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Abstract: The mulching of agricultural soils has been identified as a viable solution to sequester
carbon into the soil, increase soil health, and fight desertification. This is why it is a promising solution
for carbon farming in Mediterranean areas. Models are used to project the effects of agricultural
practices on soil organic carbon in the future for various soil and climatic conditions, and to help
policy makers and farmers assess the best way to implement carbon farming strategies. Here, we
modified the widely used RothC model to include mulching practices and their direct and indirect
effects on soil organic matter input, soil temperature changes, and soil hydraulic balance. We then
calibrated and tested our modified RothC (RothC_MM) using the dataset collected in two field
mulching experiments, and we used the tested RothC_MM to estimate the expected soil carbon
sequestration due to mulching by the year 2050 for the Valencian Community (Spain). Our results
show that RothC_MM improved the fit with the experimental data with respect to basic RothC;
RothC_MM was able to model the effects of mulch on soil temperature and soil water content and to
predict soil organic carbon (SOC) and CO2 observations taken in the field.

Keywords: SOC modelling; mulching; conservation agriculture

1. Introduction

The sequestration of carbon in the soil has been identified by the IPCC as one of
the most readily viable ways to help reach carbon neutrality by 2050, by compensating
for CO2 anthropic emission [1]. Carbon (C) is present in soils in inorganic (SIC) and
organic (SOC) forms, with agriculture historically depleting SOC reserves, especially
in Mediterranean areas, where 20–40% of the original SOC content has been lost after
conversion to agriculture [2,3]. This loss of SOC is particularly relevant, considering that
agricultural soils occupy about 35% of the global land surface [4]: Lal et al. [5] estimated a
global carbon debt due to agriculture of 260 Gt SOC for the top 1 m of soil, with the rate of
carbon losses accelerating in the past 200 years [6]. This means that there is a large potential
to sequester carbon in the soils through conservation agriculture practices [7], with the
added benefit that increasing SOC levels will improve several ecosystem services because
of the enhancement in soil structure, fertility, and resistance to erosion [8–10]. This would
be extremely important in Mediterranean lands where soil erosion and desertification are
major concerns for local farmers and policy makers [11–15]. Therefore, there is a wide
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interest in accurately estimating the effects of conservation agriculture practices on SOC
trends, at least up to the year 2050.

The effects of agricultural practices on SOC stocks can be estimated using dynamic
mathematical models (SOC models) that try to represent the processes that incorporate
(input) and mineralize (output) organic compounds in the soil. SOC is the result of the
accumulation of decaying organic matter in the soil against mineralization [16]. SOC inputs
to the soil come from decaying litter and from the dead remains of roots, lysates, and
exudates, i.e., so-called rhizodeposition. SOC outputs consist of carbon oxidized through
respiration by soil organisms, as well as lost through erosion and leaching. Models simulate
the inclusion of fresh organic matter in the soil as a flux toward different organic carbon
pools (2–6 pools, depending on the model). The output of carbon from each pool, including
the fresh organic matter pools, is simulated with an exponential decay function, where
each pool features a different turnover rate [17,18]. Since it has been widely observed
that mineralization rates are modified by soil temperature (Ts) and soil water content
(θs; [19–21]), SOC models include empirical functions to modify the turnover rates of the
carbon pools on the basis of both Ts and θs [22].

To obtain reliable estimates of the effects of conservation agriculture practices on SOC
stocks for different climates, soil types, and crops, the effects of such practices on soil carbon
inputs, Ts, and θs should be included fully into SOC models, which can then be run using
future climate projections [23]. Among the various SOC models, FAO [24] suggests the
use of the less data-demanding RothC, which parametrizes the soil processes mostly with
empirical and conceptual functions [17], and the more data-demanding CENTURY, which
represents the soil processes with more theoretically sound functions [25].

The less data-demanding RothC is more widely used (due to scarcity of data), but
the inclusion of a particular agricultural practice in it requires specific parameters and
simple functions to represent the direct and indirect effects of that agricultural practice
on the SOC dynamics; reduced tillage, for example, cannot be directly modelled on a
less data-demanding model with no soil vertical discretization. Furthermore, less data-
demanding models obtain the important θs data from similarly “bucket” soil water budget
functions, which are often too simplistic to adequately represent Mediterranean condi-
tions, characterized by long droughts and short, intense precipitation events; for instance,
Farina et al. (2013) [26] showed how to modify RothC to improve its performance in
Mediterranean climate conditions.

The practice of leaving crop residues or other materials on the soil surface is called
“mulching” [27], and it is especially relevant to improving soil and water conservation in
orchard inter-rows [28–30]. In addition to improving soil tilth, nutrient availability, and
weed control [31], mulching also increases SOC levels [32–34]. Conservation agriculture
practices can enlarge SOC stocks directly by transferring carbon to the soil, and/or indi-
rectly by fostering the carbon transfer to the soil from other sources (e.g., plants through
rhizodeposition) and/or by decreasing the SOC mineralization rate. The direct effect is the
mulch inclusion in the soil either when tilled [35] or carried by soil fauna. The biomass
from organic mulches is a matter and energy source for soil organisms, which increases
their activity and encourages the binding of organic matter and particles of soil into macro-
and micro-aggregates [36], leading to an enhancement in the aggregate stability, restoration
of stable C, and, finally, improvement in the SOC content and soil carbon sequestration [37].
The indirect effects are due to changes in soil temperature and water content due to mulch
application [38], which can result in changes in root growth and soil ecology and are
especially relevant in Mediterranean climates [39–41].

