = EEx(t) ∆t − Pcharge(t). (17)
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According to Case 2 when Eneed(t) > 0 in Equation (10), the demand is satisfied locally
by discharging the battery according to Equations (8) and (9). According to Case 3, when
Eneed(t) > Pdischarge(t), the required electricity to cover the demand will be purchased from
the grid as follows:

EGP(t) = Eneed(t) ∆t − Pdischarge(t). (18)

In Equation (18), EGP(t) is equivalent to the LPS(t) in the off-grid case. In this case,
the purchased electricity from the grid will be estimated based on IBT prices according to
Scenario A on-grid with discharge. At this point, the simulation will pass to the next step
(t+1) and, then, continue until 8760 h of the simulation.

The performance of any configuration over 8760 h of simulating must be evaluated.
The optimization should choose the configuration that shows the min LPSP. Loss of Power
Supply Probability (LPSP) is defined as the ratio of summation of all hourly loss of power
supply (LPS) when there is no interaction with the grid over the total load as follows [57,58]:

LPSP =
∑8760

t=1 LPS(t)

∑8760
t=1 Eload(t)∆t

. (19)

In addition, the optimization should choose the configuration that shows the min
GPAP for a considered period t = 8760. Grid Power Absorption Probability (GPAP) is the
ratio of purchased electricity EGP(t) over the total demand during 8760 h, calculated as
follows [41,59]:

GPAP =
∑8760

t=1 EGP(t)

∑8760
t=1 Eload(t)

. (20)

Additionally, the performance of configuration should be evaluated based on economic
constraints such as LCE and PBP as described in Section 4.

3.4. On–off-Grid System without Discharging

The energy flow management (EFM) of this strategy is integrating between on-grid
and off-grid systems as explained in Section 3.3, but without discharging the battery when
Eneed(t) > 0 even when Cbat (t) ̸= Cbat min or Cbat (t) = Cbat max. The energy deficit will be
covered by purchasing electricity from the grid to satisfy the on-grid demand. The stored
energy will be kept for the next job in the off-grid mode to increase the battery lifetime
according to Scenario C for on-grid without discharging, as illustrated in Figure 5b, that can
be substituted by the discharge process in the red dots box in Figure 5b. The performance
of HRES will be evaluated by LPSP in the case of off-grid, and GPAP in the case of on-grid,
as well as based on LCE and PBP in terms of economic assessment.

4. Systemic Economic Constraints

In order to determine the optimal configuration, both economic (LCE and PBP) and
reliability (LPSP and GPAP) constraints should be considered. Economic constraints are
described as follows.

4.1. Levelized Cost of Energy

The Levelized Cost of Energy (LCE) is used to estimate the price of electricity generated
by the HRES [60–63]. It is defined as the ratio of the total annualized project cost (Levelized
Annual Cost, LAC, as expressed in Equation (21)) to the annual financial flow discounted
for the Annual Energy Production (AEP), as expressed in Equation (22).

LAC = (TPV)(CRF), (21)

LCE =
LAC
AEP

, (22)
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where CRF is the Capital Recovery Factor, and TPV is the Total Present Value [64]. In this
study, Equation (22) is modified to include different parameters to estimate LCE precisely
and to match the Iraqi housing requirement [36] as expressed in Equation (23).

LCE =
LACbattery + LACWT + LACPV + LACinv

(AEload − (AEGP + AEDG)) + AESP
. (23)

LACbattery, LACWT, LACPV, and LACinv are the Levelized Annual Costs of battery,
wind turbine, PV solar system and inverter, respectively. AESP stands for annual surplus
electricity (KWh), AEGP is the annual energy(KWh) that is purchased from the grid, and
AEDG is the annual energy (KWh) that is generated by the diesel generator. The Annual
Energy Load (KWh) consumed by demand, is denoted as AEload and is calculated using
the following formula:

AEload =
8760

∑
t=1

Don−grid(t) + Doff−grid(t). (24)

where AEGP, AEDG, and AESP are expressed in Equation (25), Equation (26), and Equation (27),
respectively.

AEGP = ∑8760
t=1 EGP(t), (25)

AEDG = ∑8760
t=1 EDG(t), (26)

AESP = ∑8760
t=1 ESP(t). (27)

4.2. Payback Period

Payback period (PBP) represents the duration needed to recoup the Total Capital of
Project (TCOP), through the Net Annual Cash inflow of AEP (NACIAEP) generated by the
project itself and calculated as follows [65]:

PBP =
TCOP

NACIAEP
, (28)

The Annual Saving (AS) replaces here the NACIAEP. The ASS represents the annual
cost savings achieved by implementing the HRES instead of relying solely on the grid or
generator to meet the total demand, defined as follows:

Cnet,i = Ci(MDi − (MEPi ≤ MDi)), (29)

AS = ∑12
i=1(CMDi − Cnet,i), (30)

where Ci is the cost of electricity from the national grid based on IBT, Cnet,i is the net of
monthly demand costing after using the HRES, MDi is the monthly demand, MEPi is the
monthly energy production by HRES, and CMDi is the cost of monthly demand.

The cost of monthly on-grid demand
(

CMDi,on grid

)
is calculated based on IBT. The

cost of monthly off-grid demand
(

CMDi, off grid

)
is estimated based on the price of a local

generator (as mentioned in Section 2.1). In the case of on-grid, the Cnet,i represents the net
grid trade between the surplus electricity by HRES Esp(t) and grid purchases EGP(t) from
the grid, calculated in the following form:

Cnet on,i = ∑720
t=1 Ci

(
EGP(t)− Esp(t)

)
, (31)

where t = 720 h is the consumption hours. If Esp(t) > EGP(t), then Cnet,i = 0 due to no
payback policy from the national grid in Iraq if surplus electricity is injected to the grid.
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In the case of off-grid, the Cnet,i represents the cost of the rest of monthly demand that is
covered by generator, such that the following applies:

Cnet−off,i = ∑720
t=1 EDG(t). (32)

The price of electricity from the generator is estimated in Section 2.1. Accordingly, in
the case of on-grid and off-grid demand, the Annual Saving (AS) in this project is expressed
as follows:

AS = ∑12
i=1(CMDi,on grid − Cnet on,i) + (CMDi,off grid − Cnet off,i). (33)

According to Equation (33), the PBP can be determined as follows:

PBP =
TCPWT + TCPpv + TCPBatt + TCPinv

AS
, (34)

where TCPWT , TCPpv, TCPBatt, and TCPinv refer to TCOP for wind turbine, solar system,
battery, and inverter, respectively.

5. Verification with Homer Software

To verify our On–off-grid Op-HRES model, we compared the data with those
produced using the Homer Pro®microgrid software (Version 3.14.5), developed by
National Renewable Energy Laboratory (NREL), USA, [66] with consistent constraints
of Renewable Fraction (RF) and total Net Present Cost (NPC) [49]. Varying component
sizes were employed in both models, including different wind turbine sizes (2 kW to
10 kW), PV sizes (3.12 kW to 10.4 kW), and Li-ion battery sizes (11.7 kWh and 23.4 kWh).
BG on-grid demand as detailed in Section 2.1, and shown by Figure 2 has been used in
this verification based on the Amarah location as shown in Figure 6 [36]. The results
exhibited strong agreement overall, except for a discrepancy in PV production. This
difference arose from Homer model’s lack of consideration for the cooling effect due to
wind speed (Table 2).

Table 2. Verification between On–off-grid Op-HRES and Homer models.

The Optimal Configuration of On–off-Grid
Op-HRES Model The Optimal Configuration of Homer

PV size 3.12 kW PV size 3.12 kW

WT size 4 × 2 kW WT size 4 × 2 kW

Li-ion battery size 2 × 11.7 kWh Li-ion battery size 2 × 11.7 kWh

Inverter size 12 kW Inverter size 12 kW

LCE 0.034 $ LCE 0.034 $

NPC of system 29.89 $ NPC of system 31.48 $

Initial Capital of
system 21.59 $ Initial Capital of

system 21.59 $

RF % 49.6 RF % 50.3

PV production 6193 kWh/year PV production 4322 kWh/year

WT production 11,519 kWh/year WT production 11,519 kWh/year
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Figure 6. Showcases six selected locations for potential HRES based on wind speed and solar radiation
variability. Four of them comprise three sites each, categorized by land cover types (water, desert,
and urban), while the remaining locations feature both desert and urban areas.