To date, limited attempts have been made to include mulching in SOC models, sim-
ulating its effects on soil carbon sequestration by modelling only the direct input of SOC
from the biomass of organic mulches [42,43]. Galdos et al. [43] simulated the effect of
straw mulch from sugarcane using the CENTURY model; the simulation was focused
on understanding whether the straws left on the field contributed directly to the carbon
pools and thus to an increase in sugarcane production, leading to a sort of active feedback.
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Mondini et al. (2017) [44] modified RothC to include additional exogenous organic matter
(EOM) pools and their parameterization by fitting the respiratory curves of 30 soil treat-
ments. Nieto et al. [45] applied RothC to estimate the soil carbon sequestration brought
about by mulching in several Mediterranean olive groves. In all these studies, the indirect
effects of mulching on Ts and θs were not considered. Moreover, none of the RothC studies
on mulch adapted the model to the Mediterranean climate.

The main objectives of this study were to modify the RothC model to estimate changes
of SOC due to mulch application in a Mediterranean climate, more specifically in the
inter-rows of a Valencian citrus orchard. By modifying RothC, we aimed at including a
strategy to sequester atmospheric CO2 in the soil in the RothC model, in order to predict
soil carbon sequestration potential at plot and landscape scales [46]. Our specific objectives
were to:

• Modify RothC to include the effects of mulch on soil temperature and soil water
content, especially in a Valencian climate;

• Calibrate and test the modified RothC using field data, obtained in a three-year-long
field experiment [47].

2. Material and Methods

To include mulching’s direct and indirect effects in RothC, we conducted the following
steps: (a) collected the data from two experiments on mulching in citrus orchards in Valencia
(Spain) to test the model; (b) built upon the version of RothC developed by Farina et al. [26]
(RothC_N) for Mediterranean conditions, in order to introduce the effects of a shallow water
table; (c) modified the temperature and soil moisture equations in RothC_N to include the
indirect effects of mulching.

2.1. Modifications of RothC for Mulching’s Direct and Indirect Effects in Mediterranean Climate:
The RothC_MM Model
2.1.1. The RothC Model

We decided to use the RothC Rothamsted Carbon model, (RothC-26.3), implemented
as described in Coleman and Jenkinson [17]. We selected this model because it requires rela-
tively few input data, it has been tested in a wide range of conditions, and it is already used
to estimate SOC stocks in various countries in its standard (Japan [48]; Switzerland, [49]) or
modified forms (Australia [50]; United Kingdom [51,52]).

RothC estimates soil water content in terms of monthly topsoil moisture content
deficit (TSMD, in mm), based on a “bucket” soil water budget with input coming from
precipitation and output from estimated potential evapotranspiration; drainage is simulated
by imposing a minimum TSMD corresponding with field capacity, i.e., at a matric potential
of −5 kPa. The vegetated soil is allowed to dry up to wilting point (TSMDmax), i.e., at
−1.5 MPa, and the bare soil to a fraction of it (0.556 TSMDmax). A parameter used to
modify the SOC pools’ degradation rate (b, see Equation (1) below) is assumed to change
linearly from a value of 1 (no effect on SOC mineralization) at matric potential values of
−0.1 MPa to a minimal value of 0.2 at wilting point (−1.5 MPa). The TSMDmax and the
TSMD corresponding to −0.1 MPa are calculated using an empirical function based on the
soil’s clay content.

RothC has four active and one inert SOC compartments or pools: Decomposable
Plant Material (DPM), Resistant Plant Material (RPM), Microbial Biomass (BIO), Humified
Organic Matter (HUM), and Inert Organic Matter (IOM). The monthly organic inputs to
the soil are divided into two compartments: DPM and RPM. Then, the output carbon
from these two SOC pools flows into BIO and HUM and is lost as CO2. From the BIO
and HUM pools, the output carbon again flows into BIO and HUM and is lost as CO2.
Each active SOC pool has a different turnover time: DPM (0.165 years), RPM (2.31 years),
BIO (1.69 years), HUM (49.5 years). The total output flow of CO2 from the pools can be
compared to the monthly average heterotrophic respiration from the soil.
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The amount of material that decomposes (Ydec,i) in one month in any pool i (where
i = {DPM, RPM, BIO, HUM}) is:

Ydec,i = Yi

(
1 − e−abckit

)
(1)

where Yi is the initial quantity of carbon (t C ha−1) in a specific pool i, a is the rate-
modifying factor for temperature, b is the rate-modifying factor for water content, c is the
rate-modifying factor for soil cover, ki is the yearly decomposition rate constant pool i,
and t is 1/12 [17]. In RothC, weather input data controls temperature and water content
modifying factors a and b, hence the modelled SOC dynamic in RothC is sensitive to the air
temperature and soil water budgets.

2.1.2. Modifications to RothC for Mediterranean Climate: RothC_Med

We adapted RothC to Mediterranean conditions in two steps: first, we implemented the
RothC version developed by Farina et al. [26], called “RothC_N”; second, we generalized it
to include (a) drainage by macropore flow and (b) shallow water table depth conditions
(this generalized version is referred as “RothC_Med”).

Farina et al. [26] adapted RothC to semi-arid and Mediterranean conditions working
on both the “bucket” model for the calculation of TSMD and on how TSMD translates
to modifications of mineralization rates through parameter b. The modifications to the
“bucket” model included the following: (i) TSMD relationship with soil matric potential
and θs based on van Genuchten [53]; (ii) calculation of the van Genuchten parameters using
pedotransfer functions [54] (see Supplementary Material S1); (iii) soil is allowed to dry
more than wilting point, reaching −103 MPa; (iv) bare soil is allowed to reach wilting point.
The b factor of RothC remains 1 (no effect on mineralization rates) between field capacity
and −0.1 MPa, then it decreases linearly from 1 to 0.2 between −0.1 MPa and wilting point,
reaching its maximum effect on mineralization rates [55].

To include the direct and indirect effects of mulching in RothC model, we

• extended the water retention curve function to automatically take in soil water content
data obtained from the field, to conduct multi-parameter calibrations of RothC_N;

• introduced a “drainage” empirical parameter (here called “MinTSMD”) to represent
the effect of macropore flow, e.g., from the formation of cracks; this parameter is a
minimum TSMD level which can be calibrated using soil water content time series;

• introduced a sinusoidal function to fit the effect on TSMD of a yearly fluctuating shal-
low water table; the parameters of this function can be estimated using a local/regional
groundwater model or from direct piezometer observations.

All the changes to the equations and algorithm for the calculation of TSMD in RothC
to obtain the version “RothC_Med” are detailed in Supplementary Materials.

2.1.3. Modifications to RothC to Include Mulching: RothC_Mulch and Its Combination
with RothC_Med (RothC_MM)

To include the direct and indirect effects of mulch in RothC, as observed in the field, we
modified the model to account for the following: (i) soil temperature changes, (ii) soil water
content regime changes, and (iii) direct C inputs from the mulch material. We called this
modified RothC, RothC_Mulch; we gave the name RothC_MM to the model resulting from
the combination of RothC_Med and RothC_Mulch. To represent the effect of mulch on soil
temperature (either by changes in albedo or thermal barrier), we multiplied the a coefficient
in Equation (1) by a parameter (mulch temperature radiation insulation, MT) which can
be either directly estimated from Ts data (or estimated using a soil heat transfer model,
e.g., Hydrus-1D [56]), in order to reduce the effect of temperature on SOC mineralization:

Ydeg,i = Yi

(
1 − e−MT abckit

)
(2)
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The inclusion of a parameter that directly multiplies the effect of temperature on
SOC degradation is justified by the fact that RothC assumes a linear relationship between
parameter a and temperature over 10 ◦C. To represent the effects of mulch on the soil
water content regime, the TSMD in the mulch simulations was decreased by a fixed
amount (DeltaTSMD mulch parameter), thus indirectly reducing the effect on parameter b
(Equation (1)). Finally, we introduced the “Mulch C input” parameter to account for the
organic carbon inputs contributed by the mulch to the soil either indirectly or directly by
the straw, as done previously by Mondini et al. [44] and Nieto et al. [45].

2.2. Calibration and Test of the RothC_MM Model
2.2.1. Dataset Used

The model was initialized, calibrated, and tested using a dataset obtained from two ex-
periments on the application of mulch in Valencia [46]. The experiments were carried
out in two citrus orchards located, respectively, in the experimental fields of Cajamar
ADNAgroFood in Paiporta (coordinates 39◦25′2′′ N, 0◦25′4′′ W and altitude of 17 m a.s.l.)
and Cooperativa Valenciana del Camp Unió Cristiana in Sueca (coords. 39◦12′36′ ′ N,
0◦18′23′′ W and altitude of 4 m a.s.l.), from March 2019 to January 2022.

According to the Köppen–Geiger classification, the two areas are located in semi-
arid hot-summer Mediterranean climate [57]. In Paiporta, the soil is classified as Typic
calcixerept and in Sueca as Oxyaquic Xerofluvent according to the Soil Taxonomy [58]. The
measured soil parameters were as follows: in Paiporta, clay content 36%, soil depth 20 cm,
bulk density of 1.57 kg m−3; in Sueca, clay content 32%, soil depth 20 cm, bulk density of
1.4 kg m−3.

In each study area (Paiporta and Sueca), there were two control-bare trial plots (Bare)
and two straw mulch-covered trial plots (Mulch). The monitored variables were air tem-
perature and relative humidity, with mini-meteorological stations, and rainfall with rain
gauges. Close to each weather station, during the first half of March 2019, two capacitance
soil moisture and temperature probes (ECH2O 5TM, Decagon Devices, Inc., Pullman, WA,
USA) were installed at a depth of 7 cm, one in each inter-row. Soil CO2 emission (soil
respiration, Rs) was measured once every one-to-two months, starting on March 2019,
by fitting static gas-collecting chambers on two permanent-installed PVC collars per trial
plot. Every soil CO2 emission measurement lasted 30 min and was conducted in general
between 8:00 h and 13:00 h solar time. We minimized the risk of measuring the autotrophic
component of respiration by taking soil CO2 measurements as far as possible from the trees
and in soils without living grass and roots.

Additionally, batches of soil samples were taken at 20 cm depth using soil augers
once every three months between 2019 and 2022. The soil samples were carried to the
laboratory, air-dried, ground, and sieved through a 2 mm mesh sieve. SOC was determined
by wet oxidation with dichromate according to the Walkley and Black (1934) method [59].
Furthermore, undisturbed soil core samples were taken at 5 cm depth at four points per
trial plot to separate the roots and quantify their mass fraction. The C input to the soil from
the citrus plants was estimated for both sites and both treatments, based on Mota et al. [60],
while the C input from mulch application was based on Dossou-Yovo et al. [35].