6. Results and Discussion

The optimal design of HRES in Iraq is evaluated based on six selected locations
(Figure 6). The geographical spots in Figure 6 are chosen based on critical factors, including
land cover type, solar radiation, and wind speed. These features are mentioned in each
label to describe the characteristics of each location (Figure 6). The section discusses several
key aspects related to HRES design and performance. Firstly, it examines the evaluation
of the energy flow management (EFM) and IBT prices. Secondly, it explores the effect of
different land use cover on the optimal configuration of HRES. Additionally, it discusses
the impact of weather variation on the performance of HRES in Iraq.

6.1. Evaluation of Energy Flow Management and IBT Prices

The prioritization of off-grid demand coverage holds utmost importance in terms
of ensuring reliability. The EFM and IBT prices play a significant role in optimizing the
performance and selecting the most cost-effective configuration for the HRES. To determine
the effectiveness of different energy flow management strategies, Scenario B on-grid with
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discharging (D) and Scenario C on-grid without discharging (W) were examined based on
grid demand. Various objectives and constraints, such as LPSP, GPAP, LCE, PBP, TCOP,
and CSZ, were utilized to identify the optimal configuration using 2D analyses. Regarding
the LPSP and LCE objectives, the results indicate a high level of reliability and lower cost
of energy when the battery is not discharged (Scenario C during on-grid mode) for both
the 2015 and 2017 IBT prices (W.N and W.O), as depicted in Figure 7. Furthermore, the
findings reveal that Scenario C exhibits the lowest LPSP and LCE values. Consequently,
Scenario C is deemed the most favorable choice.
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Figure 7. Evaluation of LPSP, LCE, PBP, and TCOP for different optimal configurations across
12 locations in Iraq using BG demand and the 2D strategy. Abbreviations: D.N (Discharging battery,
2017 IBT price), D.O (Discharging battery, 2015 IBT price), W.N (Without discharging battery, 2017
IBT price), W.O (Without discharging battery, 2015 IBT price). Locations: AD (Amara Desert), BsU
(Basra Urban), RU (Rutbah Urban), MU (Musal Urban), HD (Haditha Desert), BgU (Baghdad Urban),
MW (Musal Water), MD (Musal Desert), HW (Haditha Water), HU (Haditha Urban), BgD (Baghdad
Desert), RD (Rutbah Desert).
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In addition to Scenario C, the influence of land cover, specifically desert and water
areas, plays a crucial role in positively affecting the reliability and cost of energy by
facilitating a high availability of wind energy due to higher wind speeds, for example, in
Haditha, with water and desert areas, and Rutba, characterized by desert areas. According
to Figure 7, the payback period (PBP) has demonstrated a consistent and gradual decline,
which can be attributed to three key factors: changes in the scenario, alterations in the IBT
pricing policy, and variations in land cover types such as desert, water, and urban areas.
Specifically, the PBP is significantly influenced by the modified Annual Saving (AS) method
(Equation (34)), replacing Equation (28) utilized for estimating the PBP.

The transition of EFM from the (D) to (W) scenario type has yielded noteworthy out-
comes in terms of TCOP, as illustrated in Figure 7. This reduction in TCOP can be primarily
attributed to the decrease in the CSZ resulting from the extended lifespan of the battery, as
a result of reducing the frequency of charging and discharging cycles and subsequently
mitigating the need for battery replacement. In addition to the TCOP reduction, the shift in
EFM from (D) to (W) has exhibited a substantial decrease in LCE across all locations, in
comparison to both (D.N) and (D.O) scenarios.

6.2. Effect of Land Cover

The availability of wind speed is crucial in determining the size of the HRES and
its components (PV and wind turbines). The roughness length plays a significant role
in influencing wind speed availability across different types of land covers. In water
areas, characterized by minimal surface obstructions, near surface wind speeds tend
to be higher. Similarly, in desert regions with lower surface roughness, wind speeds
can be relatively high. However, urban areas with numerous buildings and structures
experience increased surface roughness and turbulence, leading to lower mean wind
speeds compared to water areas and deserts. Figure 8 illustrates the impact of land cover
on the size of the HRES configuration, LPSP, LCE, and PBP in KR demand based on the
2D scenario.