2.2.2. Model Initialization

We ran spin-up runs to initialize the carbon pools in RothC_Med and RothC_MM.
The carbon pools of RothC are not correlated to measurable quantities; thus, their initial
relative relevance (i.e., what percentage of the initial measured SOC is in each pool) are
usually estimated with a spin-up run [61]. A spin-up run is a simulation in which the
carbon amount in each pool is initially set to zero and then allowed to reach equilibrium
under stable yearly weather and soil management conditions. Spin-up runs are crucial
to accurately simulate the carbon dynamics in the soil and obtain reliable results, and are
widely used in the literature [26,61,62]. The inputs for the spin-up run are the average
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weather conditions in the area and the monthly soil carbon inputs from the previous land
use. The soil properties are the same as in the main simulations.

We ran spin-up runs for Paiporta and Sueca RothC_Med simulations, since no mulching
was applied in the orchard inter-rows before the experiment started. We calculated the
“average year weather” inputs using monthly weather data averaged over the years 2009–
2020, more specifically for air temperature (◦C) and rainfall (mm), while we used the
evapotranspiration (mm) estimated by Burguera [63], obtained using the Penman–Monteith
method [64]. Data available in the literature shows that citrus orchards were present in the
area for at least 40 years before the beginning of the experiment, so the carbon input for the
spin-up run was estimated from the literature for Valencian citrus orchards [60].

2.2.3. Model Calibration and Test

We applied the Markov chain Monte Carlo method [65] to perform the multi-objective
calibration of the models RothC_Med and RothC_MM, based on a dataset obtained from
two experiments on the application of mulch in Valencia [47]. The calibration is described
as multi-objective because we constrained the model parameters based on three time series:
θs, CO2 flux from soil, and SOC. The parameters that we calibrated to better fit SOC and
CO2 emissions were the input of carbon into the soil (C input), since it was estimated from
the literature; and the parameter related to the minimum θs the soil could reach during the
dry Mediterranean summer.

To test the model performance, we used the first 22 months of data to perform the
calibration, and then we ran the model for another 14 months to check the fit between
the observed data and the model predictions for SOC, soil CO2 flux, and TSMD. The
comparison between observations and model predictions was performed with a Shapiro–
Wilk’s test [66] for normality to test the distribution of the difference between measured
and predicted SOC values at each site. Moreover, for each dataset, we tested whether the
predictions of the RothC_MM model were better than a simple general linear model or not.

The statistical significance of the total difference between the simulated and measured
variables was assessed by comparing the RMSE with the value obtained, assuming a
deviation corresponding to the 95% confidence interval of the replicated measurements
(RMSE95). Moreover, we computed the Akaike information criterion (AIC) score [67] for
the three versions of the model.

3. Results
3.1. Model Initialization

The spin-up simulations took on average 830 years for the SOC pools to reach equi-
librium. The relative relevance of each SOC pool, in percentage, for Paiporta and Sueca,
respectively, were BIO = 2.18%, 2.19%; DPM = 0.91%, 0.69%; RPM = 13.92%, 13.98%
HUM = 82.99%, 83.14%. These fractions were used to derive the initial conditions for our
experiment simulations, multiplying them by the SOC stock measured at the beginning of
the experiment, which were 28.62 t C ha−1 in Paiporta and 36.92 t C ha−1 in Sueca.

3.2. Model Calibration and Test

The calibration of the water budget part of the modified RothC model resulted in the
following values for the new RothC_MM parameters: −47 and −40 mm for the Paiporta and
Sueca “Drought” parameter, respectively; −20 mm for both Paiporta and Sueca (Figure 1)
“MinTSMD” parameter; 7 mm and 2 months as amplitude and phase shift for the sinusoidal
function used only in the Sueca Bare simulation, and zero for all the parameters of the
sinusoidal function in all other simulations, since the water table effect on soil water content
was negligible in Paiporta and Sueca Mulch.
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Simulation time zero corresponds to the beginning month of the experiment (March 2019). 

The Bare simulation calibration resulted in a monthly C input set to 0.33 and 0.65 t C 
ha−1 month−1 for Paiporta and Sueca, respectively. The calibrated model generally follows 
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tion, and the prediction of the SOC stock for 2 years (from 2019 to 2021), compared with 
the SOC stock measured, are shown in Figure 2a,b. In Paiporta, the simulated SOC stock 
is stable in time, while in Sueca, the simulated SOC stock slowly increases. More in detail, 
the RothC_MM estimates of the SOC stock increase during the period 2019–2021 in the 
Bare treatments are 2.1 and 4.9 t C ha−1 in Paiporta and Sueca, respectively. The simulated 
soil CO2 emission in the Bare treatments follows the trend of the measurements in both 
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Figure 1. TSMD simulated with the basic RothC model, the RothC_N model, and the RothC_MM
model after calibration for (a) Bare Paiporta, (b) Mulch Paiporta, (c) Bare Sueca, (d) Mulch Sueca;
the average soil water content measured in the field, translated to TSMD, is shown for comparison.
Simulation time zero corresponds to the beginning month of the experiment (March 2019).

The Bare simulation calibration resulted in a monthly C input set to 0.33 and
0.65 t C ha−1 month−1 for Paiporta and Sueca, respectively. The calibrated model generally
follows the trend of the measured data (Figure 2). The SOC stock simulated by the Bare
simulation, and the prediction of the SOC stock for 2 years (from 2019 to 2021), compared
with the SOC stock measured, are shown in Figure 2a,b. In Paiporta, the simulated SOC
stock is stable in time, while in Sueca, the simulated SOC stock slowly increases. More in
detail, the RothC_MM estimates of the SOC stock increase during the period 2019–2021
in the Bare treatments are 2.1 and 4.9 t C ha−1 in Paiporta and Sueca, respectively. The
simulated soil CO2 emission in the Bare treatments follows the trend of the measurements
in both Paiporta and Sueca (Figure 2c,d).