In Figure 8, the reliability of HRES gradually decreases from water to desert to urban
areas, as previously mentioned. Conversely, LCE demonstrates an increasing trend with
changing land cover, as also depicted in Figure 8, due to the reasons mentioned earlier. The
PBP is affected by the same aforementioned factors, including scenario changes, modifica-
tions in the IBT pricing policy, and variations in land cover types. For instance, in Baghdad,
the PBP is highest in urban areas, followed by desert areas, and finally, the lowest in water
areas. This is owing to the roughness length (RL) influencing wind speed availability across
different types of land covers: in BgW (RL = 0.0002 m), while in BgD (RL = 0.029 m) and
for BgU (RL = 1.1 m).

The conflicting trend in PBP from water to urban areas in Mosul is due to the
smaller size of the HRES. This smaller size results from the lower availability of wind
and solar radiation in the northern region of Iraq, where Mosul is situated. Consequently,
increasing the HRES size to enhance production is impractical due to limited renewable
energy resources and the constraints of efficiency and cost. The size of the HRES,
specifically the wind turbine, decreases from urban to desert to water areas, which
reduces the overall project cost. To compensate for this size reduction, a possible solution
is to replace the battery more frequently than before due to the limited number of
discharge cycles that a battery can undergo during its lifespan. This need for more
frequent battery replacements arises particularly in regions with lower renewable energy
input like urban areas.
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Figure 8. Predicted LPSP, LCE, PBP, and HRES size used to evaluate the performance of different
optimal configurations that were determined for different land use covers (water, desert, and urban)
for four locations in Iraq (Baghdad, Basra, Haditha, and Mosul) using KR demand and applying
the 2D strategy. D.N, D.O, W.N, and W.O have been used. BgW: Baghdad Water, BgD: Baghdad
Desert, BgU: Baghdad Urban, BsW, BsD and BsU: Basra locations, Water, Desert Urban areas. HW:
Hadiata Water. HD: Haditha Desert. HU: Haditha Urban, MW: Mosul Water, MD: Mosul Desert. MU:
Mosul Urban.
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6.3. Effect of Weather Variation on HRES Performance in Iraq

We chose desert areas for this comparison because they provide diverse wind speeds
across different locations, offering a realistic representation of weather-induced changes.
Urban areas were excluded due to complex airflow patterns, while water areas were not
considered because of their stable and minimal wind speed fluctuations. BG and KR demands
are utilized in a 2D scenario analysis (as detailed in Section 3.1), considering six desert locations:
AD, RD, BsD, BgD, HD, and MD. The performance of different optimal configurations is
illustrated in Figure 9.

The impact of decreasing wind and solar energy from AD to MD is evident in the LPSP
and LCE results. LPSP shows a linear gradient increase from AD to MD for both BG and KR
demands (Figure 9C,D). Likewise, the LCE results exhibit the same trend, as seen in LCE
(D) for both BG and KR demands (Figure 9E,F). These findings highlight the correlation
between higher availability of wind and solar energy, leading to increased reliability (LPSP)
and reduced energy costs (LCE), consequently resulting in shorter payback periods (PBP).
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Figure 9. Results of LPSP, LCE, Saving, and the HRES Size in (Part A) and PBP in (Part B), to evaluate
the performance of different optimal configurations that have been determined based on desert areas
at Haditha HD, Amara AD, Basra BsD, Baghdad BgD, and Mosul MD using KR and BG demand
and applying 2D strategy. D.N, D.O, W.N, and W.O have been used. (Annual Wind energy density
and Solar radiation availability) and (Sum of annual wind energy and solar radiation normalization)
in (Part B) shows the weight of solar and wind resource equally at each location to determine the
availability of solar and wind energy.