The Mulch simulations calibration resulted in a monthly C input set to 0.61 and
0.63 t C ha1 month−1 for Paiporta and Sueca, respectively. Ts field observations showed
that soil temperature excursion was 3% and 1% lower under mulch treatment in Paiporta
and Sueca [47], so the data shows a MT value of 0.97 and 0.99, respectively.

Soil water content field observations showed that the Delta TSMD mulch parameter
was −5 mm (as explained in Supplementary Materials). The comparison with the cali-
brated results from RothC and RothC_MM shows that all models could fit the SOC stock
observations and predicted a very similar trend, but basic RothC predicted very different
CO2 soil emission trends with respect to RothC_MM for both Bare and Mulch treatments
(supplementary Figure S1). To fit the SOC stock and the soil CO2 emission data, however,
we had to increase the C input to the soil for RothC and RothC_MM substantially, by the
same amount for both Bare and Mulch treatments, up to 0.1 and 0.5 t C ha−1 month−1 in
both Paiporta and Sueca, respectively.
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Figure 2. Simulated and measured SOC and soil CO2 emission in the Bare simulations after calibration:
(a) SOC stock in Paiporta, (b) SOC stock in Sueca, (c) soil CO2 emission in Paiporta, (d) soil CO2

emission in Sueca. Simulation time zero corresponds to the beginning month of the experiment
(March 2019). The grey areas in (a,b) corresponds to the test period (year 2021).

Figure 3a,b show the comparison between the SOC stock predicted by the Mulch
simulation and the SOC stock measurements for the years 2019–2021. In Paiporta and
Sueca, the simulations show a faster increase in SOC stock in the Mulch than in the Bare.
The SOC stock predictions for Paiporta fit the measurements, even though SOC stock
measurements taken in 2022 show a slight decrease in SOC stock. In Sueca, instead, the
SOC stock predictions overestimate the SOC stock observations in the field. More in detail,
the RothC_MM predictions of SOC increase, during the period 2019–2021 in the Mulch
treatments, are 10.7 and 18.7 t C ha−1 in Paiporta and Sueca, respectively. The predicted
soil CO2 emission under Mulch follows the trend of the measured soil CO2 emissions in
Paiporta (Figure 3c) but tends to underestimate measured soil CO2 emissions in Sueca
(Figure 3d).
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Figure 3. Simulated and measured SOC and soil CO2 emission in the Mulch simulations after
calibration: (a) SOC stock in Paiporta, (b) SOC stock in Sueca, (c) soil CO2 emission in Paiporta,
(d) soil CO2 emission in Sueca. Simulation time zero corresponds to the beginning month of the
experiment (March 2019). The grey areas in (a,b) correspond to the test period (year 2021).

3.3. Model Test

The Shapiro–Wilk’s test failed to reject the null hypothesis of normality for the differ-
ence between the data and model predictions (p ≤ 0.0001). The relative error of the data
RMSE < RMSE95 indicates that the simulated values fall within the 95% confidence interval
of the measurements; thus, the model cannot be improved further with these data [68]. The
comparison of RothC_MM with the RothC and RothC_N calibrated models for the Bare
treatment shows that RothC_MM performed better than the other two versions of RothC,
with the RMSE between the observed TSMD values and the simulated one being 21.94, 30.6,
and 8.51 for RothC, RothC_N, and RothC_MM, respectively, in Paiporta (Table S3), and
22.19, 29.59, and 8.45 for RothC, RothC_N, and RothC_MM in Sueca (Table S4, Figure 1a,c).
The Akaike information criterion (AIC) score [67] for the three versions of the model were
as follows: 38.35 and 38.39 for RothC; 41.68 and 41.55 for RothC_N; and 38.65 and 38.39 for
RothC_MM, respectively, in Paiporta and Sueca (Tables S5 and S6).

The results obtained for the Mulch treatment simulated using RothC_MM are shown
in Figure 1b,d for Paiporta and Sueca, respectively, for comparison. The performance of
RothC_MM on SOC stock and CO2 emissions is shown in the Supplementary Materials
(Figure S1).

The linear models’ fit to the SOC stock data (Section 2.2.3, Supplementary Material,
Figure S2) had a slope coefficient of 2.32 in Mulch and 0.67 in Bare in Paiporta (Figure S2a),
and 1.41 in Mulch and 1.06 in Bare in Sueca (Figure S2b; a positive slope coefficient indicates
an increasing trend in the SOC stock linear model—the larger the slope coefficient, the
faster the increase). However, the null hypothesis of non-significant difference could not be
rejected, with p-value = 0.29 and p-value = 0.38 in Paiporta and Sueca, respectively. Thus,
the slope coefficients of the linear models for Bare and Mulch are not significantly different.
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The RMSE of RothC_N and RothC_MM with respect to the 2021 observations of SOC were
4.86, 2.28, 11.51, and 2.7 t C ha−1 for Paiporta Bare, Paiporta Mulch, Sueca Bare, and Sueca
Mulch, respectively. The linear models’ RMSE with respect to the2021 observations of SOC
were 5.18, 2.29, 14.49, and 2.53 t C ha−1 for Paiporta Bare, Paiporta Mulch, Sueca Bare,
and Sueca Mulch, respectively. The comparison between theRothC_Med and RothC_MM
models’ RMSE and the linear model RMSE, thus, shows that RothC_N and RothC_MM
provide slightly better SOC stock predictions. The Akaike information criterion (AIC)
score for the two versions of the model (RothC_N and RothC_MM) are 28.96 and 32.76 for
RothC_N, and 33.31 and 37.71 for RothC_MM, respectively, in Paiporta and Sueca.

4. Discussion
4.1. Calibration and Test Model

The new parameters we introduced in RothC_Med, RothC_Mulch, and RothC_MM
are mostly empirical, but are based on well-defined processes, and as such can either be
calibrated using time series of Ts and θs measured in the field or estimated independently
using a soil model for heat and mass transfer, like Hydrus1D [56]. The use of empirical
parameters may be problematic when using RothC_MM when the Ts and θs time series
are not available; a physically based description of the processes involved in the mulch
effects on soil water content and energy flow would improve the simulations. However,
the use of a dedicated model for soil water and temperature, or the inclusion of mulching
in a model more data-demanding than RothC (e.g., CENTURY [69]), would increase the
amount of parameters and data required to simulate SOC stock dynamics. We believe that
our implementation of RothC_MM is flexible enough to accommodate for the availability of
data to parametrize the model. Moreover, we would like to point out that RothC is already
an empirical model, which needs accurate calibration and testing before being applied to
any site.

The RothC_MM model fit the soil water content measured in the field much better than
standard RothC or even than RothC_N (Figure 1a,b). RothC_MM was able to predict the low
soil water content values reached during the long, dry summer typical of a Mediterranean
climate, as well as the lower-than-expected increase in TSMD after a rain event, due to
the fact that the intense but short precipitation events in Mediterranean climates often
infiltrate only the first few centimetres of soil and then quickly evaporate [70,71], something
that cannot be properly simulated when using monthly time steps. RothC_MM was also
able to correctly predict the effects of the shallow water table on TSMD levels in Sueca
Bare. However, RothC_MM predicted a faster decrease in TSMD levels at the beginning
of the dry summer with respect to the observations (Figure 1); this is probably because
RothC_MM uses a “bucket” water balance model and does not consider the soil’s hydraulic
conductivity effect on soil water fluxes.

When comparing simulated and measured soil CO2 emissions, it should be kept in
mind that they may not represent exactly the same thing: (i) the simulated soil CO2 emission
can be taken as an estimate of soil heterotrophic respiration (Rh); the soil respiration was
measured as far as possible from the trees, and trenches were dug to check that there
were few roots in the soil; (ii) the simulated soil CO2 emission is the estimated monthly
average emission of soil CO2 from the soil, while the measurements are taken at a certain
time of the day, for half an hour in a single day of the month. The difference between
“monthly cumulated” estimated emissions and “measured once per month” emissions are
more difficult to analyze, since Rs changes daily and yearly depending on meteorological
and biological conditions; however, monthly-only measurements are widespread in the
literature [72–75]. Accounting for both differences between simulated and measured soil
CO2 emissions, the comparison is aimed only at understanding if the simulated soil CO2
emission is within the range measured in the field.

The calibration procedure resulted in an increase in the modelled C inputs to the soil
in a very consistent way over both the Bare and Mulch simulations. This seems to indicate
that we initially underestimated the input of organic matter from the citrus trees in the
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soil. Our assumption was that mulch straw did not contribute significantly to the input of
carbon to the soil; our simulations sustain this assumption, since the calibrated soil carbon
input was not higher in the Mulch simulations with respect to the Bare simulations. The
use of literature data to estimate the input of organic matter aboveground could partially
explain the underestimation with respect to the calibrated values.

The test supported the ability of RothC_MM to predict SOC trends better than both
RothC and a linear model. The RMSE and AIC values of the RothC_MM and linear models
are on the same order of magnitude; this similarity is likely a result of the short time span
of magnitude. The calibration test procedure contributes to the observed convergence in
RMSE and AIC values. SOC values change very slowly; trends can require up to 10 years
of measurements to be statistically significant [76] and 100–1000 years to reach equilibrium
and, thus, to show that their increase is not linear in time. Moreover, the comparison with
basic RothC and RothC_Med, calibrated in the same conditions, showed that: (a) using
more frequent soil CO2 emission observations, it would be possible to appreciate the
improvement brought on by RothC_MM with respect to basic RothC (which does predict
very different short-time trends); and (b) even if all models could properly fit the SOC
stock data, RothC needed much larger C input in order to do so. The last point means that
using RothC to simulate a mulch experiment, without considering the indirect effects of
mulching, would result in an overestimation of the C input. We want to stress, however,
that our intention in developing the RothC_MM model was not to better fit SOC stock
trends only, but to generalize RothC to account for mulch effects and estimate possible
trends with different mulch materials.

The results from the calibrated and test models show that the mulch application in
both field sites resulted in an increase in SOC stock levels after 3 years with respect to
the Bare treatments (compare the trends in Figure 2 with those in Figure 3), even though
the SOC stock measurements cannot confirm these results, as shown by the linear model
analysis (Section 3.2).

4.2. Analysis of Sueca Mulch Simulation

The calibration of the Sueca Mulch simulation was difficult, since it was impossible to
fit both SOC stock and soil CO2 emission measurements by changing the monthly C input
only. Increasing the monthly C input increases both the simulated SOC stock and soil CO2
emission, and vice versa. However, in the Sueca Mulch treatment, the measurements show
a larger soil CO2 emission and a smaller SOC stock value with respect to the non-calibrated
RothC_MM simulation; thus, the calibration constrained by both variables results in an
overestimation of SOC stock and in an underestimation of the soil CO2 emission (Figure 2c).
A better fit could be obtained by identifying a suitable parameter in RothC_MM that, when
modified, would result in an opposite change in the two variables, i.e., a parameter that can
increase the simulated soil CO2 emission while simultaneously decreasing the simulated
SOC stock values.