Despite the lower solar radiation in the HD location (Figure 9F,I), the reliability of HD
for meeting both BG and KR demands remains surprisingly high. This can be credited to the
presence of strong wind speeds in HD and the use of a 20 kW wind turbine positioned at a
height of 20 m. This setup enables the generation of substantial energy throughout the day,
effectively compensating for the lower solar radiation levels. Moreover, the KR demand
exhibits lower LCE and PBP compared to BG demand, even though both demands have
the same size of systems. This difference arises from the fact that the KR demand, being
higher than BG, results in a higher utilization of the energy generated, leaving less waste of
power compared to BG. As a result, the findings show that the high availability of wind
and solar energy, especially in locations with strong wind speeds like HD, combined with
the demand management strategy, leads to enhanced system performance and significant
cost savings in KR demand compared to BG demand.

7. Conclusions

On–off-grid Op-HRES is the technique for identifying optimal combinations of wind,
solar, and battery technologies for domestic scale utilization in Iraq. A key innovation in
this approach is how it is designed, which fits the unique features of the electricity grid in
Iraq (on–off-grid) due to the unreliable supplies, meaning that the resultant system must
have the flexibility to cover the frequent interruptions in grid supply. The technique has
been applied to different scenarios and structured according to multi-objectives of cost and
reliability, as well as different EFM strategies. Calculations have been carried out for six
locations in Iraq, demonstrating that the optimal system configuration varies significantly
with location, wind speed, land cover, and according to cost/reliability trade-off.

The local wind speed has a major impact on the feasibility and efficiency of the HRES
for application in Iraq. In high wind speed areas, the HRES is readily able to improve
supply reliability at a reasonable cost. However, in low wind speed areas, typically within
cities, much larger and more expensive systems are required to overcome grid unreliability,
which leads to limited feasibility of the HRES systems in Iraq’s urban areas. The high
availability of wind speed and solar radiation in the southeast of Iraq (Amara) and west
of Iraq (Rutbah) has shown marked efficiency in the performance of the HRES in terms
of improving supply reliability at a reduced cost with a short payback period. Otherwise,
the reduction in wind and solar resources has led to reduction in the feasibility of HRES
dramatically in the north of Iraq (Mosul).

The technique of not discharging the battery when connected to the grid will extend the
battery lifecycle and reduce the cost of replacement. Additionally, the relatively high prices
for electricity supply have shown the most significant impact on the HRES performance
for the 2D optimization strategy, as it reduces the payback period. Accordingly, HRES has
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gained the ability to improve supply reliability at a reduced cost of energy and payback
period, with a reasonable total capital cost for the project. However, future research can
further enhance this work by the following:

• Expanding the optimization strategy: While this study employed a well-proven it-
erative technique, exploring the effectiveness of various optimization approaches,
including 2D, 3D, and 4D techniques, could be a valuable next step. A comprehen-
sive comparison of these techniques would identify the most suitable optimization
strategy for HRES design in the Iraqi context. This would provide a deeper under-
standing of the optimization landscape and potentially lead to even more efficient
HRES configurations.

• Incentivize Renewable Energy Adoption: By providing subsidized loans and fair
pricing for renewable energy fed back to the grid, policymakers can significantly
increase renewable energy production and make it more accessible for residential,
commercial, and industrial users. This not only benefits the environment but also
reduces reliance on expensive national grid imports and polluting diesel generators.

• Promote Energy Efficiency: Educating consumers based on findings like unsuitable
wind turbine locations can help avoid investment mistakes. Additionally, the research
suggests energy management strategies that can lower energy system costs and extend
battery life, leading to significant long-term savings for consumers. This study has
shown that implementing these strategies can lead to reducing the payback period by
60.2% for consumers and extending battery life by 10 years.

• Target Consumer Support: Policymakers can consider offering rebates or tax breaks
specifically for low-income consumers to help them overcome the initial investment
barrier of renewable energy systems. This promotes energy equity and ensures every-
one can benefit from this technology.

• Data-Driven Grid Management: The research findings can inform grid operators on
strategies to integrate more renewable energy sources efficiently. Predicting high and
low renewable energy production periods can help optimize grid management and
reduce reliance on traditional sources.

Overall, the research supports policies encouraging a shift towards renewable energy
and empowers consumers to make informed decisions for greater energy efficiency and cost
savings. By implementing these recommendations, policymakers and energy providers
can create a sustainable and affordable energy future.
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