We identified three possible candidate parameters: a, b, and ki in Equation (1), rep-
resenting the temperature and the soil water content effect on SOC degradation, and the
implicit rate of degradation determined by the microbial activity in the soil, respectively.
Since all three values are multiplied together in Equation (1), changing one or the other pro-
vides the same result, and, thus, we studied them at once by introducing another parameter
j to reduce or increase the effects on SOC degradation:

Ydeg,i = Yi

(
1 − e−jMT abckit

)
(3)

The two parameters MT and j are different and have a different meaning, even though
both are multiplied in Equation (3) and therefore have the same results on the calculation
of Ydeg,i, just like the parameters a, b, c, or ki have the same effect on the calculation but
a very different physical meaning. MT is a parameter with a determined value that can
be estimated from independent field measurements (Section 2.1.3), while j is only used
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to study the behaviour of the model and how it could better fit the observations from the
Sueca treatment.

As a gedanken experiment, we changed j between 0.5 and 2, halving and doubling,
respectively, the degradation rate of SOC (Figure 4). The results show that doubling the
SOC degradation rate substantially improves the fit between the simulated and measured
values. We want to stress that the j parameter was only used to speculate on the possible
causes for the strange behaviour observed in Sueca and was not used in the calculation of
the results shown in Section 3.
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The mulch effects on soil temperature and water content, and consequent effects
on SOC degradation rates, have already been included in the MT parameter and the
RothC_MM modifications; as such, j can be thought of as changing the ki parameters,
which implicitly represent the microbial community degradation of SOC in the RothC
model [16,77]. The parameters ki represent the intrinsic degradation rate of RothC pools
and are seldom modified due to the amount of data required to change them; however, it
has been done in some cases [78,79]. A proper calibration of ki is especially important for
the HUM pool, since it is the most important parameter for the determination of long-term
SOC stock in RothC [77]. Since ki is an implicit representation of the degradation activity
of the soil biota, to improve its representation in soil carbon cycling models, an explicit
representation of the biological and ecological processes in the soil should be considered;
various studies are already going in that direction [80–83], but still need further testing
before being used to predict SOC changes in field conditions.

4.3. 2050 Projections of SOC

We used the modified RothC to assess the effect of mulching on SOC trends up to
the year 2050. The projections to the year 2050 are based on the shared socio-economic
pathways used in the CMIP6 (Coupled Model Intercomparison Project Phase 6) scenarios
representing several temperature increases [84]. To do this, we proceeded as follows:
(i) analyzing the weather data (rainfall, air temperature, evapotranspiration) measured in
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the years 2009–2020, the same as used in the spin-up run, extracting the monthly average
and standard deviation for each variable; (ii) using the monthly average weather data,
increasing the temperature linearly in time by 2050, as input for the projection of the SOC
trends to the year 2050; (iii) using the monthly standard deviation of each variable to
estimate the uncertainty for each variable; and (iv) running a Monte Carlo analysis [85] for
a total of 10,000 simulations to perform an uncertainty analysis of the projected SOC stock
trends. The scenarios show that, in both study areas, SOC stock does not reach equilibrium
even after 30 years of simulation. In Mulch simulations, in 2050 the SOC stock is expected
to increase in both areas, even considering the variability of the parameters (Figure 5c,d).
In the Bare simulations, instead, the 2050 SOC stock trends are less clear: the uncertainty
analysis shows that SOC stock trends could be either increasing or decreasing in time in
Paiporta (Figure 5a) or slowly increasing in Sueca (Figure 5b).
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Figure 5. SOC projections to year 2050 with CMIP6 scenarios [63], with the related variability shown, as
maximum and minimum boundaries, for (a) Paiporta Bare, (b) Paiporta Mulch, (c) Sueca Bare, (d) Sueca
Mulch. The simulation time starts at 0, being March 2020, the beginning of the experiment, and ends at
360, being March 2050. The weather dataset corresponding to the minimum and maximum SOC stock
values simulated by the uncertainty analysis are shown in the Supplementary Materials. SSP stands for
shared socio-economic pathway; 1, 2, 3, and 4 are the SSP scenarios; and the last number (1.9, 2.6, 4.5,
7, 8) are the temperature increases, in ◦C.

Our simulations show an increase in SOC stock of 62.16 t C ha−1 by the year 2050,
on average. This means that, when mulch application is considered in all citrus orchards
in the Valencian Community (159,000 ha), the organic carbon sequestration is expected
to reach 9.88 Mt C by the year 2050; however, this assessment should be treated carefully,
taking into account first the total production of rice straw in the Valencian Community
and then the competition with other uses, e.g., cattle beds. In general, the simulations
conducted showed that SOC is expected to increase in all sites apart for Paiporta Bare. A
way to improve our simulations would be to decrease the uncertainty related to the future
trends for air temperature and rainfall, e.g., using more refined climate change models for
the study areas.

4.4. Comparison with Other Studies and Study Limitations

Throughout the literature, we found two studies modelling carbon sequestration
practices with straw mulch using RothC in the Mediterranean region [44,45]. Nieto et al. [45]
simulated the effect of mulch, adding the organic C input of mulch into the model to
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compare SOC dynamics in a traditional soil management and in a mulch soil management
scenario. Mondini et al. [44] modified RothC, introducing additional pools of decomposable
and resistant exogenous organic matter to consider the different nature of several organic
amendments, including straw mulch. They conducted laboratory incubation experiments
to characterize the exogenous pools of the different amendments.

Since both studies consider only the direct effects of mulching, i.e., the increase in C
input to the soil due to incorporation of the mulch biomass, the introduction of mulch in
their RothC model has the effect of increasing both the simulated SOC stock and soil CO2
emission from the soil, probably due to priming (see Appendix A). The indirect effects of
mulching, however, have the effect of increasing SOC stock, while decreasing the emission
of CO2 from the soil. Our RothC_MM model can simulate this indirect effect, which is
particularly relevant to soil carbon sequestration practices, since it results in a net gain of
carbon in the soil that is not released quickly to the atmosphere as a greenhouse gas (CO2).

A limitation of this study is that the RothC_MM calibration and test was based on
data collected over a relatively short period of time (2 years for calibration and 1 year for
testing). We acknowledge that the period of the experiment was only three years, even
though a similar timeframe has been used in other studies [44,45]. However, we preferred
to split the dataset into calibration and test data to check the accuracy and performance
of the model, rather than performing calibration only. Since SOC stock changes slowly in
time, to perform a proper calibration and test, a longer dataset (around 10 years) would be
preferable. For this reason, long-term field studies are suggested (and indeed required) to
deliver reliable long-term sequestration projections [86]; some studies are already trying
to collect long-term field-collected datasets in standardized platforms to help develop,
calibrate, and validate soil carbon models [51,52].

Another limitation is that we did not account for SOC losses due to soil erosion and
leaching. We do not believe that soil erosion would affect the study areas analyzed here,
since both the Paiporta and Sueca sites are levelled terrain, lower than the surroundings
(which also eliminates the issue of rainwater runoff). Leaching, instead, was not mea-
sured, and thus was not accounted for in the present study. However, some losses of
the dissolvable fraction of SOC are to be expected, due to the soil being in general well
drained [47]. Neglecting the loss of SOC due to drainage results in an overestimation of the
SOC degradation rate.

Finally, the mineralization process carried out by the soil microbial community is only
implicitly represented in RothC, with the constant parameters ki. This potentially limits the
validity of the model in soils with different soil microbial communities and raises questions
about the source for unexpected fitting problems, as was discussed in Section 4.2. New,
ecological soil models are being developed, with the aim of representing the soil microbial
community mineralization process explicitly [80–83]; a future study should try to use these
novel models to test the hypothesis of the j parameter inserted here.

5. Conclusions

Our study shows that it is possible to include both the direct and indirect effects of
mulching application on field conditions in a Mediterranean climate:

Our RothC_Med model was able to fit the soil water content observations collected in
the field, even in the presence of a shallow water table, with a substantial improvement on
both basic RothC and the modification of RothC by Farina et al. (2013) [26].

Our RothC_MM model was able to correctly estimate the SOC stock and soil CO2 emis-
sions for the test dataset. As far as we know, this is the first soil C dynamic model including
mulching that was calibrated with SOC stock and soil CO2 emission measurements,

RothC_MM could represent a flexible tool to assess the effect of mulch for small holder
farmers in Mediterranean countries, but it requires a long-term field study’s implementation
to deliver reliable long-term sequestration projections.

For this reason, this study represents an important step toward the assessment of the
carbon sequestration potential of mulch. However, some uncertainties about long-term
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trends, soil respiration responses to changed conditions (priming effects), and upper ceilings
for soil carbon storage call for more long-term experiments, repeated in other places in
Mediterranean climates. In conclusion, we emphasize the significance of the indirect effects
stemming from sustainable agricultural practices, which influence the mineralization of soil
organic carbon (SOC), consequently modulating both the SOC stock and CO2 emissions.
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Appendix A

We want to underline that the predictions in this study are site-specific and account
for the site-specific climate and soil characteristics. Figure 4c represents the Sueca control,
where the soil quality is generally high due to its soil characteristics as Oxyaquic Xeroflu-
vent, making the soil more resilient to climate change. On the other hand, Figure 4b,d
represent the SOC increases due to the mulching practice, which underlines the potential
to mitigate or reverse the effect of climate warming, as in the case of Paiporta.

The sensitivity analysis (Figure A1) shows that Mulch C input has a linear effect on
SOC stock, as expected, but also controls the relevance of parameter MT, while parameter
DeltaTSMD mulch had a negligible effect on SOC stocks. The reason behind this can be
elucidated by the fact that, in RothC, SOC pools with slower turnover (HUM and RPM),
which are pools with a higher amount of SOC, respond more sensitively to warming than
those with a fast turnover (BIO and DPM) [86]. Based on these results, the incorporation
of a parameter associated with a specific agricultural practice, such as mulching, which
can either enhance or mitigate the temperature effect, yields a significant impact on model
simulation that should not be disregarded.

Figure A1a compares the MT and DeltaTSMD mulch parameters: the former has a
considerable effect on SOC content in the RothC, while the latter has little effect (Mulch C
input = 0.2). Figure A1b compares MT and Mulch C input; Mulch C input decreases the MT
effect on SOC increases almost exponentially.

The reason behind this can be elucidated by the fact that, in RothC, SOC pools with
slower turnover (HUM and RPM), which are pools with a higher amount of SOC, respond
more sensitively to warming than those with a fast turnover (BIO and DPM) [86]. Based
on these results, the incorporation of a parameter associated with a specific agricultural
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practice, such as mulching, which can either enhance or mitigate the temperature effect,
yields a significant impact on model simulation that should not be disregarded.
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Figure A1. Heatmap displaying simulated SOC content. (a) The x-axis represents DeltaTSMD Mulch
values, starting from 0 to −20. The y-axis represents Mulch T insulation (MT) values ranging from
0.25 to 1. (b) The x-axis represents Mulch C Input values, starting from 0 to 1. The y-axis represents
MT values ranging from 0.2 to 1.
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